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3.7 Derivatives of Inverse Functions and Logarithms 

   In Section 1.5 we saw how the inverse of a function undoes, or inverts, 

the effect of that  function. We defined there the natural logarithm function 

𝑓−1(𝑥) = 𝑙𝑛 𝑥 as the inverse of  the natural exponential function 𝑓(𝑥) =

𝑒𝑥. This is one of the most important function inverse pairs in mathematics 

and science. We learned how to differentiate the exponential function in 

Section 3.3. Here we develop a rule for differentiating the inverse of a 

differentiable function, and we apply the rule to find the derivative of the 

natural logarithm function. 

3.7.1 Derivatives of Inverse Functions and Logarithms 

Remark: 

      Take the inverse of the function 𝑓(𝑥) = (1/ 2)𝑥 +  1 to be 

𝑓−1(𝑥) = 2𝑥 –  2 then we calculate their derivatives, we see that 

                         𝑑

𝑑𝑥
𝑓(𝑥) =

𝑑

𝑑𝑥
((

1

2
) 𝑥 +  1) =

1

2
   

                     𝑑

𝑑𝑥
𝑓−1(𝑥) =

𝑑

𝑑𝑥
(2𝑥 − 2) = 2 . 

The derivatives are reciprocals of one another, so the 

slope of one line is the reciprocal of the slope of its 

inverse line.  

     This is not a special case. Reflecting any nonhorizontal or nonvertical 

line across the line 𝑦 =  𝑥 always inverts the line’s slope. If the original 

line has slope 𝑚 ≠  0, the reflected line has slope 1/ 𝑚. 

Theorem(The Derivative Rule for Inverses): 

   If f has an interval I as domain and 𝒇′(𝒙) exists and is never zero on 

I, then 𝒇−𝟏 is differentiable at every point in its domain (the range of 𝒇). 

The value of ( 𝒇−𝟏)′ at a point b in the domain of 𝒇−𝟏 is the reciprocal 

of the value of 𝒇  at the point 𝒂 = 𝒇−𝟏(𝒃): 
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       ( 𝒇−𝟏)′(𝒃) = 𝟏

𝒇′(𝒇−𝟏(𝒃))
   

 or  

             𝒅𝒇−𝟏

𝒅𝒙
|

𝒙=𝒃
= 𝟏

𝒅𝒇
𝒅𝒙

|
𝒙=𝒇−𝟏(𝒃)

 . 

Example: 

   The function 𝑓(𝑥) = 𝑥2 , 𝑥 > 0 and its inverse 

𝑓−1(𝑥) = √𝑥 have derivatives 𝑓 ′(𝑥)  =  2𝑥 and 

( 𝑓−1)′(𝑥)  =  1/(2 √𝑥 ). 

   Let’s verify that Theorem (The Derivative Rule 

for Inverses) gives the same formula for the 

derivative of 𝑓−1(𝑥): 

( 𝑓−1)′(𝑥) = 1

𝑓′(𝑓−1(𝑥))
  

                  = 1

2(𝑓−1(𝑥))
    𝒇 ′(𝒙) = 𝟐𝒙 with 𝒙 replaced by 𝒇−𝟏(𝒙) 

                  = 1

2(√𝑥)
         𝒇−𝟏(𝒙) = √𝒙. 

Theorem (The Derivative Rule for Inverses) gives a derivative that agrees 

with the known derivative of the square root function. 

     Let’s examine Theorem (The Derivative Rule for Inverses) at a 

specific point. We pick 𝑥 = 2 (the number a) and 𝑓(2)  =  4 (the value 

b). Theorem (The Derivative Rule for Inverses) says that the derivative 

of 𝑓 at 2, which is 𝑓′(2) = 4,  and the derivative of 𝑓−1 at 𝑓(2), which is  

𝑓−1(4), are reciprocals. It states that 

                     ( 𝑓−1)′(4) = 1

𝑓′(𝑓−1(4))
= 1

𝑓′(2)
= 1

2𝑥
|
𝑥=2

= 1

4
 .  

Remark: 

    We will use the procedure illustrated in previous Example to calculate 

formulas for the derivatives of many inverse functions throughout this 

semester. Equation ( 𝑓−1)′(𝑏) = 1

𝑓′(𝑓−1(𝑏))
  sometimes enables us to find 

specific values of 𝑑𝑓−1 /𝑑𝑥 without knowing a formula for 𝑓−1. 
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Example: 

      Let 𝑓(𝑥) =  𝑥3 − 2, 𝑥 >  0. Find the value 

of 𝑑𝑓−1 /𝑑𝑥 at 𝑥 = 6 = 𝑓(2) without finding 

a formula for 𝑓−1(𝑥).  

Solution: 

     We apply Theorem (The Derivative Rule for 

Inverses) to obtain the value of the derivative of 

𝑓−1 at 𝑥 = 6: 

              𝑑𝑓

𝑑𝑥
|
𝑥=2

= 3𝑥2|𝑥=2 = 12.  

       𝑑𝑓−1

𝑑𝑥
|
𝑥=𝑓(2)

= 1
𝑑𝑓
𝑑𝑥

|
𝑥=2

=
1

12
 . 

3.7.2 Derivative of the Natural Logarithm Function 

     Since we know that the exponential function 𝑓(𝑥) = 𝑒𝑥 is 

differentiable everywhere, we can apply Theorem (The Derivative Rule 

for Inverses) to find the derivative of its inverse 𝑓−1(𝑥) = 𝑙𝑛 𝑥: 

( 𝑓−1)′(𝑥) = 1

𝑓′(𝑓−1(𝑥))
  Theorem (The Derivative Rule for Inverses) 

                  = 1

𝑒𝑓−1(𝑥)
  𝒇′(𝒖) = 𝒆𝒖  

=
1

𝑒ln 𝑥
 𝒙 > 𝟎  

                  = 1

𝑥
 . Inverse function relationship 

Instead of applying Theorem (The Derivative Rule for Inverses) directly, 

we can find the derivative of 𝑦 =  𝑙𝑛 𝑥 using implicit differentiation, as 

follows: 

         𝑦 = ln 𝑥  𝒙 > 𝟎  

       𝑒𝑦 = 𝑥  Inverse function relationship 

𝑑

𝑑𝑥
(𝑒𝑦) =

𝑑

𝑑𝑥
(𝑥)  Differentiate implicitly. 

  𝑒𝑦 𝑑𝑦

𝑑𝑥
= 1  Chain Rule 

       
𝑑𝑦

𝑑𝑥
= 1

𝑒𝑦 =
1

𝑥
 . 𝒆𝒚 = 𝒙  
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No matter which derivation we use, the derivative of y = ln x with respect 

to x is 

                                      
𝒅

𝒅𝒙
𝐥𝐧 𝒙 =

𝟏

𝒙
 , 𝒙 > 𝟎. 

The Chain Rule extends this formula to positive differentiable functions 

𝑢(𝑥): 

                                     
𝒅

𝒅𝒙
𝐥𝐧 𝒖 =

𝟏

𝒖
 
𝒅𝒖

𝒅𝒙
, 𝒖 > 𝟎.  

Example: 

a) 𝑑

𝑑𝑥
ln 2𝑥 = 1

2𝑥

𝑑

𝑑𝑥
(2𝑥) =

1

2𝑥
∙ 2 =

1

𝑥
, 𝑥 > 0. 

b) 𝑑

𝑑𝑥
ln(𝑥2 + 3) = 1

𝑥2+3

𝑑

𝑑𝑥
(𝑥2 + 3) =

1

𝑥2+3
∙ 2𝑥 =

2𝑥

𝑥2+3
. 

c) 𝑑

𝑑𝑥
(ln 𝑥)4 = 4(ln 𝑥)3

𝑑

𝑑𝑥
(ln 𝑥) = 4(ln 𝑥)3

1

𝑥
=

4(ln 𝑥)3

𝑥
, 𝑥 > 0. 

d)  𝑑

𝑑𝑥
ln|𝑥| = 𝑑

𝑑𝑢
ln 𝑢 ∙

𝑑𝑢

𝑑𝑥
  𝒖 = |𝒙|, 𝒙 ≠ 𝟎  

             = 1

𝑢
∙ 𝑥

|𝑥|
  𝒅

𝒅𝒙
(|𝒙|) = 𝒙

|𝒙|
  

             = 1

|𝑥|
∙ 𝑥

|𝑥|
  Substitute for 𝒖. 

             = 𝑥

𝑥2   

             =
1

𝑥
 .  

    So, 1 /𝑥 is the derivative of 𝑙𝑛 𝑥 on the domain 𝑥 >  0, and the 

derivative of 𝑙𝑛(−𝑥) on the domain 𝑥 <  0. 

Remark: 

     Notice from previse Example that the function 𝑦 = 𝑙𝑛 2𝑥 has the 

same derivative as the function 𝑦 = 𝑙𝑛 𝑥. This is true of 𝑦 = 𝑙𝑛 𝑏𝑥 for 

any constant b, provided that 𝑏𝑥 >  0: 

                        𝑑

𝑑𝑥
ln 𝑏𝑥 = 1

𝑏𝑥
∙ 𝑑

𝑑𝑥
(𝑏𝑥) = 1

𝑏𝑥
(𝑏) = 1

𝑥
. 

Example: 

      A line with slope m passes through the origin 

and is tangent to the graph of 𝑦 =  𝑙𝑛 𝑥. What is the 

value of m? 
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Solution: 

    Suppose the point of tangency occurs at the unknown point 𝑥 = 𝑎 > 0. 

Then we know that the point (𝑎, 𝑙𝑛 𝑎) lies on the graph and that the tangent 

line at that point has slope 𝑚 = 1/ 𝑎. Since the tangent line passes through 

the origin, its slope is 

                                  𝑚 = ln 𝑎−0

𝑎−0
= ln 𝑎

𝑎
. 

    Setting these two formulas for m equal to each other, we have 

            ln 𝑎

𝑎
= 1

𝑎
⇒ ln 𝑎 = 1 ⇒ 𝑒ln 𝑎 = 𝑒1 ⇒ 𝑎 = 𝑒 ⇒ 𝑚 = 1

𝑒
. 

3.7.3 The Derivatives of 𝒂𝒙 and 𝐥𝐨𝐠𝒂 𝒙 : 

     We start with the equation 𝑎𝑥 = 𝑒ln (𝑎𝑥) = 𝑒𝑥𝑙𝑛 𝑎, 𝑎 > 0 which was 

seen in Section 1.5, where it was used to define the function 𝑎𝑥 : 

𝑑

𝑑𝑥
𝑎𝑥 = 𝑑

𝑑𝑥
𝑒𝑥𝑙𝑛 𝑎   

        = 𝑒𝑥𝑙𝑛 𝑎 ∙ 𝑑

𝑑𝑥
(𝑥 ln 𝑎)  𝒅

𝒅𝒙
𝒆𝒖 = 𝒆𝒖 𝒅𝒖

𝒅𝒙
  

        = 𝑎𝑥 ln 𝑎  𝒍𝒏 𝒂 is a constant. 

That is, if 𝑎 >  0, then 𝑎𝑥 is differentiable and 
𝒅

𝒅𝒙
𝒂𝒙 = 𝒂𝒙 𝐥𝐧 𝒂. 

This equation shows why 𝑒𝑥 is the preferred exponential function in 

calculus. If 𝑎 = 𝑒, then 𝑙𝑛 𝑎 = 1 and the derivative of 𝑎𝑥 simplifies to 

                                𝒅

𝒅𝒙
𝒆𝒙 = 𝒆𝒙 𝐥𝐧 𝒆 = 𝒆𝒙.      (𝐥𝐧 𝒆 = 𝟏) 

If 𝑎 >  0 and u is a differentiable function of x, then by the Chain Rule, 

𝑎𝑢 is a differentiable function of x and 
𝒅

𝒅𝒙
𝒂𝒖 = 𝒂𝒖 𝐥𝐧 𝒂

𝒅𝒖

𝒅𝒙
. 

Example: 

a) 𝑑

𝑑𝑥
3𝑥 = 3𝑥 ln 3. 

b) 𝑑

𝑑𝑥
3−𝑥 = 3−𝑥(ln 3)

𝑑

𝑑𝑥
(−𝑥) = −3−𝑥 ln 3. 

c) 𝑑

𝑑𝑥
3sin 𝑥 = 3sin 𝑥(ln 3)

𝑑

𝑑𝑥
(sin 𝑥) = 3sin 𝑥(ln 3) cos 𝑥 

d) 𝑑

𝑑𝑥
sin(3𝑥) = cos(3𝑥)

𝑑

𝑑𝑥
(3𝑥) = cos(3𝑥) ∙ 3𝑥 ln 3. 
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Remark: 

     To find the derivative of log𝑎 𝑥 for an arbitrary base (𝑎 >  0, 𝑎 ≠ 1), 

we use the change-of-base formula for logarithms to express log𝑎 𝑥 in 

terms of natural logarithms: log𝑎 𝑥 = ln 𝑥

ln 𝑎
. Then we take derivatives 

                 
𝑑

𝑑𝑥
log𝑎 𝑥 =

𝑑

𝑑𝑥

ln 𝑥

ln 𝑎
= 1

ln 𝑎
∙

𝑑

𝑑𝑥
ln 𝑥 = 1

ln 𝑎
∙ 1

𝑥
.  

which yields 

                  
𝑑

𝑑𝑥
log𝑎 𝑥 = 1

ln 𝑎
∙ 1

𝑥
 , 𝑎 >  0, 𝑎 ≠ 1. 

 If u is a differentiable function of x and 𝑢 >  0, the Chain Rule gives a 

more general formula: 

                  
𝒅

𝒅𝒙
𝐥𝐨𝐠𝒂 𝒖 = 𝟏

𝒖 𝐥𝐧 𝒂
∙

𝒅𝒖

𝒅𝒙
 , 𝒂 >  𝟎, 𝒂 ≠ 𝟏. 

Remark: 

    The derivatives of positive functions given by formulas that involve 

products, quotients, and powers can often be found more quickly if we take 

the natural logarithm of both sides before differentiating. This enables us 

to use the laws of logarithms to simplify the formulas before 

differentiating. The process, called logarithmic differentiation, is 

illustrated in the next example 

Example: 

     Find 𝑑𝑦/ 𝑑𝑥 if 𝑦 = (𝑥2+1)(𝑥+3)1/3

𝑥−1
 , 𝑥 > 1. 

Solution: 

     We take the natural logarithm of both sides and simplify the result 

with the algebraic properties of logarithms from Theorem (Algebraic 

Properties of the Natural Logarithm): 

        𝑙𝑛𝑦 = 𝑙𝑛(𝑥2+1)(𝑥+3)1/2

𝑥−1
 

                = 𝑙𝑛(𝑥2+1)(𝑥+3)1/2 − ln(𝑥 − 1)                       Rule 2 

                = 𝑙𝑛(𝑥2+1) + 𝑙𝑛(𝑥 + 3)1/2 − ln(𝑥 − 1)         Rule 1 

                = 𝑙𝑛(𝑥2+1) + 1

2
𝑙𝑛(𝑥2 + 1) − ln(𝑥 − 1)           Rule 4 

We then take derivatives of both sides with respect to x 

            1

𝑦
 ∙ 

𝑑𝑦

𝑑𝑥
= 1

𝑥2+1
∙ 2𝑥 + 1

2
∙ 1

𝑥+3
− 1

𝑥−1
 .  
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Next, we solve for 𝑑𝑦/ 𝑑𝑥: 

               𝑑𝑦

𝑑𝑥
= 𝑦( 2𝑥

𝑥2+1
+ 1

2𝑥+6
− 1

𝑥−1
 ).  

Finally, we substitute for y: 

               𝑑𝑦

𝑑𝑥
=

(𝑥2+1)(𝑥+3)1/3

𝑥−1
( 2𝑥

𝑥2+1
+ 1

2𝑥+6
− 1

𝑥−1
 ).  

Remark: 

      The computation in previous Example would be much longer if we 

used the product, quotient, and power rules. 

Exercises: 

1. In following: 

 

 

I) 𝑓(𝑥) = 2𝑥 + 3, 𝑎 = −1 II) 𝑓(𝑥) = 𝑥+2

1−𝑥
, 𝑎 = 1

2
 

III) 𝑓(𝑥) = 5 − 4𝑥, 𝑎 = 1

2
 IV) 𝑓(𝑥) = 2𝑥2, 𝑥 ≥ 0, 𝑎 = 5 

 

2.  a) Show that 𝑓(𝑥) = 𝑥3  and 𝑔(𝑥) = √𝑥
3

 are inverses of one 

another. 

a) Graph f and g over an x-interval large enough to show the graphs 

intersecting at (1,1) and (−1, −1). Be sure the picture shows the 

required symmetry about the line 𝑦 =  𝑥. 

a) Find the slopes of the tangent lines to the graphs of 𝑓 and 𝑔 at 

(1,1) and (−1, −1) (four tangent lines in all). 

b) What lines are tangent to the curves at the origin? 

