
 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



1 
 

Contents 

Chapter One: Real Functions. 

1.1 Functions and Their Graphs 

1.1.1 Domain and Range 

1.1.2 Graphs of Functions. 

1.1.3 Common Functions 

1.2 Combining Functions; Shifting and Scaling Graphs. 

1.2.1 Sums, Differences, Products, and Quotients. 

1.2.2 Composite Functions. 

1.2.3 Shifting a Graph of a Function. 

1.2.4 Scaling and Reflecting a Graph of a Function. 

1.3 Trigonometric Functions 

1.3.1 The Six Basic Trigonometric Functions. 

1.3.2 Periodicity and Graphs of the Trigonometric Functions. 

1.3.3 Trigonometric Identities. 

1.4 Exponential Functions. 

1.5 Inverse Functions and Logarithms. 

Chapter Two: Limits and Continuity. 

2.1 Limits of Function Values. 

2.2 The Limit Laws. 

2.3 The Precise Definition of a Limit. 

2.4 One-Sided Limits. 

2.5 Limits Involving Infinity 

2.5.1 Finite Limits as x→±∞. 

2.5.2 Limits at Infinity of Rational Functions. 

2.5.3 Horizontal Asymptotes. 

2.5.4 Oblique Asymptotes. 

2.5.5 Infinite Limits. 

2.5.6 Precise Definitions of Infinite Limits. 

2.5.7 Vertical Asymptotes. 

2.6 Continuity 



2 
 

2.6.1 Continuity at a Point. 

Chapter Three: Derivatives. 

3.1 Tangent Lines and the Derivative at a Point. 

    3.1.1 Finding a Tangent Line to the Graph of a Function. 

    3.1.2 Derivative at a Point. 

3.2 Differentiability on an Interval; One-Sided Derivatives. 

3.3 Differentiation Rules. 

    3.3.1 Second- and Higher-Order Derivatives. 

3.4 Derivatives of Trigonometric Functions. 

3.5 The Chain Rule. 

3.6 Implicit Differentiation. 

3.7 Derivatives of Inverse Functions and Logarithms. 

3.7.1 Derivatives of Inverse Functions and Logarithms 

3.7.2 Derivative of the Natural Logarithm Function. 

3.7.3 The Derivatives of 𝑎𝑥 and log𝑎 𝑥. 

3.8 Inverse Trigonometric Functions. 

3.8.1 Inverses of 𝑡𝑎𝑛 𝑥, 𝑐𝑜𝑡 𝑥, 𝑠𝑒𝑐 𝑥, and 𝑐𝑠𝑐 𝑥. 

3.8.2 The Derivative of 𝑦 = 𝑎𝑟𝑐𝑠𝑖𝑛 𝑢. 

3.8.3 The Derivative of 𝑦 =  𝑎𝑟𝑐𝑡𝑎𝑛 𝑢. 

3.8.4 The Derivative of 𝑦 = 𝑎𝑟𝑐𝑠𝑒𝑐 𝑢. 

3.8.5 Derivatives of the Other Three Inverse Trigonometric Functions. 

3.9 Extreme Values of Functions on Closed Intervals. 

3.10 The Mean Value Theorem. 

3.11 Monotonic Functions and the First Derivative Test. 

3.12 Concavity and Curve Sketching. 

3.13 Indeterminate Forms and L’Hôpital’s Rule. 

 

 

 

 

 



3 
 

References 

[1] Thomas, G. B., Weir, M. D., Hass, J., Heil, G., & Bogacki, P., 

“Thomas' calculus Early Transcendentals “(Vol. 15). Boston: Pearson, 

2023. 

[2] Thomas, G. B., Weir, M. D., Hass, J. & Heil, G., “Thomas' calculus 

“(Vol. 14). Boston: Pearson, 2018. 

[3] Thomas, G. B. "Calculus and analytic geometry." Massachusetts 

Institute of Technology, Massachusetts, USA, Addison-Wesley 

Publishing Company, ISBN: 0-201-60700-X (1992). 

[4] Thomas, G. B., Finney, R.  L.,” Calculus and Analytic Geometry”, 

Ninth Edition. Addison Wesley, 1998. 

 

 

 

 

 

 

 

 

 

 



4 
 

Chapter One: Real Functions. 

1.1 Functions and Their Graphs: 

1.1.1 Domain and Range 

Definition: 

      A function ƒ from a set D to a set Y (𝑓: 𝐷 → 𝑌) is a rule that assigns a 

unique (single) element 𝑓(𝑥) ∈ 𝑌 to each element 𝑥 ∈ 𝐷. 

Remark: 

1. The set D of all possible input values is called the domain of the 

function.  