3.  a) Show that ℎ(𝑥) = 𝑥3 /4 and 𝑘(𝑥) = (4𝑥)1 3⁄  are inverses of one 

another. 

b) Graph h and k over an x-interval large enough to show the graphs 

intersecting at (2, 2) and (−2, −2). Be sure the picture shows the 

required symmetry about the line 𝑦 = 𝑥. 

c) Find the slopes of the tangent lines to the graphs at h and k at 

(2, 2) and (−2, −2). 

d) What lines are tangent to the curves at the origin? 

a) Find 𝑓−1(𝑥). 

b) Graph 𝑓 and 𝑓−1 together. 

c) Evaluate 𝑑𝑓/𝑑𝑥 at 𝑥 = 𝑎 and 𝑑𝑓−1 /𝑑𝑥 at 𝑥 = 𝑓(𝑎) to 

show that(𝑑𝑓−1 /𝑑𝑥)|𝑥=𝑓(𝑎) = 1 (𝑑𝑓/𝑑𝑥)|⁄
𝑥=𝑎

. 
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4. Let 𝑓(𝑥) =  𝑥3   −  3𝑥2  −  1, 𝑥 ≥  2. Find the value of 𝑑𝑓−1 /𝑑𝑥 at the 

point 𝑥 = −1 = 𝑓(3). 

5. Let 𝑓(𝑥) =  𝑥2   −  4𝑥 − 5, 𝑥 >  2. Find the value of 𝑑𝑓−1 /𝑑𝑥 at the 

point 𝑥 = 0 = 𝑓(5). 

6. Suppose that the differentiable function 𝑦 = 𝑓(𝑥) has an inverse and 

that the graph of 𝑓 passes through the point (2, 4) and has a slope of 

1 3⁄   there. Find the value of 𝑑𝑓−1 /𝑑𝑥 at 𝑥 = 4. 

7. Suppose that the differentiable function 𝑦 =  𝑔(𝑥) has an inverse and 

that the graph of 𝑔 passes through the origin with slope 2. Find the slope 

of the graph of 𝑔−1 at the origin. 

8. In following, find the derivative of y with respect to x, t, or 𝜃 ,as 

appropriate. 

a) 𝑦 = 𝑙𝑛(𝑡2) b) 𝑦 = 𝑙𝑛(𝑡3 2⁄ ) + √𝑡 c) 𝑦 = ln (𝑠𝑖𝑛𝑥) 

d) 𝑦 = (cos 𝜃) ln(2𝜃 + 2) e) 𝑦 = (ln 𝑥)3 f) 𝑦 = 𝑡√𝑡 

g) 𝑦 = 𝑥4

4
ln 𝑥 − 𝑥4

16
 h) 𝑦 = (𝑥2 ln 𝑥)4 i) 𝑦 = 

j) 𝑦 = 𝑡

√ln 𝑡
 k) 𝑦 = 𝑥𝑙𝑛 𝑥

1+ln 𝑥
 l) 𝑦 = 

m) 𝑦 = ln (ln(ln 𝑥)) n) 𝑦 = 𝜃(sin(ln 𝜃) + cos(ln 𝜃)) o) 𝑦 = ln(sec 𝜃 + tan 𝜃) 

p) 𝑦 = ln 1

𝑥√𝑥+1
 q) 𝑦 = 1

2
ln 1+𝑥

1−𝑥
 r) 𝑦 = 1+ln 𝑡

1−ln 𝑡
 

s) 𝑦 = √ln √𝑡 t) 𝑦 = ln(sec(ln 𝜃)) u) 𝑦 = ln(√sin 𝜃 cos 𝜃

1+2 ln 𝜃
) 

v) 𝑦 = ln((𝑥2+1)5

√1−𝑥
) w) 𝑦 = ln √ (𝑥+1)5

(𝑥+2)20 
 

9. In following, use logarithmic differentiation to find the derivative of y 

with respect to the given independent variable. 

a) 𝑦 = √𝑥(𝑥 + 1) b) 𝑦 = √(𝑥2 + 1)(𝑥 − 1)2 c) 𝑦 = √ 𝑡

𝑡+1
 

d) 𝑦 = √
1

𝑡(𝑡+1)
 

e) 𝑦 = (tan 𝜃)√2𝜃 + 1 f) 𝑦 = 1

𝑡(𝑡+1)(𝑡+2)
 

g) 𝑦 = 𝜃+5

𝜃 cos 𝜃
 h) 𝑦 = 𝜃 sin 𝜃

√sec 𝜃
 i) 𝑦 = 𝑥√𝑥2+1

(𝑥+1)2 3⁄  

j) 𝑦 = √(𝑥+1)10

(2𝑥+1)5 k) 𝑦 = √𝑥(𝑥−2)

𝑥2+1

3
   l) 𝑦 = √ 𝑥(𝑥+1)(𝑥−2)

(𝑥2+1)(2𝑥+3)

3
 

10. In following, find 𝑑𝑦 /𝑑𝑥. 

a) 𝑙𝑛 𝑦 = 𝑒𝑦𝑠𝑖𝑛 𝑥 b) 𝑙𝑛 𝑥𝑦 = 𝑒𝑥+𝑦 
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c) 𝑥𝑦 = 𝑦𝑥 d) 𝑡𝑎𝑛 𝑦 = 𝑒𝑥 + 𝑙𝑛 𝑥 

11. In following, find the derivative of y with respect to the given 

independent variable. 

a) 𝑦 = 2𝑥 b) 𝑦 = 2(𝑠2) c) 𝑦 = 𝑡1−𝑒 

d) 𝑦 = log3(1 + 𝜃 ln 3) e) 𝑦 = log4 𝑥 + log4 𝑥2 f) 𝑦 = log25 𝑒𝑥 − log5 √𝑥 

g) 𝑦 = log3 𝑟 ∙ log9 𝑟 h) 𝑦 = log3((𝑥+1

𝑥−1
)ln 3) 

i) 𝑦 = log5 √( 7𝑥

3𝑥+2
)ln 5 

j) 𝑦 = 𝜃 sin(log7 𝜃) k) 𝑦 = log7(sin 𝜃 cos 𝜃

𝑒𝜃2𝜃
) l) 𝑦 = log5 𝑒𝑥 

m) 𝑦 = log2( 𝑥2𝑒2

2√𝑥+1
) n) 𝑦 = 3log2 𝑡 o) 𝑦 = 3 log8(log2 𝑡) 

p) 𝑦 = 𝑡 log3(𝑒(sin 𝑡)(ln 3))   
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3.8 Inverse Trigonometric Functions 

     We introduced the six basic inverse trigonometric functions in Section 

1.5 but focused there on the arcsine and arccosine functions. Here we 

complete the study of how all six basic inverse trigonometric functions are 

defined, graphed, and evaluated, and how their derivatives are computed 

3.8.1 Inverses of tan x, cot x, sec x, and csc x 

      The graphs of these four basic inverse trigonometric functions are 

shown in following Figure. 

 

We obtain these graphs by reflecting the graphs of the restricted 

trigonometric functions (as discussed in Section 1.5) through the line 𝑦 =

 𝑥. Let’s take a closer look at the arctangent, arccotangent, arcsecant, and 

arccosecant functions. 

    The arctangent of x is a radian angle whose tangent is x. The 

arccotangent of x is an angle whose cotangent is x, and so forth. The angles 

belong to the restricted domains of the tangent, cotangent, secant, and 

cosecant functions. 

Definition: 

𝒚 =  𝒂𝒓𝒄𝒕𝒂𝒏 𝒙 is the number in (−𝜋/2, 𝜋/ 2) for which 𝑡𝑎𝑛 𝑦 =  𝑥. 

𝒚 =  𝒂𝒓𝒄𝒄𝒐𝒕 𝒙 is the number in (0, 𝜋) for which 𝑐𝑜𝑡 𝑦 =  𝑥. 

y = arcsec x is the number in [ 0, 𝜋/ 2) ∪ (𝜋/ 2, 𝜋] for which 𝑠𝑒𝑐 𝑦 = 𝑥. 

y = arccsc x is the number in [−𝜋/2, 0) ∪ (0, 𝜋/2] for which 𝑐𝑠𝑐 𝑦 =  𝑥. 
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Remark: 

    We use open or half-open intervals to avoid values for which the 

tangent, cotangent, secant, and cosecant functions are undefined.  

    As we discussed in Section 1.5, the arcsine and arccosine functions are 

often written as 𝑠𝑖𝑛−1𝑥 and 𝑐𝑜𝑠−1𝑥 instead of arcsin x and arccos x. 

Likewise, we often denote the other inverse trigonometric functions by 

𝑡𝑎𝑛−1𝑥, 𝑐𝑜𝑡−1𝑥, 𝑠𝑒𝑐−1𝑥, and 𝑐𝑠𝑐−1𝑥. 

     The graph of 𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛 𝑥 is symmetric about the origin because it is 

a branch of the graph 𝑥 = 𝑡𝑎𝑛 𝑦 that is symmetric about the origin. 

Algebraically this means that 𝒂𝒓𝒄𝒕𝒂𝒏(−𝒙)  =  −𝒂𝒓𝒄𝒕𝒂𝒏 𝒙; the 

arctangent is an odd function. The graph of 𝑦 = 𝑎𝑟𝑐𝑐𝑜𝑡 𝑥 has no such 

symmetry. Notice that the graph of the arctangent function has two 

horizontal asymptotes: one at 𝑦 = 𝜋/ 2 and the other at 𝑦 = − 𝜋/ 2.  

Remark: 

    There is no general agreement about 

how to define 𝑎𝑟𝑐𝑠𝑒𝑐 𝑥 for negative 

values of x. We chose angles in the second 

quadrant between  𝜋/ 2 and 𝜋 . This 

choice makes 𝑎𝑟𝑐𝑠𝑒𝑐 𝑥 = 𝑎𝑟𝑐𝑐𝑜𝑠(1/𝑥 ). 

It also makes 𝑎𝑟𝑐𝑠𝑒𝑐 𝑥 an increasing 

function on each interval of its domain. 

Some tables choose arcsec x to lie in 

[−𝜋, − 𝜋/ 2) for 𝑥 <  0, and some texts 

choose it to lie in [𝜋, 3𝜋/2). These choices 

simplify the formula for the derivative 

(our formula needs absolute value signs) 

but fail to satisfy the computational 

equation 𝑎𝑟𝑐𝑠𝑒𝑐 𝑥 =  𝑎𝑟𝑐𝑐𝑜𝑠(1/ 𝑥 ). 

From this, we can derive the identity 

                    𝑎𝑟𝑐𝑠𝑒𝑐 𝑥 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
1

𝑥
) = 𝜋

2
− arcsin (

1

𝑥
).  
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Example: 

    The accompanying figures show two values of 𝑎𝑟𝑐𝑡𝑎𝑛 𝑥. 

 

 
The angles come from the first and fourth quadrants because the range of 

arctan x is (−𝜋/2, 𝜋/2). 

3.8.2 The Derivative of 𝒚 = 𝒂𝒓𝒄𝒔𝒊𝒏 𝒖 

     We know that the function 𝑥 =  𝑠𝑖𝑛 𝑦 is 

differentiable in the interval − 𝜋/2 < 𝑦 < 𝜋/2 

and that its derivative, the cosine, is positive 

there. Therefore assures us that the inverse 

function 𝑦 =  𝑎𝑟𝑐𝑠𝑖𝑛 𝑥 is differentiable 

throughout the interval −1 < x < 1. We cannot 

expect it to be differentiable at 𝑥 = 1 or 𝑥 = −1 

because the tangent lines to the graph are 

vertical at these points. 

    We find the derivative of 𝑦 = 𝑎𝑟𝑐𝑠𝑖𝑛 𝑥 by applying Theorem (The 

Derivative Rule for Inverses) with 𝑓(𝑥) = 𝑠𝑖𝑛 𝑥 and 𝑓−1(𝑥) = 𝑎𝑟𝑐𝑠𝑖𝑛 𝑥: 

       ( 𝑓−1)′(𝑥) = 1

𝑓′(𝑓−1(𝑥))
 Theorem (The Derivative Rule for Inverses) 

                         = 1

cos (arcsin 𝑥)
  𝒇′(𝒚) = 𝐜𝐨𝐬 𝒚   

                        = 1

√1−𝑠𝑖𝑛2(arcsin 𝑥) 

  
𝐜𝐨𝐬 𝒚 = √𝟏 − 𝒔𝒊𝒏𝟐 𝒚  

                        = 1

√1−𝑥2 
  𝒔𝒊𝒏(𝐚𝐫𝐜𝐬𝐢𝐧 𝒙) = 𝒙   
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            For x < 1,                 𝒅

𝒅𝒙
(𝐚𝐫𝐜𝐬𝐢𝐧 𝒙)= 𝟏

√𝟏−𝒙𝟐 
. 

    If u is a differentiable function of x with 𝑢 <  1, we apply the Chain 

Rule to get the general formula 

                               𝒅

𝒅𝒙
(𝐚𝐫𝐜𝐬𝐢𝐧 𝒖)= 𝟏

√𝟏−𝒖𝟐 
∙

𝒅𝒖

𝒅𝒙
, | 𝒖|  <  𝟏 .  

Example: 

     Using the Chain Rule, we calculate the derivative 

                          
𝑑

𝑑𝑥
(arcsin 𝑥2) = 1

√1−(𝑥2)2 

 ∙
𝑑

𝑑𝑥
(𝑥2)=

2𝑥

√1−𝑥4
 . 

3.8.3 The Derivative of 𝒚 =  𝒂𝒓𝒄𝒕𝒂𝒏 𝒖 

     We find the derivative of 𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛 𝑥 by applying Theorem (The 

Derivative Rule for Inverses) with 𝑓(𝑥) = 𝑡𝑎𝑛 𝑥 and 𝑓−1(𝑥) = 𝑎𝑟𝑐𝑡𝑎𝑛 𝑥. 

Theorem (The Derivative Rule for Inverses) can be applied because the 

derivative of 𝑡𝑎𝑛 𝑥 is positive for − 𝜋/2 < 𝑦 < 𝜋/2: 

     ( 𝑓−1)′(𝑥) = 1

𝑓′(𝑓−1(𝑥))
 Theorem (The Derivative Rule for Inverses) 

                       = 1

sec2 (arctan 𝑥)
  𝒇′(𝒖) = 𝐬𝐞𝐜𝟐 𝒖   

                       = 1

√1+𝑡𝑎𝑛2(arctan 𝑥) 

  
𝐬𝐞𝐜𝟐 𝒖 = 𝟏 + 𝒕𝒂𝒏𝟐𝒖  

                        = 1

1+𝑥2  𝒕𝒂𝒏(𝐚𝐫𝐜𝐭𝐚𝐧 𝒙) = 𝒙   

The derivative is defined for all real numbers: 

                                      𝒅

𝒅𝒙
(𝐚𝐫𝐜𝐭𝐚𝐧 𝒙) = 𝟏

𝟏+𝒙𝟐 
. 

The derivative is defined for all real numbers. If u is a differentiable 

function of x, we get the Chain Rule form: 

                                𝒅

𝒅𝒙
(𝐚𝐫𝐜𝐭𝐚𝐧 𝒖) = 𝟏

𝟏+𝒖𝟐 ∙
𝒅𝒖

𝒅𝒙
 .  

The Chain Rule can also be combined with the arctangent function in other 

ways, as illustrated by the following example 

Example: 
𝑑

𝑑𝑥
( 1

arctan 𝑥
) =

𝑑

𝑑𝑥
(arctan 𝑥)−1   

Derivative of the reciprocal (not the 

inverse) of arctangent 

                       = (−1)(arctan 𝑥)−2 𝑑

𝑑𝑥
(arctan 𝑥)   

Apply the Chain Rule. 

                       = −1

(arctan 𝑥)2 ∙
1

1+𝑥2   
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3.8.4 The Derivative of 𝒚 = 𝒂𝒓𝒄𝒔𝒆𝒄 𝒖 

     Theorem (The Derivative Rule for Inverses) does not apply to the 

function 𝑠𝑒𝑐 𝑥 directly, since its domain is not connected.  However, we 

can apply Theorem to each of the two intervals in its domain to see that 

the  inverse of the one-to-one function 𝑠𝑒𝑐 𝑥 is indeed differentiable. The 

formula for the derivative  of 𝑎𝑟𝑐𝑠𝑒𝑐 𝑥 on its domain |𝑥|  >  1 can then be 

found by using implicit differentiation and the Chain Rule as follows: 

                             𝑦 = 𝑎𝑟𝑐𝑠𝑒𝑐 𝑥  

                      𝑠𝑒𝑐 𝑦 = 𝑥  Inverse function relationship 

                𝑑

𝑑𝑥
(𝑠𝑒𝑐 𝑦) =

𝑑

𝑑𝑥
𝑥  Differentiate both sides. 

    (𝑠𝑒𝑐 𝑦 ∙ tan 𝑦)
𝑑𝑦

𝑑𝑥
= 1  Chain Rule 

                            
𝑑𝑦

𝑑𝑥
= 1

𝑠𝑒𝑐 𝑦∙tan 𝑦
  Since |𝒙|  > ,𝒚 lies in ( 𝟎 و 𝟏  𝝅/ 𝟐) ∪

(𝝅/𝟐, 𝝅)and 𝒔𝒆𝒄 𝒚 ∙ 𝒕𝒂𝒏𝒚 ≠  𝟎. 

To express the result in terms of x, we use the relationships 𝑠𝑒𝑐 𝑦 =  𝑥  

and 𝑡𝑎𝑛 𝑦 =  ± √𝑠𝑒𝑐2𝑦 −  1  =  ± √𝑥2 −  1 to get 

                                            
𝑑𝑦

𝑑𝑥
= ± 1

𝑥√𝑥2− 1
 . 

Can we do anything about the ± sign? A glance 

at the slope of the graph 𝑦 =  𝑎𝑟𝑐𝑠𝑒𝑐 𝑥 is 

always positive. Thus, 

    𝑑

𝑑𝑥
𝑎𝑟𝑐𝑠𝑒𝑐 𝑥 = {

+
1

𝑥√𝑥2− 1
𝑖𝑓 𝑥 > 1     

−
1

𝑥√𝑥2− 1
𝑖𝑓 𝑥 < −1.

  

With the absolute value symbol, we can write a single expression that 

eliminates the “±” ambiguity: 

                             𝒅

𝒅𝒙
(𝒂𝒓𝒄𝒔𝒆𝒄 𝒙) =

𝟏

|𝒙|√𝒙𝟐− 𝟏
  ,   |𝒙| > 𝟏.    

If u is a differentiable function of x with 𝑢 >  1, we have the formula 

                           𝒅

𝒅𝒙
(𝒂𝒓𝒄𝒔𝒆𝒄 𝒖) =

𝟏

|𝒖|√𝒖𝟐− 𝟏
∙

𝒅𝒖

𝒅𝒙
  ,   |𝒖| > 𝟏.  
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Example: 
𝑑

𝑑𝑥
(𝑎𝑟𝑐𝑠𝑒𝑐 5𝑥4) =

1

|5𝑥4|√(5𝑥4)2− 1
∙

𝑑

𝑑𝑥
(5𝑥4)  

                           =
1

5𝑥4√25𝑥8− 1
(20𝑥3)             𝟓𝒙𝟒 > 𝟏 

                           =
4

𝑥√25𝑥8− 1
 . 

3.8.5 Derivatives of the Other Three Inverse Trigonometric Functions: 

      We could use the same techniques to find the derivatives of the other 

three inverse trigonometric functions—arccosine, arccotangent, and 

arccosecant—but there is an easier way, thanks to the following identities. 

Remark(Inverse Function–Inverse Cofunction Identities): 

𝐚𝐫𝐜𝐜𝐨𝐬 𝒙 = 𝝅/𝟐 − 𝐚𝐫𝐜𝐬𝐢𝐧 𝒙 

𝐚𝐫𝐜𝐜𝐨𝐭 𝒙 = 𝝅/𝟐 − 𝐚𝐫𝐜𝐭𝐚𝐧 𝒙 

𝐚𝐫𝐜𝐜𝐬𝐜 𝒙 = 𝝅/𝟐 − 𝐚𝐫𝐜𝐬𝐞𝐜 𝒙 

We saw the first of these identities in Section 1.5. The others are derived 

in a similar way. It follows easily that the derivatives of the inverse 

cofunctions are the negatives of the derivatives of the corresponding 

inverse functions. For example, the derivative of 𝑎𝑟𝑐𝑐𝑜𝑠 𝑥 is calculated 

as follows: 

       
𝑑

𝑑𝑥
(arccos 𝑥) =

𝑑

𝑑𝑥
(𝜋/2 − arcsin 𝑥)            Identity 

                              = −
𝑑

𝑑𝑥
(arcsin 𝑥)  

                              = − 1

√1−𝑥2
 .                                Derivative of arcsine 

The derivatives of the inverse trigonometric functions are summarized in 

following Table. 

𝑑

𝑑𝑥
(arcsin 𝑥) =

1

√1−𝑥2
   (|𝑥| < 1)  

𝑑

𝑑𝑥
(arccos 𝑥) = −

1

√1−𝑥2
   (|𝑥| < 1)   

𝑑

𝑑𝑥
(arctan 𝑥) = 1

1+𝑥2 
  𝑑

𝑑𝑥
(arccot 𝑥) = − 1

1+𝑥2 
  

𝑑

𝑑𝑥
(𝑎𝑟𝑐𝑠𝑒𝑐 𝑥) =

1

|𝑥|√𝑥2− 1
  (|𝑥| > 1)  𝑑

𝑑𝑥
(𝑎𝑟𝑐𝑐𝑠𝑐 𝑥) = −

1

|𝑥|√𝑥2− 1
  (|𝑥| > 1)      
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Exercises: 

1. Use reference triangles in an appropriate quadrant, to find the angles in 

following: 

1.  a) tan−1 1 b) arctan (−√3) c) tan−1( 1

√3
) 

2.  a) arctan (−1) b) tan−1 √3 c) tan−1(−1

√3
) 

3.  a) sin−1(−1

2
) b) sin−1( 1

√2
) c) arcsin (−√3

2
) 

4.  a) sin−1(1

2
) b) arcsin (−1

√2
) c) sin−1(√3

2
) 

5.  a) cos−1(1

2
) b) cos−1(

−1

√2
) c) arccos (√3

2
) 

6.  a) csc−1(√2)   b) arccsc (−2

√3
) c) csc−1 2 

7.  a)  arcsec (−√2) b) sec−1( 2

√3
) c) sec−1(−2) 

8.  a) cot−1(−1) b) arccot (√3) c) cot−1(−1

√3
) 

2. Find the values in following. 

a) 𝑠𝑖𝑛 (𝑐𝑜𝑠−1 (√2

2
)) b) 𝑠𝑒𝑐 (𝑎𝑟𝑐𝑐𝑜𝑠 (1

2
)) 

c) 𝑡𝑎𝑛 (𝑎𝑟𝑐𝑠𝑖𝑛 (−1

2
))  d) 𝑐𝑜𝑡 (𝑠𝑖𝑛−1 (−√3

2
)) 

3. Find the limits in following. (If in doubt, look at the function’s graph.) 

a) lim
𝑥→1−

sin−1𝑥  b) lim
𝑥→1+

cos−1𝑥  c) lim
𝑥→∞

tan−1𝑥  

d) lim
𝑥→−∞

tan−1𝑥  e) lim
𝑥→1−

lim
𝑥→∞

sec−1𝑥  f) lim
𝑥→−∞

sec−1𝑥  

g) lim
𝑥→∞

csc−1𝑥  h) lim
𝑥→−∞

csc−1𝑥   

4. In following, find the derivative of y with respect to the appropriate 

variable. 

a) 𝑦 = 𝑐𝑜𝑠−1(𝑥2) b) 𝑦 = 𝑐𝑜𝑠−1(1/𝑥) c) 𝑦 = arcsin √2𝑡 

d) 𝑦 = 𝑠𝑖𝑛−1(1 − 𝑡) e) 𝑦 = 𝑠𝑒𝑐−1(2𝑠 + 1) f) 𝑦 = 𝑠𝑒𝑐−15𝑠 

g) 𝑦 = 𝑐𝑠𝑐−1(𝑥2 + 1), 𝑥 > 0 h) 𝑦 = 𝑐𝑠𝑐−1𝑥

2
 

i) 𝑦 = arcsin 3

𝑡2 j) 𝑦 = 𝑠𝑒𝑐−11

𝑡
 , 0 < 𝑡 < 1 k) 𝑦 = arccot √𝑡 

l) 𝑦 = cot−1√𝑡 − 1 m) 𝑦 = ln(tan−1 𝑥) n) 𝑦 = tan−1(𝑙𝑛 𝑥) 

o) 𝑦 = arccsc(𝑒𝑡) p) 𝑦 = √arcsin 𝑥 q) 𝑦 = 𝑒arcsec 𝑥 

r) 𝑦 = arccos(𝑒−𝑡) s) 𝑦 = 𝑠√1 − 𝑠2 + 𝑐𝑜𝑠−1𝑠 t) 𝑦 = √𝑠2 − 1 − 𝑠𝑒𝑐−1𝑠 
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u) 𝑦 = 𝑡𝑎𝑛−1√𝑥2 − 1 − 𝑐𝑠𝑐−1𝑥, 𝑥 > 1 v) 𝑦 = 𝑐𝑜𝑡−11

𝑥
− 𝑡𝑎𝑛−1𝑥 

w) 𝑦 = 𝑥 arcsin 𝑥 + √1 − 𝑥2 x) 𝑦 = 𝑥

1+arctan 𝑥
 

y) 𝑦 = ln(𝑥2 + 4) − 𝑥 arctan(𝑥

2
) z) 𝑦 = (arccot(𝑥3))3 

aa) 𝑦 = cos(𝑥 − arccos 𝑥) bb) 𝑦 = log2 arccsc √𝑥 

5. For following use implicit differentiation to find 𝑑𝑦

𝑑𝑥
  at the given point P. 

a) 3 arctan 𝑥 + arcsin 𝑦 = 𝜋

4
; 𝑃(1, −1). 

b) arcsin(𝑥 + 𝑦) + arccos(𝑥 − 𝑦) = 5𝜋

6
; 𝑃(0, 1

2
). 

c) 𝑦𝑐𝑜𝑠−1(𝑥𝑦) = −3√2

4
𝜋; 𝑃(1

2
, −√2). 

d) 16(𝑡𝑎𝑛−13𝑦)2 + 9(𝑡𝑎𝑛−12𝑥)2 = 2𝜋; 𝑃(√3

2
, 1

3
). 
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3.9 Extreme Values of Functions on Closed Intervals 

      This section shows how to locate and identify extreme (maximum or 

minimum) values of a function from its derivative.  

Definition: 

       Let f be a function with domain D. Then f has an absolute maximum 

value on D at a point c if 

                        𝑓(𝑥) ≤  𝑓(𝑐)            for all 𝑥 in 𝐷 

and an absolute minimum value on D at c if 

                         𝑓(𝑥) ≥  𝑓(𝑐)           for all 𝑥 in 𝐷. 
Remark: 

1.  Maximum and minimum values are called 

extreme values of the function f. Absolute 

maxima or minima are also referred to as 

global maxima or minima. For example, 

on the closed interval [− 𝜋 2⁄ ,  𝜋 2⁄ ] the 

function 𝑓(𝑥) = 𝑐𝑜𝑠 𝑥 takes on an 

absolute maximum value of 1 (once) and 

an absolute minimum value of 0 (twice).  

     On  the same interval, the function 𝑔(𝑥) = 𝑠𝑖𝑛 𝑥 takes on a maximum 

value of 1 and a minimum value of −1. 

2. Functions defined by the same equation or formula can have different 

extrema (maximum or minimum values), depending on the domain. A 

function might not have a maximum or minimum if the domain is 

unbounded or fails to contain an endpoint. We see this in the following 

example. 

Example: 

      Find the absolute maximum and minimum values of 𝑦 = 𝑥2 on the 

intervals 

Solution: 

a) (−∞, ∞), b) [0,2], c) (0,2], d) (0,2). 
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a)  On (−∞, ∞), 𝑦 = 𝑥2has no 

absolute maximum and has 

absolute minimum of 0 at 𝑥 =
 0. 

 b) On [0,2], 𝑦 = 𝑥2has absolute 

maximum of 4 at 𝑥 =  2 and 

absolute minimum of 0 at 

𝑥 =  0. 

 

 

 
c)  On (0,2], 𝑦 = 𝑥2has absolute 

maximum of 4 at 𝑥 = 2  and 

has no absolute minimum. 

 d) On (0,2), 𝑦 = 𝑥2has no 

absolute extrema 

 

 

 

 
Remark: 

      The following theorem asserts that a function which is continuous over 

(or on) a finite closed interval [𝑎, 𝑏] has an absolute maximum and an 

absolute minimum value on the interval. We look for these extreme values 

when we graph a function. 

Theorem (The Extreme Value Theorem): 

        If ƒ is continuous on a closed interval [𝒂, 𝒃] , then ƒ attains both an 

absolute maximum value M and an absolute minimum value m in [𝒂, 𝒃]. 

That is, there are numbers 𝒙𝟏 and 𝒙𝟐 in [𝒂, 𝒃] with 𝒇(𝒙𝟏) = 𝒎, 𝒇(𝒙𝟐)  =

 𝑴, and 𝒎 ≤ 𝒇(𝒙) ≤ 𝑴 for every other x in [𝒂, 𝒃]. 
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Remark: 

      The following Figures illustrates possible locations for the absolute 

extrema of a continuous function on a closed interval [𝑎, 𝑏]. 

 

 

 

Maximum and minimum 

at interior points 

 Maximum and minimum 

at endpoints 

 

 

 

Maximum at interior point, 

minimum at endpoint 

 Minimum at interior point, 

maximum at endpoint 

Definition: 

      A function ƒ has a local maximum value at a point c within its domain 

D if 𝑓(𝑥)  ≤  𝑓(𝑐) for all 𝑥 ∈ 𝐷 lying in some open interval containing c. 

      A function ƒ has a local minimum value at a point c within its domain 

D if 𝑓(𝑥)  ≥  𝑓(𝑐)  for all 𝑥 ∈ 𝐷 lying in some open interval containing c. 

Remark: 

      The following figure shows a graph with five points where a function 

has extreme values on its domain [𝑎, 𝑏]. The function’s absolute minimum 
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occurs at 𝑎 even though at 𝑒 the function’s value is smaller than at any 

other point nearby. The curve rises to the left and falls to the right around 

c, making 𝑓(𝑐) a maximum locally. The function attains its absolute 

maximum at d. The function ƒ has local maxima at c and d and local 

minima at a, e, and b. We now define what we mean by local extrema. 

 
Remark: 

      The next theorem explains why we usually need to investigate only a 

few values to find a function’s extrema. 

Theorem (The First Derivative Theorem for Local Extreme Values): 

     If ƒ has a local maximum or minimum value at an interior point c of 

its domain, and if 𝒇′ is defined at c, then  

𝒇′(𝒄) = 𝟎. 

Definition: 

       An interior point of the domain of a function ƒ where ƒ is zero or 

undefined is a critical point of ƒ. 

Remark: 

       To Find the Absolute Extrema of a Continuous Function ƒ on a finite 

closed interval we use the following steps: 

1. Find all critical points of ƒ on the interval. 

2. Evaluate ƒ at all critical points and endpoints. 

3. Take the largest and smallest of these values. 
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Example: 

       Find the absolute maximum and minimum values of 𝑓(𝑥) = 𝑥2 on 

[−2,1]. 
Solution: 

      The function is differentiable over its entire domain, so the only critical 

point occurs where 𝑓′(𝑥) = 2𝑥 = 0, namely 𝑥 = 0. We need to check the 

function’s values at 𝑥 = 0 and at the endpoints 𝑥 = −2 and 𝑥 = 1: 

           Critical point value:        𝑓(0) = 0 

            Endpoint values:         𝑓(−2) = 4 

                                                  𝑓(1) = 1. 

The function has an absolute maximum value of 4 at 𝑥 = −2  and an 

absolute minimum value of 0 at 𝑥 = 0. 

Example: 

      Find the absolute maximum and minimum 

values of 𝑔(𝑡) = 8𝑡 − 𝑡4 on [-2,1].  

Solution: 

      The function is differentiable on its entire 

domain, so the only critical points occur where 

𝑔′(𝑡) = 0. Solving this equation gives 

             8 − 4𝑡3 = 0   𝑜𝑟   𝑡 = √2
3

> 1,  
a point not in the given domain. The function’s absolute extrema therefore 

occur at the endpoints, 𝑔(−2) = −32 (absolute minimum), and 𝑔(1)  =

 7 (absolute maximum).  

Example: 

       Find the absolute maximum and minimum 

values of 𝑓(𝑥) = 𝑥2 3⁄  on [−2,3]. 