2. The set of all values of ƒ(x) as x varies throughout D is called the range 

of the function. 

3. The range may not include every element in the set Y.  

4. The domain and range of a function can be any sets of objects, but often 

in calculus they are sets of real numbers interpreted as points of a 

coordinate line.  

          

Example: 

      Find the domain and range of each function: 

1.𝑓(𝑥) = 𝑥2 4. 𝑓(𝑥) = √4 − 𝑥 

2. 𝑓(𝑥) = 1 𝑥⁄  5. 𝑓(𝑥) = √1 − 𝑥2 

3. 𝑓(𝑥) = √𝑥  

Solution: 

1. The function 𝑓(𝑥) = 𝑥2 gives a real y-value for any real number x, so 

the domain is (−∞, ∞). The range of 𝑓(𝑥) = 𝑥2 is [0, ∞) because the 
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square of any real number is nonnegative and every nonnegative 

number y is the square of its own square root, for 𝑦 = (√𝑦)
2

 for 𝑦 ≥ 0. 

2. The function 𝑓(𝑥) = 1 𝑥⁄  gives a real y-value for every x except 𝑥 = 0. 

For consistency in the rules of arithmetic, we cannot divide any number 

by zero. The range of 𝑓(𝑥) = 1 𝑥⁄  , the set of reciprocals of all nonzero 

real numbers, is the set of all nonzero real numbers, since 𝑦 =

1 (1 𝑦⁄ )⁄ . That is, for 𝑦 ≠ 0 the number 𝑥 = 1 𝑦⁄  is the input assigned 

to the output value y.  

3. The function 𝑓(𝑥) = √𝑥 gives a real y-value only if 𝑥 ≥ 0. The range 

of 𝑓(𝑥) = √𝑥 is [0, ∞) because every nonnegative number is some 

number’s square root (namely, it is the square root of its own square).  

4. In 𝑓(𝑥) = √4 − 𝑥 the quantity 4 − 𝑥 cannot be negative. That is, 4 −

𝑥 ≥ 0 or 𝑥 ≤ 4. The formula gives real y-values for all 𝑥 ≤ 4. The 

range of 𝑓(𝑥) = √4 − 𝑥 is [0, ∞) the set of all nonnegative numbers. 

5. The function 𝑓(𝑥) = √1 − 𝑥2 gives a real y-value for every x in the 

closed interval from -1 to 1. Outside this domain, 1 − 𝑥2 is negative 

and its square root is not a real number. The values of 1 − 𝑥2 vary from 

0 to 1 on the given domain, and the square roots of these values do the 

same. The range of 𝑓(𝑥) = √1 − 𝑥2 is [0, 1]. 

1.1.2 Graphs of Functions 

      If ƒ is a function with domain D, its graph consists of the points in the 

Cartesian plane whose coordinates are the input-output pairs for ƒ. In set 

notation, the graph is {(𝒙, 𝒇(𝒙): 𝒙 ∈ 𝑫}. 

     The graph of a function ƒ is a useful picture 

of its behavior. If (𝑥, 𝑦) is a point on the graph, 

then 𝑦 = 𝑓(𝑥) is the height of the graph above 

the point x. The height may be positive or 

negative, depending on the sign of 𝑓(𝑥).  
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Example: 

      Graph the function 𝑓(𝑥) = 𝑥 + 2. 

Solution: 

    The graph of the function 𝑓(𝑥) = 𝑥 + 2 is the 

set of points with coordinates (𝑥, 𝑦) for which 

𝑦 = 𝑥 + 2 . Its graph is the straight line sketched.  

Example: 

      Graph the function 𝑓(𝑥) = 𝑥2. over the interval [−2,2].  

Solution: 

     Fist we make a table of 𝑥𝑦-pairs that satisfy the equation 𝑦 = 𝑥2. Then 

we plot the points (x, y) whose coordinates appear in the table, and we 

draw a smooth curve (labeled with its equation) through the plotted points.  

 

 

 

 

 

 

 

 

Remark: 

      Not every curve in the coordinate plane can be the graph of a function. 

A function ƒ can have only one value 𝑓(𝑥) for each x in its domain, so no 

vertical line can intersect the graph of a function more than once. If a is in 

the domain of the function ƒ, then the vertical line will intersect the graph 

of ƒ at the single point (𝑎, 𝑓(𝑎)).  
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      A circle 𝑥2 + 𝑦2 = 1 cannot be the graph of a function since some 

vertical lines intersect the circle twice. The circle 𝑥2 + 𝑦2 = 1, however, 

does contain the graphs of two functions of x: the upper semicircle defined 

by the function defined by the function 𝑓(𝑥) = √1 − 𝑥2 and the lower 

semicircle 𝑔(𝑥) = √1 − 𝑥2. 