Solution: 

       We evaluate the function at the critical points 

and endpoints and take the largest and smallest of 

the resulting values. 
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       The first derivative 𝑓′(𝑥) = 2

3
𝑥−1 3⁄ = 2

3 √𝑥
3  

has no zeros but is undefined at the interior point 𝑥 = 0. The values of ƒ 

at this one critical point and at the endpoints are 

           Critical point value:        𝑓(0) = 0 

            Endpoint values:         𝑓(−2) = (−2)2 3⁄ = √4
3

 

                                                   𝑓(3) = (3)2 3⁄ = √9
3

. 

       We can see from this list that the function’s absolute maximum value 

is √9
3

= 2.08, and it occurs at the right endpoint 𝑥 = 3. The absolute 

minimum value is 0, and it occurs at the interior point 𝑥 = 0  where the 

graph has a cusp. 

Exercises: 

1. In following, determine from the graph whether the function has any 

absolute extreme values on [𝑎, 𝑏] . Then explain how your answer is 

consistent with The Extreme Value Theorem.  

 

a)  

 

b)  

 

c)  

 
d)  

 

e)  

 

f)  
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2. In following, find the absolute extreme values and where they occur. 

a)  

 

b)  

 
c)  

 

d)  

 

e)  

3. In following, match the table with a graph 

 

a)  x 𝑓′(𝑥) b)  x 𝑓′(𝑥) c)  x 𝑓′(𝑥) d)  x 𝑓′(𝑥) 

a 0 a 0 a does not exist a does not exist 

b 0 b 0 b 0 b does not exist 

c 5 c -5 c -2 c -1.7 

 

I)  

 

II)  

 
III)  

 

IV)  
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4. In following, sketch the graph of each function and determine whether 

the function has any absolute extreme values on its domain. Explain 

how your answer is consistent with The Extreme Value Theorem. 

a) 𝑓(𝑥) = |𝑥|, −1 < 𝑥 < 2. b) 𝑦 = 2−𝑥2, −1 < 𝑥 < 1. 

c) 𝑔(𝑥) = {
−𝑥 0 ≤ 𝑥 < 1

𝑥 − 1 1 ≤ 𝑥 ≤ 2
. d) ℎ(𝑥) = {

1

𝑥
−1 ≤ 𝑥 < 0

√𝑥 0 ≤ 𝑥 ≤ 4
. 

e) 𝑦 = 3 sin 𝑥 ,     0 < 𝑥 < 2𝜋. f) 𝑓(𝑥) = {
𝑥 + 1, −1 ≤ 𝑥 < 0
cos 𝑥 , 0 < 𝑥 ≤ 𝜋

2

. 

5. In following, find the absolute maximum and minimum values of each 

function on the given interval. Then graph the function. Identify the 

points on the graph where the absolute extrema occur, and include their 

coordinates. 

a) 𝑓(𝑥) = 𝑥2 − 1, −1 ≤ 𝑥 ≤ 2 . b) 𝑓(𝑥) = 4 − 𝑥3, −2 ≤ 𝑥 ≤ 1 . 

c) 𝐹(𝑥) = − 1

𝑥2. 0.5 ≤ 𝑥 ≤ 2 . d) 𝐹(𝑥) = −1

𝑥
. −2 ≤ 𝑥 ≤ −1 . 

e) ℎ(𝑥) = √𝑥
3

, −1 ≤ 𝑥 ≤ 8 . f) ℎ(𝑥) = −3𝑥2 3⁄ , −1 ≤ 𝑥 ≤ 1. 

g) 𝑔(𝑥) = √4 − 𝑥2, −2 ≤ 𝑥 ≤ 1 . h) 𝑔(𝑥) = −√5 − 𝑥2, −√5 ≤ 𝑥 ≤ 0 . 

i) 𝑓(𝜃) = sin 𝜃, − 𝜋

2
≤ 𝜃 ≤ 5𝜋

6
 . j) 𝑓(𝜃) = tan 𝜃, − 𝜋

3
≤ 𝜃 ≤ 𝜋

4
 . 

k) 𝑔(𝑥) = csc 𝑥, 𝜋

3
≤ 𝑥 ≤ 2𝜋

3
 . l) 𝑔(𝑥) = sec 𝑥, − 𝜋

3
≤ 𝑥 ≤ 𝜋

6
 . 

m) 𝑓(𝑡) = 2 − |𝑡|, −1 ≤ 𝑡 ≤ 3. n) 𝑓(𝑡) = |𝑡 − 5|, 4 ≤ 𝑡 ≤ 7. 

6. In following, find the function’s absolute maximum and minimum 

values and say where they occur. 

a) 𝑓(𝑥) = 𝑥4 3⁄ , −1 ≤ 𝑥 ≤ 8. b) 𝑓(𝑥) = 𝑥5 3⁄ , −1 ≤ 𝑥 ≤ 8. 

c) 𝑔(𝜃) = 𝜃3 5⁄ , −32 ≤ 𝜃 ≤ 1. d) ℎ(𝜃) = 3𝜃2 3⁄ , −27 ≤ 𝜃 ≤ 8. 
7. In following, determine all critical points for each function. 

a) 𝑦 = 𝑥2 − 6𝑥 + 7 b) 𝑓(𝑥) = 6𝑥2 − 𝑥3 c) 𝑓(𝑥) = 𝑥(4 − 𝑥)3 

d) 𝑔(𝑥) = (𝑥 − 1)2(𝑥 − 3)2 e) 𝑦 = 𝑥2 + 2

𝑥
 f) 𝑓(𝑥) = 𝑥2

𝑥−2
 

g) 𝑦 = 𝑥2 − 32√𝑥 h) 𝑔(𝑥) = √2𝑥 − 𝑥2 i) 𝑦 = 𝑥 − 3𝑥2 3⁄  

j) 𝑦 = 𝑥3 + 3𝑥2 − 24𝑥 + 7   
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8. In following, find the critical points and domain endpoints for each 

function. Then find the value of the function at each of these points and 

identify extreme values (absolute and local). 

a) 𝑦 = 𝑥2 3⁄ (𝑥 + 2) b) 𝑦 = 𝑥2 3⁄ (𝑥2 − 4) 

c) 𝑦 = 𝑥√4 − 𝑥2 d) 𝑦 = 𝑥2√3 − 𝑥 

e) 𝑦 = {
4 − 2𝑥 𝑥 ≤ 1
𝑥 + 1 𝑥 > 1

 f) 𝑦 = {
3 − 𝑥 𝑥 < 0

3 + 2𝑥 𝑥 ≥ 0
 

g) 𝑦 = {−𝑥2 − 2𝑥 + 4 𝑥 ≤ 1
−𝑥2 + 6𝑥 − 4 𝑥 > 1

 h) 𝑦 = {
−1

4
𝑥2 − 1

2
𝑥 + 15

4
𝑥 ≤ 1

𝑥3 − 6𝑥2 + 8𝑥 𝑥 > 1
 

9. In following, give reasons for your answers. 

I. Let 𝑓(𝑥) = (𝑥 − 2)2 3⁄ . 

a)  Does 𝑓′(2) exist? 

b) Show that the only local extreme value of ƒ 

occurs at x = 2. 

c) Does the result in part (b) contradict the 

Extreme Value Theorem? 

d) Repeat parts (a) and (b) for 𝑓(𝑥) = (𝑥 − 𝑎)2 3⁄ , 

replacing 2 by a. 

II. Let 𝑓(𝑥) = |𝑥3 − 9𝑥|. 

a) Does 𝑓′(0) exist? 

b) Does 𝑓′(3) exist? 

c) Does 𝑓′(−3) exist? 

d) Determine all extrema of ƒ. 

10. In following, show that the function has neither an absolute minimum 

nor an absolute maximum on its natural domain 

a) 𝑦 = 𝑥11 + 𝑥3 + 𝑥 − 5. b) 𝑦 = 3𝑥 + tan 𝑥. 
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3.10 The Mean Value Theorem : 

        We know that constant functions have zero derivatives, but could 

there be a more complicated function whose derivative is always zero? If 

two functions have identical derivatives over an interval, how are the 

functions related? We answer these and other questions by applying the 

Mean Value Theorem. First, we introduce a special case, known as Rolle’s 

Theorem, which is used to prove the Mean Value Theorem.        

 

Theorem (Rolle’s Theorem): 

      Suppose that 𝒚 = 𝒇(𝒙) is continuous 

over the closed interval [𝒂, 𝒃] and 

differentiable at every point of its interior 

(𝒂, 𝒃). If 𝒇(𝒂)  =  𝒇(𝒃), then there is at 

least one number c in (𝒂, 𝒃) at which 

𝒇′(𝒄) = 𝟎. 

Remark: 

      The hypotheses of Rolle’s Theorem are essential. If they fail at even 

one point, the graph may not have a horizontal tangent. 

 

 

 

 

 
Discontinuous at an 

endpoint of [𝑎, 𝑏] 
 Discontinuous at an 

interior point of [𝑎, 𝑏] 
 Continuous on [a, b] but not 

differentiable at an interior 

point 

Example: 

     Show that the equation 𝑥 3 + 3𝑥 + 1 = 0  has exactly one real solution. 

Solution: 

      We  define  the  continuous  function 𝑓(𝑥)  =  𝑥 3 +  3𝑥 +  1.  Since 
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 𝑓(−1) = −3  and 𝑓(0) = 1, the Intermediate Value 

Theorem tells us that the graph of ƒ crosses the x-axis 

somewhere in the open interval (-1, 0). Now, if there 

were even two points 𝑥 = 𝑎 and 𝑥 =  𝑏 where 𝑓(𝑥) 

was zero, Rolle’s Theorem would guarantee the 

existence of a point 𝑥 =  𝑐 in between them where 𝑓′ 
was zero. However, the derivative 

                           𝑓′(𝑥) = 3𝑥2 + 3, 

is never zero (because it is always positive). Therefore, ƒ has no more than 

one zero. 

Remark: 

      Our main use of Rolle’s Theorem is in 

proving the Mean Value Theorem. The 

Mean Value Theorem, which was first 

stated by Joseph-Louis Lagrange, is a 

slanted version of Rolle’s Theorem. The 

Mean Value Theorem guarantees that there 

is a point where the tangent line is parallel 

to the secant line that joins A and B. 

Theorem (The Mean Value Theorem): 

       Suppose 𝒚 = 𝒇(𝒙)  is continuous over a closed interval [𝒂, 𝒃] and 

differentiable on the interval’s interior (𝒂, 𝒃). Then there is at least one 

point c in (𝒂, 𝒃) at which 

                               𝒇′(𝒄) = 𝒇(𝒃)−𝒇(𝒂)

𝒃−𝒂
 .             

Example:  

       The function 𝑓(𝑥)  = 𝑥2  is continuous for 

0 ≤  𝑥 ≤  2 and differentiable for 0 <  𝑥 <  2. 

Since 𝑓(0) = 0 and 𝑓(2) = 4, the Mean Value 

Theorem says that at some point c in the interval, 

the derivative 𝑓′(𝑥) = 2𝑥 must have the value 

(4 − 0)/(2 − 0)  =  2. In this case we can 

identify c by solving the equation 2𝑐 =  2 to get  
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𝑐 =  1. However, it is not always easy to find c algebraically, even though 

we know it always exists. 

Remark: 

     At the beginning of the section, we asked what kind of function has a 

zero derivative over an interval. The first corollary of the Mean Value 

Theorem provides the answer that only constant functions have zero 

derivatives. 

Corollary (1): 

   If 𝒇′(𝒙) = 𝟎 at each point x of an open interval (𝒂, 𝒃), then 𝒇(𝒙)  =  𝑪 

for all 𝒙 ∈ (𝒂, 𝒃), where C is a constant. 

Remark: 

      At the beginning of this section, we also asked about the relationship 

between two functions that have identical derivatives over an interval. The 

next corollary tells us that their values on the interval have a constant 

difference. 

Corollary (2): 

     If 𝒇′(𝒙) = 𝒈′(𝒙) at each point x in an open interval (a, b), then there 

exists a constant C such that 𝒇(𝒙) = 𝒈(𝒙) +  𝑪 for all 𝒙 ∈ (𝒂, 𝒃). That 

is, 𝒇′ − 𝒈′ is a constant function on (𝒂, 𝒃). 

Example: 

     Find the function 𝑓(𝑥) whose derivative is 𝑠𝑖𝑛 𝑥 and whose graph 

passes through the point (0, 2). 

Solution: 

       Since the derivative of 𝑔(𝑥) = −𝑐𝑜𝑠 𝑥 is 𝑔′(𝑥)  =  𝑠𝑖𝑛 𝑥, we see that 𝑓 

and 𝑔 have the same derivative. Corollary  2  then says that 𝑓(𝑥) =

−𝑐𝑜𝑠 𝑥 +  𝐶 for some constant C. Since the graph of 𝑓 passes through the 

point (0, 2), the value of C is determined from the condition that 𝑓(0) = 2:   

                                     𝑓(0) = − cos(0) + 𝐶, so 𝐶 = 3.  

The function is 𝑓(𝑥)  =  −𝑐𝑜𝑠 𝑥 +  3. 
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Exercises: 

1. Find the value or values of c that satisfy the equation 𝑓′(𝑐) = 𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
   

in the conclusion of the Mean Value Theorem for the functions and 

intervals in following. 

a) 𝑓(𝑥) = 𝑥2 + 2𝑥 − 1, [0,1] b) 𝑓(𝑥) = 𝑥2 3⁄ , [0,1] 

c) 𝑓(𝑥) = 𝑥 + 1

𝑥
,   [1

2
, 2] d) 𝑓(𝑥) = √𝑥 − 1, [1,3] 

e) 𝑓(𝑥) = 𝑥3 − 𝑥2, [−1,2] f) 𝑔(𝑥) = {
𝑥3, −2 ≤ 𝑥 ≤ 0

𝑥2, 0 < 𝑥 ≤ 2
 

2. Which of the functions in following satisfy the hypotheses of the Mean 

Value Theorem on the given interval, and which do not? Give reasons 

for your answers. 

a) 𝑓(𝑥) = 𝑥2 3⁄ , [−1,8] b) 𝑓(𝑥) = 𝑥4 5⁄ , [0,1] 

c) 𝑓(𝑥) = √𝑥(1 − 𝑥), [0,1] d) 𝑓(𝑥) = {
sin 𝑥

𝑥
, −𝜋 ≤ 𝑥 < 0

0, 𝑥 = 0
 

e) 𝑓(𝑥) = {
𝑥2−𝑥, −2 ≤ 𝑥 ≤ −1

2𝑥2 − 3𝑥 − 3, −1 < 𝑥 ≤ 0
 f) 𝑓(𝑥) = {

2𝑥−3, 0 ≤ 𝑥 ≤ 2

6𝑥 − 𝑥2 − 7, 2 < 𝑥 ≤ 3
 

3. The function 𝑓(𝑥) = {
𝑥, 0 ≤ 𝑥 < 1
0, 𝑥 = 1

 is zero at 𝑥 = 0 and 𝑥 = 1 and 

differentiable on (0, 1), but its derivative on (0, 1) is never zero. How 

can this be? Doesn’t Rolle’s Theorem say the derivative has to be zero 

somewhere in (0, 1)? Give reasons for your answer. 

4. For what values of 𝑎, 𝑚, and b does the function  

                             𝑓(𝑥) = {
3 𝑥 = 0

−𝑥2 + 3𝑥 + 𝑎 0 < 𝑥 < 1
𝑚𝑥 + 𝑏 1 ≤ 𝑥 ≤ 2

  

satisfy the hypotheses of the Mean Value Theorem on the interval[0, 2]? 

5.  

a.  Plot the zeros of each polynomial on a line together with the zeros 

of its first derivative. 

I)    𝑦 = 𝑥2 − 4 
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II)    𝑦 = 𝑥2 + 8𝑥 + 15 

III) 𝑦 = 𝑥3 − 3𝑥2 + 4 = (𝑥 + 1)(𝑥 − 2)2 

IV) 𝑦 = 𝑥3 − 33𝑥2 + 216𝑥 = 𝑥(𝑥 − 9)(𝑥 − 24) 

b.  Use Rolle’s Theorem to prove that between every two zeros of 

𝑥𝑛  +  𝑎𝑛−1𝑥𝑛−1 + ⋯ +  𝑎1𝑥 +  𝑎0 there lies a zero of 

                    𝑛𝑥𝑛−1  + (𝑛 − 1) 𝑎𝑛−1𝑥𝑛−2 + ⋯ +  𝑎1. 

6. Show that the functions in following have exactly one zero in the given 

interval 

a) 𝑓(𝑥) = 𝑥4 + 3𝑥 + 1, [−2, −1] b) 𝑓(𝑥) = 𝑥3 + 4

𝑥2 + 7, (−∞, 0) 

c) 𝑔(𝑡) = √𝑡 + √1 + 𝑡 − 4,
(0, ∞) 

d) 𝑔(𝑡) = 1

1−𝑡
+ √1 + 𝑡 − 3.1,   (−1,1) 

e) 𝑟(𝜃) = 𝜃 + sin2(𝜃
3

) − 8,

(−∞, ∞) 
f) 𝑟(𝜃) = 2𝜃 − cos2 𝜃 + √2, (−∞, ∞) 

g) 𝑟(𝜃) = sec 𝜃 − 1

𝜃3 + 5, (0, 𝜋

2
) h) 𝑟(𝜃) = tan 𝜃 − cot 𝜃 − 𝜃, (0, 𝜋

2
) 

7. Suppose that 𝑓(−1) = 3 and that 𝑓′(𝑥) = 0 for all x. Must 𝑓(𝑥) = 3 
for all x? Give reasons for your answer. 

8. Suppose that 𝑓(0) = 5 and that 𝑓′(𝑥) = 2 for all x. Must 𝑓(𝑥) = 2𝑥 + 5 
for all x? Give reasons for your answer. 

9. Suppose that 𝑓′(𝑥) = 2𝑥  for all x. Find 𝑓(2) if 

a) 𝑓(0) = 0 b) 𝑓(1) = 0 c) 𝑓(−2) = 3 

10. In following, find all possible functions with the given derivative. 

a) 𝑦′ = 𝑥 b) 𝑦′ = 3𝑥2 + 2𝑥 − 1 c) 𝑦′ = 1 − 1

𝑥2 

d) 𝑦′ = 4𝑥 − 1

√𝑥
 e) 𝑦′ = sin 2𝑡 + cos 𝑡

2
 f) 𝑦′ = √𝜃 − sec2 𝜃 

  

3.11 Monotonic Functions and the First Derivative Test : 

     In sketching the graph of a differentiable function, it is useful to know 

where it increases  (rises from left to right) and where it decreases (falls 

from left to right) over an interval.  This section gives a test to determine 

where it increases and where it decreases. We also  show how to test the 
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critical points of a function to identify whether local extreme values  are 

present. 

     As another corollary to the Mean Value Theorem, we show that 

functions with positive  derivatives are increasing functions and functions 

with negative derivatives are decreasing  functions. A function that is 

increasing or decreasing on an interval is said to be monotonic  on the 

interval. 

Corollary (3): 

      Suppose that ƒ is continuous on [𝒂, 𝒃]  and differentiable on 

(a, b). 

    If 𝒇′(𝒙) >  𝟎 at each point 𝒙 ∈ (𝒂, 𝒃), then ƒ is increasing on [𝒂, 𝒃]. 

    If 𝒇′(𝒙) <  𝟎 at each point 𝒙 ∈ (𝒂, 𝒃), then ƒ is decreasing on [𝒂, 𝒃]. 

Example: 

     Find the critical points of 𝑓(𝑥) = 𝑥3  −  12𝑥 −  5 and identify the 

open intervals on which ƒ is increasing and on which ƒ is decreasing. 

Solution: 

The function ƒ is everywhere continuous and 

differentiable. The first derivative 

𝑓′(𝑥) = 3𝑥2  −  12 = 3(𝑥2 − 4) 

                         = 3(𝑥 − 2)(𝑥 + 2), 

 is zero at x = -2 and x = 2. These critical points 

subdivide the domain of 𝑓  to create nonoverlapping 

 open intervals (−∞, −2), (−2, 2), and (2, ∞) on which 𝑓′ is either 

positive or negative. We determine the sign of 𝑓′ by evaluating 𝑓′ at a 

convenient point in each subinterval. We evaluate 𝑓′ at 𝑥 = −3 in the first 

interval, 𝑥 = 0 in the second interval and 𝑥 = 3 in the third, since 𝑓′ is 

relatively easy to compute at these points. The behavior of ƒ is determined 

by then applying Corollary 3 to each subinterval. The results are 



16 
 

summarized in the following table, and the graph of ƒ is given in Figure 

above. 

         

Remark: 

     We used “strict” less-than inequalities to identify the intervals in the 

summary table for previous Example, since open intervals were specified. 

Corollary 3 says that we could use inequalities as well. That is, the function 

f in the example is increasing on −∞ <  𝑥 ≤  −2, decreasing on −2 ≤

 𝑥 ≤ 2, and increasing on 2 ≤  𝑥 <  ∞. We do not talk about whether a 

function is increasing or decreasing at a single point. 

Remark: 

   

     In above Figure, at the points where f has a minimum value, 𝑓′ <  0 

immediately to the left and 𝑓′ >  0  immediately to the right. (If the point 

is an endpoint, there is only one side to consider.) Thus, the function is 

decreasing on the left of the minimum value and it is increasing on its right. 

Similarly, at the points where f has a maximum value, 𝑓′ >  0   

immediately to the left and 𝑓′ <  0  immediately to the right. Thus, the 
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function is increasing on the left of the maximum value and decreasing on 

its right. In summary, at a local extreme point, the sign of 𝑓′(𝑥) changes. 

Remark (First Derivative Test for Local Extrema): 

       Suppose that c is a critical point of a continuous function ƒ, and that ƒ 

is differentiable at every point in some interval containing c except 

possibly at c itself. Moving across this interval from left to right, 

1. if 𝑓′ changes from negative to positive at c, then ƒ has a local minimum 

at c; 

2. if 𝑓′ changes from positive to negative at c, then ƒ has a local maximum 

at c; 

3. if 𝑓′ does not change sign at c (that is, 𝑓′ is positive on both sides of c 

or negative on both sides), then ƒ has no local extremum at c. 

    The test for local extrema at endpoints is similar, but there is only one 

side to consider in determining whether ƒ is increasing or decreasing, 

based on the sign of 𝑓′.   

                              
Example: 

     Find the critical points of 𝑓(𝑥) = 𝑥1 3⁄  (𝑥 − 4) = 𝑥4 3⁄ − 4𝑥1 3⁄ . 

Identify the open intervals on which ƒ is increasing and decreasing. Find 

the function’s local and absolute extreme values. 

Solution: 

      The function ƒ is continuous at all x since it is the product of two 

continuous functions, 𝑥1 3⁄  and (𝑥 − 4). The first derivative 

 𝑓′(𝑥) = 𝑑

𝑑𝑥
(𝑥4 3⁄ − 4𝑥1 3⁄ ) = 4

3
𝑥1 3⁄ − 4

3
𝑥−2 3⁄ = 4

3
𝑥−2 3⁄ (𝑥 − 1) = 4(𝑥−1)

3𝑥2 3⁄  . 

is zero at 𝑥 = 1 and undefined at 𝑥 = 0. There are no endpoints in the 

domain, so the critical points 𝑥 = 0 and 𝑥 = 1 are the only places where ƒ 

might have an extreme value. 
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      The critical points partition the x-axis into open intervals on which ƒ 

is either positive or negative. The sign pattern of ƒ reveals the behavior of 

ƒ between and at the critical points, as summarized in the following table.  

  
        Corollary 3 to the Mean Value Theorem implies that ƒ decreases on 

(−∞, 0), decreases  on (0, 1), and increases on (1, ∞). The First Derivative 

Test for Local Extrema tells us  that ƒ does not have an extreme value at 

𝑥 = 0 (𝑓′ does not change sign) and that ƒ has a  local minimum at 𝑥 = 1 

(𝑓′ changes from negative to positive).  

      The value of the local minimum is  

                𝑓(1) = 11 3⁄  (1 − 4) = −3. 

This is also an absolute minimum since ƒ is 

decreasing on (−∞, 0) and increasing on (1, ∞).  

Note that lim
𝑥→0

𝑓′(𝑥) = −∞, so the graph of ƒ has a 

vertical tangent at the origin. 

Example: 

    Within the interval 0 ≤ 𝑥 ≤ 2𝜋, find the critical points of 

                                 𝑓(𝑥)  =  𝑠𝑖𝑛2 𝑥 −  𝑠𝑖𝑛 𝑥 −  1. 
Identify the open intervals on which ƒ is increasing and decreasing. Find 

the function’s local and absolute extreme values. 

Solution: 

         The function ƒ is continuous over [0,2𝜋] and differentiable over 

(0,2𝜋), so the critical points occur at the zeros of 𝑓′ in (0,2𝜋). We find 

              𝑓′(𝑥) = 2 sin 𝑥 𝑐𝑜𝑠 𝑥 −  𝑐𝑜𝑠 𝑥 = (2 sin 𝑥 − 1)(cos 𝑥).  
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The first derivative is zero if and only if 𝑠𝑖𝑛 𝑥 = 1

2
 or 𝑐𝑜𝑠 𝑥 = 0. So, the 

critical points of 𝑓 in (0,2𝜋) are 𝑥 = 𝜋/6, 𝑥 =
5𝜋

6
, 𝑥 = 𝜋/2, and 𝑥 =

 3𝜋/2. They partition [0,2𝜋] into open intervals as follows. 

 
     The table displays the open intervals on which ƒ is increasing and 

decreasing. We can deduce from the table that there is a local minimum 

value of 𝑓 (
𝜋

6
) = 1

4
− 1

2
− 1 = 5

4
 , a local maximum value of 𝑓 (

𝜋

2
) = 1 − 1 −

1 = −1, another local minimum value of 𝑓 (
5𝜋

6
) = −5

4
 , and another local 

 maximum value of 𝑓 (
3𝜋

2
) = 1 − (−1) − 1 = 1. 

The endpoint values are 𝑓(0) =  𝑓(2𝜋) = −1. 

The absolute minimum in [0,2𝜋] is −5

4
  

occurring at 𝑥 = 𝜋/6 and 𝑥 =
5𝜋

6
; the absolute 

maximum is 1 occurring at 𝑥 =  3𝜋/2. 

Exercises: 

1. Answer the following questions about the functions whose derivatives 

are given in Exercises a)–I): 

I.  What are the critical points of ƒ? 

II.  On what open intervals is ƒ increasing or decreasing? 

III. At what points, if any, does ƒ assume local maximum and     minimum 

values?  

 

a) 𝑓′(𝑥) = 𝑥(𝑥 − 1) b) 𝑓′(𝑥) = (𝑥 − 1)(𝑥 + 2) 

c) 𝑓′(𝑥) = (𝑥 − 1)2(𝑥 + 2) d) 𝑓′(𝑥) = (𝑥 − 1)2(𝑥 + 2)2 



20 
 

e) 𝑓′(𝑥) =  (𝑥 − 7)(𝑥 + 1)(𝑥 + 5) f) 𝑓′(𝑥) = 𝑥2(𝑥−1)

(𝑥+2)
, 𝑥 ≠ −2 

g) 𝑓′(𝑥) = (𝑥−2)(𝑥+4)

(𝑥+1)(𝑥−3)
, 𝑥 ≠ −1,3 h) 𝑓′(𝑥) = 1 − 4

𝑥2, 𝑥 ≠ 0 

i) 𝑓′(𝑥) = 3 − 6

√𝑥
, 𝑥 ≠ 0 j) 𝑓′(𝑥) = 𝑥−1 3⁄ (𝑥 + 2) 

k) 𝑓′(𝑥) = (sin 𝑥 − 1)(2 cos 𝑥 + 1),    0 ≤ 𝑥 ≤ 2𝜋 

l) 𝑓′(𝑥) = (sin 𝑥 + cos 𝑥)(sin 𝑥 − cos 𝑥),    0 ≤ 𝑥 ≤ 2𝜋 

2. In following 

I. Find the open intervals on which the function is increasing and 

decreasing. 

II. Identify the function’s local and absolute extreme values, if any, 

saying where they occur. 

 

a)  

 

b)  

 
c)  

 

d)  

 
e) 𝑔(𝑡) = −𝑡2 − 3𝑡 + 3 f) ℎ(𝑥) = −𝑥3 + 2𝑥2 

g) 𝑓(𝜃) = 6𝜃 − 𝜃3 h) ℎ(𝑟) = (𝑟 + 7)3 

i) 𝑓(𝑥) = 𝑥4 − 8𝑥2 + 16 j) 𝐻(𝑡) = 3

2
𝑡4 − 𝑡6 

k) 𝑓(𝑥) = 𝑥 − 6√𝑥 − 1 l) 𝑔(𝑥) = 4√𝑥 − 𝑥3 + 3 

m) 𝑔(𝑥) = 𝑥√8 − 𝑥2 n) 𝑔(𝑥) = 𝑥2√5 − 𝑥 

o) 𝑓(𝑥) = 𝑥2−3

𝑥−2
 ,   𝑥 ≠ 2 p) 𝑓(𝑥) = 𝑥3

3𝑥2+1
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q) 𝑓(𝑥) = 𝑥1 3⁄ (𝑥 + 8) r) 𝑘(𝑥) = 𝑥2 3⁄ (𝑥2 − 4) 

3. In following 

I. Identify the function’s local extreme values in the given domain, and 

say where they occur. 

II. Which of the extreme values, if any, are absolute? 

III. Support your findings with a graphing calculator or computer 

grapher. 

 

a) 𝑓(𝑥) = 2𝑥 − 𝑥2, −∞ < 𝑥 ≤ 2 b) 𝑓(𝑥) = (𝑥 + 1)2, −∞ < 𝑥 ≤ 0 

c) 𝑔(𝑥) = 𝑥2 − 4𝑥 + 4, 1 ≤ 𝑥 < ∞ d) 𝑔(𝑥) = −𝑥2 − 6𝑥 − 9, −4 ≤ 𝑥 < ∞ 

e) 𝑓(𝑡) = 12𝑡 − 𝑡3, −3 ≤ 𝑡 < ∞ f) 𝑓(𝑡) = 𝑡3 − 3𝑡2, −∞ < 𝑡 ≤ 3 

g) ℎ(𝑥) = 𝑥3

3
− 2𝑥2 + 4𝑥, 0 ≤ 𝑥 < ∞ h) 𝑘(𝑥) = 𝑥3 + 3𝑥2 + 3𝑥 + 1, −∞ < 𝑥 ≤ 0 

i) 𝑓(𝑥) = √25 − 𝑥2, −5 ≤ 𝑥 ≤ 5 j) 𝑓(𝑥) = √𝑥2 − 2𝑥 − 3, 3 ≤ 𝑥 < ∞ 

k) 𝑔(𝑥) = 𝑥−2

𝑥2−1
 , 0 ≤ 𝑥 < 1 l) 𝑔(𝑥) = 𝑥2

4−𝑥2 , −2 < 𝑥 ≤ 1 

4. In following 

I. Find the local extrema of each function on the given interval, and say 

where they occur. 

II. Graph the function and its derivative together. Comment on the 

behavior of ƒ in relation to the signs and values of 𝑓′. 

 

a) 𝑓(𝑥) = sin 2𝑥 , 0 ≤ 𝑥 ≤ 𝜋 b) 𝑓(𝑥) = sin 𝑥 − cos 𝑥 , 0 ≤ 𝑥 ≤ 2𝜋 

c) 𝑓(𝑥) = √3 cos 𝑥 + sin 𝑥 , 0 ≤ 𝑥 ≤ 2𝜋 d) 𝑓(𝑥) = −2𝑥 + tan 𝑥 , −𝜋

2
≤ 𝑥 ≤ 𝜋

2
 

e) 𝑓(𝑥) = 𝑥

2
− 2 sin 𝑥

2
, 0 ≤ 𝑥 ≤ 2𝜋 f) 𝑓(𝑥) = −2 cos 𝑥 − cos2 𝑥 , −𝜋 ≤ 𝑥 ≤ 𝜋 

g) 𝑓(𝑥) = csc2 𝑥 − 2 cot 𝑥 , 0 < 𝑥 < 𝜋 h) 𝑓(𝑥) = sec2 𝑥 − 2 tan 𝑥 , −𝜋

2
< 𝑥 < 𝜋

2
 

5. In following, the graph of 𝑓′ is given. Assume that ƒ is continuous and 

determine the x-values corresponding to local minima and local 

maxima. 
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a)  

 

b)  

 

6. Sketch the graph of a differentiable function 𝑦 = 𝑓(𝑥) that has 

a) a local minimum at (1, 1) and a local maximum at (3, 3); 

b) a local maximum at (1, 1) and a local minimum at (3, 3); 

c) local maxima at (1, 1) and (3, 3); 

d) local minima at (1, 1) and (3, 3). 