Exercises: 

1.  Find the domain and range of each function 

a.𝑓(𝑥) = 1 + 𝑥2 d. 𝑔(𝑥) = √𝑥2 − 3𝑥 

b. 𝑓(𝑥) = 1 − √𝑥 e. 𝑓(𝑡) = 4 (3 − 𝑡)⁄  

c. 𝐹(𝑥) = √5𝑥 + 10 i. 𝐺(𝑡) = 2/(𝑡2 − 16) 

2. Which of the graphs are graphs of functions of x, and which are not?  

Give reasons for your answers. 

 

 

 

 

 

 

𝑥2 + 𝑦2 = 1               𝑓(𝑥) = √1 − 𝑥2               𝑔(𝑥) = √1 − 𝑥2 

c. 
d. 
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Remark(Piecewise-Defined Functions): 

     Sometimes a function is described by using different formulas different 

parts of its domain. For example, the function absolute value function  

                              𝑓(𝑥) = |𝑥| = {
𝑥 𝑖𝑓 𝑥 ≥ 0

−𝑥 𝑖𝑓 𝑥 < 0
, 

has domain (−∞, ∞) and range [0, ∞) whose graph is 

 

 

 

 

 

Example: 

    The graph of the function 𝑓(𝑥) = {

−𝑥 𝑖𝑓 𝑥 < 0

𝑥2        𝑖𝑓 0 ≤ 𝑥 ≤ 1
1 𝑖𝑓 𝑥 > 1

 is 

                                      

Example: 

      Graph the function greatest integer function 𝑓(𝑥) = ⌊𝑥⌋. 

Solution: 

      The function 𝑓(𝑥) =⌊x⌋ is the function whose value at any number x 

is the greatest integer less than or equal to x. 
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⌊2.4⌋ = 2
⌊2⌋ = 2

⌊1.9⌋ = 1
⌊0.2⌋ = 0

⌊0⌋ = 0
⌊−0.3⌋ = −1

⌊−1.2⌋ = −2
⌊−2⌋ = −2

 

       The graph of the greatest integer function 𝑓(𝑥) =⌊x⌋ lies on or below 

the line 𝑦 = 𝑥, so it provides an integer floor for x. 

                                             

Example: 

      Graph the function least integer function 𝑓(𝑥) = ⌈𝑥⌉. 

Solution: 

      The function 𝑓(𝑥) = ⌈𝑥⌉is the function whose value at any number x 

is the smallest integer greater than or equal to x. The graph of the least 

integer function 𝑓(𝑥) = ⌈𝑥⌉ lies on or above the line 𝑦 = 𝑥, so it provides 

an integer ceiling for x. 
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Exercises: 

1. Find the natural domain and graph of the following functions 

a.𝑓(𝑥) = 5 − 2𝑥 d. 𝑔(𝑥) = √−𝑥 

b. 𝑓(𝑥) = 1 − 2𝑥 − 𝑥2 e. 𝑓(𝑡) = 𝑡 |𝑡|⁄  

c. 𝑔(𝑥) = √|𝑥| i. 𝐺(𝑡) = 1 |𝑡|⁄  

2. Find the domain of 𝑓(𝑥) = 𝑥+3

4−√𝑥2−9
. 

3. Find the range of 𝑓(𝑥) = 2 + 𝑥2

𝑥2+4
. 

3. Graph the following equations and explain why they are not graphs of   

    functions of x. 

a.|𝑦| = 𝑥 b. 𝑦2 = 𝑥2 

4. Graph the following equations and explain why they are not graphs of  

    functions of x. 

a.|𝑥| + |𝑦| = 1 b. |𝑥 + 𝑦| = 1 

5. Graph the following functions 

a.𝑓(𝑥) = {
𝑥, 𝑖𝑓 0 ≤ 𝑥 ≤ 1

2 − 𝑥, 𝑖𝑓 1 < 𝑥 ≤ 2
 c. 𝐹(𝑥) = {

4 − 𝑥2, 𝑖𝑓 𝑥 ≤ 1

𝑥2 − 2𝑥, 𝑖𝑓 𝑥 > 1
 

b. 𝑔(𝑥) = {
1 − 𝑥, 𝑖𝑓 0 ≤ 𝑥 ≤ 1
2 − 𝑥, 𝑖𝑓 1 < 𝑥 ≤ 2

 d. 𝐺(𝑥) = {
1 𝑥,⁄ 𝑖𝑓 𝑥 < 0

𝑥, 𝑖𝑓 0 ≤ 𝑥
 

6. For what values of x is 

a.⌊𝑥⌋ = 0? b. ⌈𝑥⌉ = 0? 