7. Sketch the graph of a continuous function 𝑦 = 𝑔(𝑥) such that 

a) 𝑔(2) = 2, 0 < 𝑔′  < 1 for 𝑥 <  2, 𝑔′(𝑥)  → 1− as 𝑥 → 2−,     
−1 <  𝑔′  <  0 for 𝑥 >  2, and 𝑔′(𝑥) → −1+ as 𝑥 → 2+; 

b) 𝑔(2) = 2, 𝑔′  < 0 for 𝑥 <  2, 𝑔′(𝑥) → −∞ as 𝑥 → 2−,  𝑔′  >  0    

     for 𝑥 >  2, and 𝑔′(𝑥) → ∞ as 𝑥 → 2+;  

8. Sketch the graph of a continuous function 𝑦 = ℎ(𝑥) such that 

a) ℎ(0) = 0, −2 ≤ ℎ(𝑥) ≤ 2 for all  𝑥 , ℎ′(𝑥)  → ∞ as 𝑥 → 0−,  and      

     ℎ′(𝑥) → ∞ as 𝑥 → 0+; 

b) ℎ(0) = 0, −2 ≤ ℎ(𝑥) ≤ 0 for all  𝑥 , ℎ′(𝑥)  → ∞ as 𝑥 → 0−,  and      

     ℎ′(𝑥) → −∞ as 𝑥 → 0+; 

9. Sketch the graph of a differentiable function 𝑦 = 𝑓(𝑥) through the point 

(1, 1) if 𝑓′(1) = 0 and 

a) 𝑓′(𝑥) > 0 for 𝑥 < 1 and 𝑓′(𝑥) < 0 for 𝑥 > 1; 

b) 𝑓′(𝑥) < 0 for 𝑥 < 1 and 𝑓′(𝑥) > 0 for 𝑥 > 1; 

c) 𝑓′(𝑥) > 0 for 𝑥 ≠ 1; 
d) 𝑓′(𝑥) < 0 for 𝑥 ≠ 1. 
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3.12 Concavity and Curve Sketching: 

      We have seen how the first derivative tells us where a function is 

increasing, where it is decreasing, and whether a local maximum or local 

minimum occurs at a critical point. In this section we see that the second 

derivative gives us information about how the graph of a differentiable 

function bends or turns.        

       As we can see, the curve 𝑦 =  𝑥3 rises 

as x increases, but the portions defined on 

the intervals (−∞, 0) and (0, ∞) turn in 

different ways. As we approach the origin 

from the left along the curve, the curve 

turns to our right and falls below its 

tangents. The slopes of the tangents are 

decreasing on the interval (−∞, 0). As we 

move away from the origin along the curve 

to the right, the curve turns to our left and 

rises above its tangents. The slopes  of  the 

tangents are increasing on the interval (0, ∞). This turning or bending 

behavior defines the concavity of the curve. 

Definition: 

     The graph of a differentiable function 𝑦 = 𝑓(𝑥) is 

a) concave up on an open interval I if 𝑓′ is increasing on I; 

b) concave down on an open interval I if 𝑓′ is decreasing on I. 

Remark: 

      A function whose graph is concave up is also often called convex. If 

𝑦 = 𝑓(𝑥) has a second derivative, we can apply Corollary 3 of the Mean 

Value Theorem to the first derivative function. We conclude that 𝑓′ 
increases if 𝑓′′ > 0 on I, and decreases if 𝑓′′ < 0. 

Remark(The Second Derivative Test for Concavity): 

       Let 𝑦 = 𝑓(𝑥)  be twice-differentiable on an interval I. 

1. If 𝑓′′ > 0 on I, the graph of ƒ over I is concave up. 

2. If 𝑓′′ < 0 on I, the graph of ƒ over I is concave down. 
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Remark: 

      If 𝑦 = 𝑓(𝑥) is twice-differentiable, we will use the notations 𝑓′′ and 

𝑦′′ interchangeably when denoting the second derivative. 

Example: 

a)     The curve 𝑦 =  𝑥3 is concave 

down on (−∞, 0), where 𝑦′′ =
6𝑥 <  0, and concave up on 

(0, ∞), where 𝑦′′ = 6𝑥 >  0. 

b)     The curve 𝑦 =  𝑥2 is concave 

up on (−∞, ∞), because its 

second derivativewhere 𝑦′′ = 2  is 

always positive. 

  

Example: 

      Determine the concavity of 𝑦 = 3 + 𝑠𝑖𝑛 𝑥 on [ 0, 2𝜋]. 
Solution: 

    The first derivative of 𝑦 = 3 + 𝑠𝑖𝑛 𝑥 is 𝑦′ =
𝑐𝑜𝑠 𝑥, and the second derivative is 𝑦′′ = −𝑠𝑖𝑛 𝑥. 
The graph of 𝑦 = 3 + 𝑠𝑖𝑛 𝑥 is concave down on 

(0, 𝜋), where 𝑦′′ = −𝑠𝑖𝑛 𝑥 is negative. It is 

concave up on (𝜋, 2𝜋), where 𝑦′′ = −𝑠𝑖𝑛 𝑥 is 

positive. 

Remark: 

      The curve 𝑦 = 3 + 𝑠𝑖𝑛 𝑥 in previous example changes concavity at the 

point (𝜋, 3). Since the first derivative 𝑦′ = 𝑐𝑜𝑠 𝑥 exists for all x, we see 

that the curve has a tangent line of slope −1 at the point (𝜋, 3). This point 

is called a point of inflection of the curve. Notice that the graph crosses 

its tangent line at this point and that the second derivative 𝑦′′ = −𝑠𝑖𝑛 𝑥 

has value 0 when 𝑥 = 𝜋 . In general, we have the following definition. 
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Definition: 

     A point (𝑐, 𝑓(𝑐)) where the graph of a function has a tangent line and 

where the concavity changes is a point of inflection. 

Remark: 

     We observed that the second derivative of 𝑓(𝑥) = 3 + 𝑠𝑖𝑛 𝑥 is equal to 

zero at the inflection point (𝜋, 3). Generally, if the second derivative exists 

at a point of inflection (c, f (c)), then 𝑓′′(𝑐)  =  0. This follows 

immediately from the Intermediate Value Theorem whenever 𝑓′′  is 

continuous over an interval containing 𝑥 = 𝑐 because the second 

derivative changes sign moving across this interval. Even if the continuity 

assumption is dropped, it is still true that 𝑓′′(𝑐)  =  0, provided the second 

derivative exists (although a more advanced argument is required in this 

noncontinuous case). Since a tangent line must exist at the point of 

inflection, either the first derivative 𝑓′(𝑐) exists (is finite) or the graph has 

a vertical tangent line at the point. At a vertical tangent, neither the first 

nor second derivative exists. In summary, one of two things can happen at 

a point of inflection. 

 At a point of inflection (𝒄, 𝒇(𝒄)), either 𝒇′′(𝒄) = 𝟎 or 𝒇′′(𝒄) fails to exist. 

Example: 

      Determine the concavity and find the inflection points of the function 

𝑓(𝑥) = 𝑥3 − 3𝑥2 + 2. 

Solution: 

     We start by computing the first and second 

derivatives. 

        𝑓′(𝑥) = 3𝑥2 − 6𝑥,    𝑓′′(𝑥) = 6𝑥 − 6. 

     To determine concavity, we look at the sign 

of the second derivative 𝑓′′(𝑥) = 6𝑥 − 6. The 

sign is negative when x < 1, is 0 at 𝑥 = 1, and is 

positive when x > 1. It follows that the graph of  

f is concave down on (−∞, 1), is concave up on 

(1, ∞), and has an inflection point at the point (1, 0) where the concavity 

changes. 
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Remark: 

      The next example illustrates that a function can have a point of 

inflection where the first derivative exists but the second derivative fails 

to exist. 

Example: 

    The graph of 𝑓(𝑥) =  𝑥5 3⁄  has a horizontal tangent at 

the origin because 𝑓′(𝑥) = (5 3⁄ ) 𝑥2 3⁄ = 0 when 𝑥 = 0. 

However, the second derivative, 

             𝑓′′(𝑥) =
𝑑

𝑑𝑥
((5 3⁄ ) 𝑥2 3⁄ ) = 10

9
 𝑥−1 3⁄ , 

fails to exist at 𝑥 = 0. Nevertheless, 𝑓′′(𝑥) < 0 for x < 0 

and 𝑓′′(𝑥) > 0  for x > 0, so the second derivative changes 

sign at 𝑥 = 0 and there is a point of inflection at the origin. 

Remark: 

     The following example shows that an inflection point need not occur 

even though both derivatives exist and 𝑓′′ = 0. 

Example: 

     The curve 𝑦 =  𝑥4  has no inflection point at 𝑥 = 0. 

Even though the second derivative 𝑦′′ = 12 𝑥2 is zero 

there, it does not change sign. The curve is concave up 

everywhere. 

Remark: 

     In the next example, a point of inflection occurs at a vertical tangent to 

the curve where neither the first nor the second derivative exists. 

Example: 

    The graph of 𝑦 =  𝑥1 3⁄  has a point of inflection at 

the origin because the second derivative is positive for 

x < 0 and negative for x > 0: 

           𝑦′′ = 𝑑2

𝑑𝑥2 𝑥1 3⁄ = 𝑑

𝑑𝑥
(1

3
𝑥−2 3⁄ ) = −2

9
𝑥−5 3⁄ .  

However, both 𝑦′ = 1
3

𝑥−2 3⁄  and 𝑦′′ fail to exist at x = 0, and there is a 

vertical tangent there. 
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Remark: 

 We show that the function 𝑓(𝑥) =  𝑥2 3⁄  does not have a second 

derivative at x = 0 and does not have a point of inflection there (there is no 

change in concavity at x = 0). Combined with the behavior of the function 

𝑓(𝑥) =  𝑥2 3⁄ , we see that when the second derivative does not exist at 𝑥 =
𝑐, an inflection point may or may not occur there. So, we need to be careful 

about interpreting functional behavior whenever first or second derivatives 

fail to exist at a point. At such points the graph can have vertical tangents, 

corners, cusps, or various discontinuities. 

Remark: 

     Instead of looking for sign changes in f  at critical points, we can 

sometimes use the following test to determine the presence and nature of 

local extrema. 

Theorem (Second Derivative Test for Local Extrema): 

    Suppose 𝒇′′  is continuous on an open interval that contains 𝒙 = 𝒄. 

1. If 𝒇′(𝒄) = 𝟎 and 𝒇′′(𝒄) < 𝟎, then 𝒇 has a 

local maximum at 𝒙 = 𝒄. 

2. If 𝒇′(𝒄) = 𝟎 and 𝒇′′(𝒄) > 𝟎, then 𝒇 has a 

local minimum at 𝒙 = 𝒄. 

3. If 𝒇′(𝒄) = 𝟎  and 𝒇′′(𝒄) = 𝟎, then the test 

fails. The function 𝒇 may have a local 

maximum, a local minimum, or neither. 

Example: 

       Sketch a graph of the function 

                                       𝑓(𝑥) = 𝑥4 − 4𝑥3 + 10, 

using the following steps. 

a) Identify where the extrema of 𝑓 occur. 

b) Find the intervals on which 𝑓 is increasing and the intervals on which 𝑓             

     is decreasing. 

c) Find where the graph of 𝑓 is concave up and where it is concave down. 

d) Sketch the general shape of the graph for 𝑓. 

e) Plot some specific points, such as local maximum and minimum points, 

points of inflection, and intercepts. Then sketch the curve. 



6 
 

Solution: 

      The function f is continuous since 𝑓′(𝑥) = 4𝑥3 − 12𝑥2 exists. The 

domain of 𝑓 is (−∞, ∞), and the domain of 𝑓′  is also (−∞, ∞). Thus, 

the critical points of 𝑓 occur only at the zeros of 𝑓 . Since 

𝑓′(𝑥) = 4𝑥3 − 12𝑥2 = 4𝑥2(𝑥 − 3), 

the first derivative is zero at x = 0 and x = 3. We use these critical points 

to define intervals where 𝑓 is increasing or decreasing. 

Interval 𝑥 < 0 0 < 𝑥 < 3 3 < 𝑥 

Sign of 𝒇′  - - + 

Behavior of 𝒇 decreasing decreasing increasing 

a) Using the First Derivative Test for local extrema and the table above, 

we see that there is no extremum at x = 0 and a local minimum at x = 3. 

b) Using the table above, we see that 𝑓 is decreasing on (−∞, 0] and [0, 

3], and increasing on [3, ∞). 

c) 𝑓′′(𝑥) = 12𝑥2 − 24𝑥 = 12𝑥(𝑥 − 2) is zero at x = 0 and x = 2. We use 

these points to define intervals where the graph of 𝑓 is concave up or 

concave down. 

Interval 𝑥 < 0 0 < 𝑥 < 2 2 < 𝑥 

Sign of 𝒇′  + - + 

Behavior of 𝒇 concave up concave down concave up 

We see that the graph of f is concave up on the intervals (−∞, 0) and 

(2, ∞), and concave down on (0, 2). 

d) Summarizing the information in the last two tables, we obtain the 

following. 

𝑥 < 0 0 < 𝑥 < 2 2 < 𝑥 < 3 3 < 𝑥 

decreasing decreasing decreasing increasing 

  concave up concave down concave up concave up 

     The general shape of the curve is shown in the accompanying figure. 
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e) Plot the curve’s intercepts (if possible) and 

the points where 𝑦′ and 𝑦′′ are zero. Indicate 

any local extreme values and inflection 

points. Use the general shape as a guide to 

sketch the curve. (Plot additional points as 

needed.)  

Remark: 

    The steps in previse example give a 

procedure for graphing the key features of a 

function. 

Remark (Procedure for Graphing 𝒚 = 𝒇 (𝒙)): 

1. Identify the domain of 𝑓 and any symmetries the curve may have. 

2. Find the derivatives 𝑓′  and 𝑓′′. 

3. Find the critical points of 𝑓 , if any, and identify the function’s behavior 

at each one. 

4. Find where the curve is increasing and where it is decreasing. 

5. Find the points of inflection, if any occur, and determine the concavity 

of the curve. 

6. Identify any asymptotes that may exist. 

7. Plot key points, such as the intercepts and the points found in Steps 3–

5, and sketch the curve together with any asymptotes that exist. 

Example: 

       Sketch a graph of 𝑓(𝑥) = (𝑥+1)2

1+𝑥2  . 

Solution: 

1. The domain of ƒ is (−∞, ∞) and there are no symmetries about either 

axis or the origin. 
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2. Find  𝑓′ and 𝑓′′ 

𝑓(𝑥) =
(𝑥+1)2

1+𝑥2  
x-intercept at 𝒙 = −𝟏, 

y-intercept at 𝒚 = 𝟏 

𝑓′(𝑥) = (1+𝑥2)∙2(𝑥+1)−(𝑥+1)2∙2𝑥

(1+𝑥2)
2   

          =
(𝑥+1)[(2+2𝑥2)−(2𝑥2+2𝑥)]

(1+𝑥2)2   

          =
(𝑥+1)[2+2𝑥2−2𝑥2−2𝑥]

(1+𝑥2)2   

          =
2(𝑥+1)(1−𝑥)

(1+𝑥2)2   

          = 2(1−𝑥2)

(1+𝑥2)
2  Critical points: 𝒙 = −𝟏, 𝒙 =  𝟏 

𝑓′′(𝑥) = (1+𝑥2)
2

∙2(−2𝑥)−2(1−𝑥2)[2(1+𝑥2)∙2𝑥]

(1+𝑥2)
4   

           = −4𝑥(1+𝑥2)[(1+𝑥2)+2(1−𝑥2)]

(1+𝑥2)
4   

           = −4𝑥(1+𝑥2)(1+𝑥2+2−2𝑥2)

(1+𝑥2)
4   

           = −4𝑥(1+𝑥2)(3−𝑥2)

(1+𝑥2)
4   

           = 4𝑥(𝑥2−3)

(1+𝑥2)
3   

3. Behavior at critical points. The critical points occur only at 𝑥 = ±1 

where 𝑓′(𝑥) = 0 (Step 2) since 𝑓′ exists everywhere over the domain 

of ƒ. At 𝑥 = −1, 𝑓′′(−1) =  1 >  0, yielding a relative minimum by the 

Second Derivative Test. At 𝑥 = 1, 𝑓′′(1) = −1 <  0, yielding a 

relative maximum by the Second Derivative test.  

4.  Increasing and decreasing. We see that on the interval (−∞, −1) the 

derivative 𝑓′(𝑥) < 0, and the curve is decreasing. On the interval 

(−1, 1), 𝑓′(𝑥) > 0 and the curve is increasing; it is decreasing on 

(1, ∞) where 𝑓′(𝑥) < 0 again.  

5.  Inflection points. Notice that the denominator of the second derivative 

(Step 2) is always positive. The second derivative 𝑓′′ is zero when 𝑥 =

 −√3, 0, and √3. The second derivative changes sign at each of these 

points: negative on (−∞, −√3), positive on (−√3, 0), negative on 

(0, √3), and positive again on (√3, ∞). Thus, each point is a point of 



9 
 

inflection. The curve is concave down on the interval (−∞, −√3), 

concave up on (−√3, 0), concave down on (0, √3), and concave up 

again on (√3, ∞).   

6.  Asymptotes. Expanding the numerator of 𝑓(𝑥) and then dividing both 

numerator and denominator by 𝑥2 gives                     

𝑓(𝑥) = (𝑥+1)2

1+𝑥2 = 𝑥2+2𝑥+1

1+𝑥2   Expanding numerator 

         =
1+(

2
𝑥

)+(
1

𝑥2)

(
1

𝑥2)+1
  Dividing by 𝒙𝟐 

We see that 𝑓(𝑥) → 1+ as 𝑥 → ∞ and that 𝑓(𝑥) → 1− as 𝑥 → −∞. 

Thus, the line 𝑦 = 1 is a horizontal asymptote. 

      Since ƒ decreases on (−∞, −1) and then increases on (-1, 1), we 

know that 𝑓(−1) = 0 is a local minimum. Although ƒ decreases on 

(1, ∞), it never crosses the horizontal asymptote 𝑦 = 1 on that interval 

(it approaches the asymptote from above). So, the graph never becomes 

negative, and 𝑓(−1) = 0  is an absolute minimum as well. Likewise, 

𝑓(1) = 2 is an absolute maximum because the graph never crosses the 

asymptote 𝑦 = 1 on the interval (−∞, −1), approaching it from below. 

Therefore, there  are  no  vertical  asymptotes  (the  range  of   𝑓   is  

0 ≤  𝑦 ≤  2). 

7. The graph of 𝑓 is sketched. 

Notice how the graph is concave 

down as it approaches the 

horizontal asymptote y = 1 as 

𝑥 → −∞, and concave up in its 

approach to 𝑦 =  1 as 𝑥 → ∞. 

Example: 

       Sketch a graph of 𝑓(𝑥) = 𝑥2+4

2𝑥
 . 

Solution: 

1. The domain of 𝑓 is all nonzero real numbers. There are no intercepts 

because neither x nor 𝑓(𝑥) can be zero. Since 𝑓(−𝑥) = −𝑓(𝑥), we note 

that 𝑓 is an odd function, so the graph of 𝑓 is symmetric about the origin. 

2. We calculate the derivatives of the function, but we first rewrite it in 

order to simplify our computations: 
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𝑓(𝑥) = 𝑥2+4

2𝑥
= 𝑥

2
+ 2

𝑥
  Function simplified for differentiation 

𝑓′(𝑥) = 1

2
− 2

𝑥2 = 𝑥2−4

2𝑥2   Combine fractions to solve easily 𝒇′(𝒙) = 𝟎. 

𝑓′′(𝑥) = 4

𝑥3   Exists throughout the entire domain of 𝒇. 

3. The critical points occur at 𝑥 = ±2 where 𝑓′(𝑥) = 0. Since 𝑓′′(−2) < 0 

and𝑓′′(2) > 0, we see from the Second Derivative Test that a relative 

maximum occurs at 𝑥 = −2 with 𝑓(−2) = −2, and a relative minimum 

occurs at 𝑥 =  2 with 𝑓(2) = 2. 

4. On the interval (−∞, −2) the derivative 𝑓′ is positive because 𝑥2 − 4 > 0 

so the graph is increasing; on the interval (−2, 0) the derivative is 

negative and the graph is decreasing. Similarly, the graph is decreasing 

on the interval (0, 2) and increasing on (2, ∞). 

5. There are no points of inflection because 𝑓′′(𝑥) < 0 whenever 𝑥 <  0, 

𝑓′′(𝑥) >  0 whenever x > 0, and 𝑓′′  exists everywhere and is never 

zero throughout the domain of f . The graph is concave down on the 

interval (−∞, 0) and concave up on the interval (0, ∞). 

6. From the rewritten formula for 𝑓(𝑥), we see that 

      lim
𝑥→0+

(𝑥

2
+ 2

𝑥
) = +∞ and lim

𝑥→0+
(𝑥

2
+ 2

𝑥
) = −∞, 

so, the y-axis is a vertical asymptote. Also, as 

𝑥 → ∞ or as 𝑥 → −∞, the graph of 𝑓(𝑥) 

approaches the line 𝑦 =  𝑥/ 2. Thus 𝑦 =  𝑥 /2 

is an oblique asymptote. 

Example: 

       Sketch a graph of 𝑓(𝑥) = cos 𝑥 − √2

2
𝑥 over 0 ≤ 𝑥 ≤ 2𝜋. 

Solution: 

    The derivatives of 𝑓 are 

            𝑓′(𝑥) = − sin 𝑥 − √2

2
    and   𝑓′′(𝑥) = − cos 𝑥. 

     Both derivatives exist everywhere over the interval (0, 2𝜋). Within that 

open interval, the first derivative is zero when sin 𝑥 = − √2/ 2, so the 

critical points are 𝑥 = 5𝜋/ 4 and 𝑥 = 7𝜋/ 4. Since 𝑓′′(5𝜋

4
 ) = − cos

5𝜋

4
=
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√2

2
> 0, the function has a local minimum value of 𝑓 (5𝜋/ 4 )  ≈  −3.48 

(evaluated with a calculator) by the Second Derivative Test. Also, 𝑓′′(7𝜋/-

 4) = − cos
7𝜋

4 = −√2

2
< 0 so the function has a local maximum 

value of 𝑓 (7𝜋/ 4)  ≈  −3.18. 

       Examining the second derivative, we find that 𝑓′′ = 0 when 𝑥 = 𝜋/ 2 

or 𝑥 = 3𝜋/ 2. Since 𝑓′′ changes sign at these two points, we conclude that 

(𝜋/ 2, 𝑓( 𝜋/ 2))  ≈  (𝜋/ 2, −1.11) and (3𝜋/ 2, 𝑓 (3𝜋/ 2))  ≈  (3𝜋/ 2, −3.33) 

are points of inflection. 

      Finally, we evaluate 𝑓 at the endpoints of the 

interval to find 𝑓(0) = 1 and  𝑓(2𝜋)  ≈ −3.44.  

Therefore, the values 𝑓(0) = 1 and 𝑓 (
5𝜋

4
) ≈  −3.48 

are the absolute  maximum and absolute minimum 

values of 𝑓 over the closed interval [ 0, 2]. The graph  

of 𝑓 is sketched . 

Remark: 

       As we saw in previous examples, we can learn much about a twice-

differentiable function 𝑦 =  𝑓(𝑥) by examining its first derivative. We can 

find where the function’s graph rises and falls and where any local extrema 

are located. We can differentiate 𝑦′ to learn how the graph bends as it 

passes over the intervals of rise and fall. Together with information about 

the function’s asymptotes and its value at some key points, such as 

intercepts, this information about the derivatives helps us determine the 

shape of the function’s graph. The following figure summarizes how the 

first derivative and second derivative affect the shape of a graph. 
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Exercises: 

1. Identify the inflection points and local maxima and minima of the 

functions graphed in following. Identify the open intervals on which the 

functions are differentiable and the graphs are concave up and concave 

down. 

 

a)  𝑦 = 𝑥3

3
− 𝑥2

2
− 2𝑥 + 1

3
  b)  𝑦 = 𝑥4

4
− 2𝑥2 + 4   c)  𝑦 =

3

4
(𝑥2 − 1)2 3⁄  
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d)  𝑦 = 9

14
𝑥1 3⁄ (𝑥2 − 7)   e)  𝑦 = 𝑥 + sin 2𝑥 , −2𝜋

3
≤ 𝑥 ≤ 2𝜋

3
   𝑦 = tan 𝑥 − 4𝑥, −𝜋

2
≤ 𝑥 ≤ 𝜋

2
  

 
 

f)  

 

g)  𝑦 = sin|𝑥| , −2𝜋 ≤ 𝑥 ≤ 2𝜋    h)  𝑦 = 2 cos 𝑥 − √2𝑥, −𝜋 ≤ 𝑥 ≤
3𝜋
2

    
 

  
2. In following, identify the coordinates of any local and absolute extreme 

points and inflection points. Graph the function. 

 

a) 𝑦 = 𝑥2 − 4𝑥 + 3 b) 𝑦 = (𝑥 − 2)3 + 1 

c) 𝑦 = −𝑥4 + 6𝑥2 − 4 d) 𝑦 = 𝑥(𝑥

2
− 5)4 

e) 𝑦 = √3𝑥 − 2 cos 𝑥, 0 ≤ 𝑥 ≤ 2𝜋 f) 𝑦 = 4

3
𝑥 − tan 𝑥, −𝜋

2
≤ 𝑥 ≤ 𝜋

2
 

g) 𝑦 = 𝑥1 5⁄  h) 𝑦 =
√1−𝑥2

2𝑥+1
 

i) 𝑦 = 𝑥2 3⁄ (5

2
− 𝑥) j) 𝑦 = √𝑥3 + 1

3
 

k) 𝑦 = |𝑥2 − 1| l) 𝑦 = √|𝑥| = {
√−𝑥 𝑥 < 0

√𝑥 𝑥 ≥ 0
 

m) 𝑦 = √|𝑥 − 4| n) 𝑦 = 𝑥

9−𝑥2 

o) 𝑦 = 𝑥2

1−𝑥
 p) 𝑦 = sin 𝑥 cos 𝑥 , 0 ≤ 𝑥 ≤ 𝜋 

3. Each of following gives the first derivative of a continuous function 

𝑦 =  𝑓(𝑥). Find 𝑦′′ and then use Steps 2–4 of the graphing procedure 

on page 7 to sketch the general shape of the graph of ƒ. 
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a) 𝑦′ = 2 + 𝑥 − 𝑥2 b) 𝑦′ = 𝑥2(2 − 𝑥) 

c) 𝑦′ = 𝑥(𝑥2 − 12) d) 𝑦′ = (𝑥2 − 2𝑥)(𝑥 − 5)2 

e) 𝑦′ = sec2 𝑥, −𝜋

2
< 𝑥 < 𝜋

2
 f) 𝑦′ = tan 𝑥, −𝜋

2
< 𝑥 < 𝜋

2
 

g) 𝑦′ = (𝑥 + 1)−2 3⁄  h) 𝑦′ = 1 − cot2 𝜃 , 0 < 𝜃 < 𝜋 

i) 𝑦′ = 𝑥−2 3⁄ (𝑥 − 1) j) 𝑦′ = 𝑥−4 5⁄ (𝑥 + 1) 

k) 𝑦′ = 2|𝑥| = {
−2𝑥 𝑥 ≤ 0
2𝑥 𝑥 > 0

 l) 𝑦′ = {−𝑥2 𝑥 ≤ 0
𝑥2 𝑥 > 0

 

4. Each of following shows the graphs of the first and second derivatives 

of a function 𝑦 = 𝑓(𝑥). Copy the picture and add to it a sketch of the 

approximate graph of 𝑓, given that the graph passes through the point P. 

a)  

 

b)  

 
c)  

 

d)  

 
5. Graph the rational functions in following using all the steps in the 

graphing procedure on page 7. 

a) 𝑦 = 2𝑥2+𝑥−1

𝑥2−1
 b) 𝑦 = 𝑥2−49

𝑥2+5𝑥−14
 c) 𝑦 = 𝑥2−4

𝑥2−2
 d) 𝑦 = 𝑥4+1

𝑥2  

e) 𝑦 = 𝑥2−4

2𝑥
 f) 𝑦 = 1

𝑥2−1
 g) 𝑦 = −𝑥2−2

𝑥2−1
 h) 𝑦 = 𝑥2

𝑥+1
 

i) 𝑦 = 𝑥2−𝑥+1

𝑥−1
 j) 𝑦 = 𝑥3−3𝑥2+3𝑥−1

𝑥2+𝑥−2
 k) 𝑦 = 𝑥3+𝑥−2

𝑥−𝑥2  l) 𝑦 = 𝑥

𝑥2−1
 

m) 𝑦 = 𝑥−1

𝑥2(𝑥−2)
 n) 𝑦 = 8

𝑥2+4
 o) 𝑦 = 4𝑥

𝑥2+4
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6. The accompanying figure shows a 

portion of the graph of a twice 

differentiable function 𝑦 = 𝑓(𝑥). 

At each of the five labeled points, 

classify 𝑦′  and 𝑦′′ as positive, 

negative, or zero. 

 
7. Sketch a smooth connected curve 𝑦 = 𝑓(𝑥) with 

𝑓(−2) = 8,  𝑓′(2) = 𝑓′(−2) = 0,  
𝑓(0) = 4,  𝑓′(𝑥) < 0 for |𝑥| < 2,   
𝑓(2) = 0,  𝑓′′(𝑥) < 0 for 𝑥 < 0,   
𝑓′(𝑥) > 0 for |𝑥| > 2,  𝑓′′(𝑥) > 0 for 𝑥 > 0,   

8. Sketch the graph of a twice-differentiable function 𝑦 = 𝑓(𝑥) with the 

following properties. Label coordinates where possible. 

𝑥 𝑦 Derivatives 

𝑥 < 2  𝑦′ < 0, 𝑦′′ > 0 

2 1 𝑦′ = 0, 𝑦′′ > 0 

2 < 𝑥 < 4  𝑦′ > 0, 𝑦′′ = 0 

4 4 𝑦′ > 0, 𝑦′′ = 0 

4 < 𝑥 < 6  𝑦′ > 0, 𝑦′′ < 0 

6 7 𝑦′ = 0, 𝑦′′ < 0 

𝑥 > 6  𝑦′ < 0, 𝑦′′ < 0 

 

9. Sketch the graph of a twice-differentiable function 𝑦 = 𝑓(𝑥) that passes 

through the points (-3, -2), (-2, 0), (0, 1), (1, 2), and (2, 3) and whose 

first two derivatives have the following sign patterns. 
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3.13 Indeterminate Forms and L’Hôpital’s Rule : 

       Consider the four limits 

lim
𝑥→0

𝑥3

𝑥
= lim

𝑥→0
𝑥2 = 0,  

lim
𝑥→0

𝑥

𝑥3 = lim
𝑥→0

1

𝑥2 = ∞,  

lim
𝑥→0

𝑥
𝑥

 = lim
𝑥→0

1 = 1,  

lim
𝑥→0

𝑥
2𝑥

= lim
𝑥→0

1
2

= 1

2
,  

      In each case both the numerator and the denominator approach zero 

as 𝑥 → 0, even though these limits ultimately lead to completely different 

results: 0, ∞,1, and 1

2
. We say the expression 

                     lim
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥)

 when lim
𝑥→𝑎

𝑓(𝑥) = 0 and lim
𝑥→𝑎

𝑔(𝑥) = 0.              (1) 

 

involves an indeterminate form 0/0. The expression “0/ 0” has the form of 

a number, but it is not a meaningful quantity. Stating that both the 

numerator and the denominator approach zero does not provide sufficient 

information to obtain the limit of the ratio. We have to examine the 

behavior of the expression in more detail by performing algebraic 

manipulation or by applying methods that we will introduce in this section. 

      Other forms exhibit behavior similar to Equation (1). For instance, if 

both the numerator and the denominator approach +∞ or −∞, then the 

limit of the ratio leads to an indeterminate form ∞/∞. Additional 

indeterminate forms we consider in this section are  ∞, 0, ∞ − ∞, 1∞, 00, 

and ∞0. Their purpose is to summarize the behavior of certain types of 

limits. 

       John (Johann) Bernoulli discovered a rule for using derivatives to 

calculate limits of fractions whose numerators and denominators both 

approach zero or ±∞. The rule is known today as l’Hôpital’s Rule, after 

Guillaume de l’Hôpital. He was a French nobleman who wrote the first 

introductory differential calculus text, where the rule first appeared in 

print. Limits involving transcendental functions often require some use of 

this rule. 

       It is important to understand that the notation “0/0” is not intended to 

imply numerically dividing 0 by 0. Instead, the indeterminate form 0/0 
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refers to a limit of a ratio of two functions, each of which approaches zero. 

L’Hôpital’s rule can help us evaluate such limits. 

Theorem (L’Hôpital’s Rule): 

   Suppose that 𝒍𝒊𝒎
𝒙→𝒂

𝒇(𝒙) = 𝒍𝒊𝒎
𝒙→𝒂

𝒈(𝒙) = 𝟎, that f and g are differentiable 

on an open interval I containing a, and that 𝒈′(𝒙)  ≠ 𝟎 on I if 𝒙 ≠ 𝒂. 

Then 

                                          𝒍𝒊𝒎
𝒙→𝒂

𝒇(𝒙)
𝒈(𝒙)

= 𝒍𝒊𝒎
𝒙→𝒂

𝒇′(𝒙)
𝒈′(𝒙)

                               

assuming that the limit on the right side of this equation exists. 

Remark: 

    Theorem L’Hôpital’s rule also applies if 𝑥 = ±∞ or when 𝒇′(𝒙)

𝒈′(𝒙)
→ ±∞. 

Also to find lim
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥)

 by use l’Hôpital’s Rule, we continue to differentiate 

ƒ and g, so long as we still get the form 0/0 at 𝑥 =  𝑎. But as soon as one 

or the other of these derivatives is different from zero at 𝑥 =  𝑎 we stop 

differentiating. L’Hôpital’s Rule does not apply when either the numerator 

or denominator has a finite nonzero limit. 

Example: 

    The following limits involve 0/0 indeterminate forms, so we apply 

l’Hôpital’s Rule. In some cases, it must be applied repeatedly. 

a) lim
𝑥→0

3𝑥−sin 𝑥
𝑥

=                     The numerator and the denominator are both 

                                                     approaching 0; apply l’Hôpital’s Rule. 

         lim
𝑥→0

3−cos 𝑥

1
=                    Not 𝟎/𝟎 

                
3−cos 0

1
= 2                 Limit is found. 

b) lim
𝑥→0

√1+𝑥−1
𝑥

= lim
𝑥→0

1

2√1+𝑥
1

= 1

2
 

c) lim
𝑥→0

√1+𝑥−1−1 2⁄

𝑥2 =                 𝟎/𝟎; apply l’Hôpital’s Rule. 

     lim
𝑥→0

(1 2⁄ )(1+𝑥)−1 2⁄ −𝑥 2⁄
2𝑥

=       Still 𝟎/𝟎; apply l’Hôpital’s Rule again. 
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lim
𝑥→0

−(1 4⁄ )(1+𝑥)−1 2⁄

2
= −1

8
      Not 𝟎/𝟎;  limit is found. 

d) lim
𝑥→0

𝑥−sin 𝑥

𝑥3 =                       𝟎/𝟎; apply l’Hôpital’s Rule. 

     lim
𝑥→0

1−cos 𝑥

3𝑥2 =                      Still 𝟎/𝟎; apply l’Hôpital’s Rule again. 

     lim
𝑥→0

sin 𝑥
6𝑥

=                          Still 𝟎/𝟎; apply l’Hôpital’s Rule again. 

          lim
𝑥→0

cos 𝑥
6

= 1

6
                      Not 𝟎/𝟎;  limit is found. 

 

Remark: 

   We have to be careful to apply l’Hôpital’s Rule correctly as the following 

example: 

Example: 

    lim
𝑥→0

1−cos 𝑥

𝑥+𝑥2 = lim
𝑥→0

sin 𝑥
1+2𝑥

 . It is tempting to try to apply l’Hôpital’s Rule 

again, which would result in  lim
𝑥→0

cos 𝑥
2

= 1

2
 , but this is not the correct limit. 

L’Hôpital’s Rule can be applied only to limits that give indeterminate 

forms, and lim
𝑥→0

sin 𝑥
1+2𝑥

 does not give an indeterminate form. Instead, this limit 

is 
0

1
= 0, and the correct answer for the original limit is 0. 

Remark: 

    L’Hôpital’s Rule applies to one-sided limits as well. In following 

example, the one-sided limits are different. 

Example: 

a) lim
𝑥→0+

sin 𝑥

𝑥2                                    𝟎

𝟎
    

          = lim
𝑥→0+

cos 𝑥
2𝑥

= ∞            positive for 𝒙 > 𝟎 

b) lim
𝑥→0−

sin 𝑥

𝑥2                                    𝟎

𝟎
    

          = lim
𝑥→0−

cos 𝑥
2𝑥

= −∞         Negative for 𝒙 < 𝟎 

Remark: 

      Sometimes when we try to evaluate a limit as 𝑥 → 𝑎, we get an 

indeterminate form like ∞/∞, ∞ ∙ 0 , ∞ − ∞, instead of 0/0. We first 

consider the form ∞/∞ . 
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       More advanced treatments of calculus prove that l’Hôpital’s Rule 

applies to the indeterminate form ∞/∞ , as well as to 0/0. If 𝑓(𝑥) → ±∞  

and 𝑔(𝑥) → ±∞ as 𝑥 → 𝑎, then 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥)

= 𝑙𝑖𝑚
𝑥→𝑎

𝑓′(𝑥)
𝑔′(𝑥)

 , provided the limit on 

the right exists or approaches ∞ or −∞. In the notation 𝑥 → 𝑎, a may be 

either finite or infinite. Moreover, 𝑥 → 𝑎 may be replaced by the one-sided 

limits 𝑥 → 𝑎+ or 𝑥 → 𝑎−. 

Example: 

      Find the limits of these ∞/∞ form lim
𝑥→𝜋 2⁄

sec 𝑥
1+tan 𝑥

 . 

Solution: 

      The numerator and denominator are discontinuous at 𝑥 = 𝜋 2⁄ , so we 

investigate the one-sided limits there. To apply l’Hôpital’s Rule, we can 

choose I to be any open interval with 𝑥 = 𝜋 2⁄  as an endpoint. 

lim
𝑥→(𝜋 2⁄ )−

sec 𝑥
1+tan 𝑥

          ∞

∞
 from left, apply l’Hôpital’s Rule 

 

         = lim
𝑥→(𝜋 2⁄ )−

sec 𝑥 tan 𝑥

sec2 𝑥
= lim

𝑥→(𝜋 2⁄ )−

tan 𝑥
sec 𝑥

= lim
𝑥→(𝜋 2⁄ )−

sin 𝑥 = 1. 

The right-hand limit is 1 also, with (−∞)/(−∞) as the indeterminate 

form. Therefore, the two-sided limit is equal to 1.  

Remark: 

     Next, we turn our attention to the indeterminate forms ∞ ∙ 0 and ∞ −
∞. Sometimes these forms can be handled by using algebra to convert 

them to a 0/0 or ∞/∞ form. Here again, we do not mean to suggest that  

∞ ∙ 0 or ∞ − ∞ is a number. They are only notations for functional 

behaviors when considering limits. Here are examples of how we might 

work with these indeterminate forms. 

Example: 

      Find the limits of these ∞ ∙ 0 form lim
𝑥→∞

𝑥 sin 1
𝑥
  . 

Solution: 

lim
𝑥→∞

𝑥 sin 1
𝑥
 = lim

𝑥→∞

sin (1 𝑥⁄ )
1 𝑥⁄

                     ∞ ∙ 𝟎 converted to 𝟎

𝟎
 

                    = lim
𝑥→∞

(cos (1 𝑥⁄ ))(−1 𝑥2⁄ )

−1 𝑥2⁄
           L’Hôpital’s Rule applied 

                    = lim
𝑥→∞

 (cos 1
𝑥
) = 1. 
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Example: 

      Find the limits of these ∞ − ∞ form lim
𝑥→0

( 1

sin 𝑥
−

1

𝑥
)  . 

Solution: 

      If 𝑥 → 0+, then sin 𝑥 → 0+ and 1

sin 𝑥
−

1

𝑥
→ ∞ − ∞. 

Similarly, if 𝑥 → 0−, then sin 𝑥 → 0− and 

                           1

sin 𝑥
−

1

𝑥
→ −∞ − (−∞) = −∞ + ∞. 

Neither form reveals what happens in the limit. To find out, we first 

combine the fractions: 

                    1

sin 𝑥
−

1

𝑥
= 𝑥−sin 𝑥

𝑥 sin 𝑥
                        Common denominator is x sin x. 

 Then we apply l’Hôpital’s Rule to the result: 

       lim
𝑥→0

( 1

sin 𝑥
−

1

𝑥
) = lim

𝑥→0

𝑥−sin 𝑥

𝑥 sin 𝑥
                    𝟎

𝟎
      

                              = lim
𝑥→0

1−cos 𝑥

sin 𝑥+𝑥 cos 𝑥
             𝐒𝐭𝐢𝐥𝐥 𝟎

𝟎
 

                              = lim
𝑥→0

sin 𝑥

2cos 𝑥−𝑥 sin 𝑥
 = 0

2
= 0 . 

Remark: 

     Limits that lead to the indeterminate forms 1∞, 00 , and ∞0 can 

sometimes be handled by first taking the logarithm of the function. We use 

l’Hôpital’s Rule to find the limit of the logarithm expression and then 

exponentiate the result to find the original function limit. This procedure 

is justified by the continuity of the exponential function it is formulated as 

follows. (The formula is also valid for one-sided limits.) 

      If lim
𝑥→𝑎

𝑙𝑛 𝑓(𝑥) = 𝐿, then  

                                     𝐥𝐢𝐦
𝒙→𝒂

 𝒇(𝒙) = 𝐥𝐢𝐦
𝒙→𝒂

𝒆𝐥𝐧 𝒇(𝒙) = 𝒆𝑳. 

Here a may be either finite or infinite. 

Example: 

     Apply l’Hôpital’s Rule to show that lim
𝑥→0+

(1 + 𝑥)1/𝑥 = 𝑒 .  

Solution: 

     The limit leads to the indeterminate form 1∞. We let 𝑓(𝑥) = (1 + 𝑥)1/𝑥 

and find lim
𝑥→0+

𝑙𝑛 𝑓(𝑥). Since 

                       𝑙𝑛 𝑓(𝑥) = 𝑙𝑛 (1 + 𝑥)1/𝑥 = 1

𝑥
𝑙𝑛 (1 + 𝑥),  
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l’Hôpital’s Rule now applies to give 

lim
𝑥→0+

𝑙𝑛 𝑓(𝑥) = lim
𝑥→0+

𝑙𝑛 (1+𝑥)
𝑥

  𝟎

𝟎
   

                      = lim
𝑥→0+

1
1+𝑥

1
 L’Hôpital’s Rule applied 

                      = 1

1
= 1.  

Therefore, lim
𝑥→0+

(1 + 𝑥)1/𝑥 = lim
𝑥→0+

 𝑓(𝑥) = lim
𝑥→0+

𝑒𝑙𝑛 𝑓(𝑥) = 𝑒1 = 𝑒 . 

Example: 

     Find lim
𝑥→∞

𝑥1/𝑥 .  

Solution: 

    The limit leads to the indeterminate form ∞0. We let 𝑓(𝑥) = 𝑥1/𝑥 and 

find lim
𝑥→∞

𝑙𝑛 𝑓(𝑥). Since 

                                 𝑙𝑛 𝑓(𝑥) = 𝑙𝑛 𝑥1/𝑥 = ln 𝑥

𝑥
,  

l’Hôpital’s Rule gives 

lim
𝑥→∞

𝑙𝑛 𝑓(𝑥) = lim
𝑥→∞

𝑙𝑛 𝑥
𝑥

  ∞

∞
   

                      = lim
𝑥→∞

1
𝑥
1
 L’Hôpital’s Rule applied 

                      = 1

1
= 0.  

Therefore, lim
𝑥→∞

𝑥1/𝑥 = lim
𝑥→∞

 𝑓(𝑥) = lim
𝑥→∞

𝑒𝑙𝑛 𝑓(𝑥) = 𝑒0 = 1 . 

Theorem (Cauchy’s Mean Value Theorem): 

        Suppose functions 𝒇 and 𝒈 are continuous on [𝒂, 𝒃] and 

differentiable throughout  (𝒂, 𝒃) and also suppose 𝒈′(𝒙)  ≠ 𝟎 

throughout (𝒂, 𝒃). Then there exists a number c in (𝒂, 𝒃) at which 

                                             
𝒇′(𝒄)

𝒈′(𝒄)
= 𝒇(𝒃)−𝒇(𝒂)

𝒈(𝒃)−𝒈(𝒂)
 . 

Exercises: 

1. In following, use l’Hôpital’s Rule to evaluate the limit. Then evaluate 

the limit using a method studied in Chapter 2 

a) lim
𝑥→2

𝑥−2

𝑥2−4
    b) lim

𝑥→0

sin 5𝑥

𝑥
  c) lim

𝑥→∞

5𝑥2−3𝑥

7𝑥2+1
  

d) lim
𝑥→1

𝑥3−1

4𝑥3−𝑥−3
  e) lim

𝑥→0

1−cos 𝑥

𝑥2   f) lim
𝑥→∞

2𝑥2+3𝑥

𝑥3+𝑥+1
  

2. Use l’Hôpital’s rule to find the limits in following. 
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a) lim
𝑥→−2

𝑥+2

𝑥2−4
  b) lim

𝑥→−5

𝑥2−25

𝑥+5
  c) lim

𝑡→−3

𝑡3−4𝑡+15

𝑡2−𝑡−12
  

d) lim
𝑡→−1

3𝑡3+3

4𝑡3−𝑡+3
  e) lim

𝑥→∞

5𝑥3−2𝑥

7𝑥3+3
  f) lim

𝑥→∞

𝑥−8𝑥2

12𝑥2+5𝑥
  

g) lim
𝑡→0

sin 𝑡2

𝑡
  h) lim

𝑡→0

sin 5𝑡

2𝑡
  i) lim

𝑥→0

8𝑥2

cos 𝑥−1
  

j) lim
𝑥→0

sin 𝑥−𝑥

𝑥3
  k) lim

𝜃→𝜋/2

2𝜃−𝜋

cos(2𝜋−𝜃)
  l) lim

𝜃→−𝜋/3

3𝜃+𝜋

sin(𝜃+(𝜋/3))
  

m) lim
𝜃→𝜋/6

sin 𝜃−1
2

𝜃−𝜋/6
  n) lim

𝜃→𝜋/4

tan 𝜃−1

𝜃−𝜋/4
  o) lim

𝑡→0

𝑡 sin 𝑡

1−cos 𝑡
  

p) lim
𝜃→𝜋/2

1−sin 𝜃

1+cos 2𝜃
  q) lim

𝑡→0

𝑡(1−cos 𝑡)

𝑡−sin 𝑡
  r) lim

𝑥→(𝜋/2)−
(𝜋

2
− 𝑥) tan 𝑥  

s) lim
𝑥→(𝜋/2)−

(𝑥 − 𝜋

2
) sec 𝑥  t) lim

𝑦→0

√5𝑦+25−5

𝑦
  u) lim

𝑦→0

√𝑎𝑦+𝑎2−𝑎

𝑦
 , 𝑎 > 0 

v) lim
𝑥→0+

(3𝑥+1

𝑥
− 1

sin 𝑥)  w) lim
𝑥→0+

(csc 𝑥 − cot 𝑥+cos 𝑥)  x) lim
𝑥→0

𝑥−sin 𝑥

𝑥 tan 𝑥
  

y) lim
𝜃→0

𝜃−sin 𝜃 cos 𝜃

tan 𝜃−𝜃
  z) lim

𝑥→0

sin 3𝑥−3𝑥+𝑥2

sin 𝑥 sin 2𝑥
   

3. Find the limits in following. 

a) lim
𝑥→1+

𝑥1/(1−𝑥) b) lim
𝑥→1+

𝑥1/(𝑥−1) c) lim
𝑥→∞

(ln 𝑥)1/𝑥 

d) lim
𝑥→𝑒+

(ln 𝑥)1/(𝑥−𝑒) e) lim
𝑥→0+

𝑥−1/ ln 𝑥 f) lim
𝑥→∞

𝑥1/ ln 𝑥 

g) lim
𝑥→∞

(1 + 2𝑥)1/(2 ln 𝑥) h) lim
𝑥→0

(𝑒𝑥 + 𝑥)1/𝑥 i) lim
𝑥→0+

𝑥𝑥 

j) lim
𝑥→0+

(1 + 1

𝑥
)𝑥 k) lim

𝑥→∞
(𝑥+2

𝑥−1
)𝑥 l) lim

𝑥→∞
(𝑥2+1

𝑥+2
)1/𝑥 

m) lim
𝑥→0+

𝑥2 ln 𝑥 n) lim
𝑥→0+

𝑥(ln 𝑥)2 o) lim
𝑥→0+

𝑥 tan(𝜋

2
− 𝑥) 

p) lim
𝑥→0+

sin 𝑥 ∙ ln 𝑥 

4. Find all values of c that satisfy the conclusion of Cauchy’s Mean Value 

Theorem for the given functions and interval. 

a) 𝑓(𝑥) =  𝑥,     𝑔(𝑥)  =  𝑥2,     (𝑎, 𝑏)  =  (−2, 0) 

b) 𝑓(𝑥) =  𝑥,     𝑔(𝑥)  =  𝑥2,     (𝑎, 𝑏) arbitrary 

c) 𝑓(𝑥) =   𝑥3

3
−  4𝑥,     𝑔(𝑥) =  𝑥2,      (𝑎, 𝑏)  =  (0, 3) 

 

 