7. What real numbers x satisfies the equation ⌊𝑥⌋ = ⌈𝑥⌉? 

8. Does ⌈−𝑥⌉ = −⌊𝑥⌋ ; for all real x? Give reasons for your answer. 

9. Graph the function 𝑓(𝑥) = {
⌊𝑥⌋, 𝑖𝑓 𝑥 ≥ 0
⌈𝑥⌉, 𝑖𝑓 𝑥 < 0

. 

Definition: 

      Let ƒ be a function defined on an interval I and let 𝑥1 and 𝑥2be any two 

points in I.  
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1. If 𝑓(𝑥2) > 𝑓(𝑥1)whenever 𝑥1 < 𝑥2 then ƒ is said to be increasing on I. 

2. If 𝑓(𝑥2) < 𝑓(𝑥1) whenever 𝑥1 < 𝑥2 then ƒis said to be decreasing on I. 

Example: 

      The function 𝑓(𝑥) = {

−𝑥 𝑖𝑓 𝑥 < 0

𝑥2        𝑖𝑓 0 ≤ 𝑥 ≤ 1
1 𝑖𝑓 𝑥 > 1

 is decreasing on 

(−∞, 0] and increasing on [0, 1]. The function is neither increasing nor 

decreasing on the interval [1, ∞) because of the strict inequalities used to 

compare the function values in the definitions. 

Definition: 

      A function 𝑦 = 𝑓(𝑥) is an 

even function of x if 𝑓(−𝑥) = 𝑓(𝑥), 

   odd function of x   if 𝑓(−𝑥) = −𝑓(𝑥), 

for every x in the function’s domain.  

Remark: 

1. The graph of an even function is symmetric about the y-axis. Since 

𝑓(−𝑥) = 𝑓(𝑥) a point (𝑥, 𝑦) lies on the graph if and only if the point 

(−𝑥, 𝑦) lies on the graph. A reflection across the y-axis leaves the graph 

unchanged. 

2. The graph of an odd function is symmetric about the origin. Since 
𝑓(−𝑥) = −𝑓(𝑥) a point (𝑥, 𝑦) lies on the graph if and only if the point 

(−𝑥, −𝑦)  lies on the graph. Equivalently, a graph is symmetric about 

the origin if a rotation of 180°about the origin leaves the graph 

unchanged.  

3. Notice that the definitions imply that both x and −𝑥 must be in the 

domain of ƒ. 
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Example: 

     Specify whether the function is even, odd, or neither. Give reasons for 

your answer 

a.𝑓(𝑥) = 𝑥2 d. 𝑔(𝑥) = 𝑥 

b. 𝑓(𝑥) = 𝑥2 + 1 e. 𝑓(𝑥) = 𝑥 + 1 

Solution: 

a.𝑓(𝑥) = 𝑥2 

   Since 𝑓(−𝑥) = (−𝑥)2 = 𝑓(𝑥) then 𝑓 is an even 

function for all x; symmetry about y-axis. 

b. 𝑓(𝑥) = 𝑥2 + 1 

   Since 𝑓(−𝑥) = (−𝑥)2 + 1 = 𝑥2 + 1 = 𝑓(𝑥) 

then 𝑓 is an even function for all x; symmetry 

about y-axis. 

d. 𝑓(𝑥) = 𝑥 

    Since 𝑓(−𝑥) = −𝑥 = −𝑓(𝑥) then 𝑓 is an odd 

function for all x; symmetry about origin. 

e. 𝑓(𝑡) = 𝑥 + 1 

    Since 𝑓(−𝑥) = −𝑥 + 1 but −𝑓(𝑥) = −𝑥 − 1. 

The two are not equal. then 𝑓 is not odd function 

for all x. Not even since 𝑓(−𝑥) = −𝑥 + 1 ≠

𝑓(𝑥) = 𝑥 + 1 for all 𝑥 ≠ 0. 

Remark: 

    The names even and odd come from powers of x. If 𝑓(𝑥) is an even 

power of x, as in 𝑓(𝑥) = 𝑥2 or 𝑓(𝑥) = 𝑥4, it is an even function of x 

because (−𝑥)2 = 𝑥2 and (−𝑥)4 = 𝑥4.  
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    If 𝑓(𝑥) is an odd power of x, as in 𝑓(𝑥) = 𝑥 or 

𝑓(𝑥) = 𝑥3, it is an odd function of x because 

(−𝑥)1 =  −𝑥 and (−𝑥)3 =  −𝑥3 

Exercises: 

1. Graph the following functions. What symmetries, if any, do the graphs 

have? Specify the intervals over which the function is increasing and the 

intervals where it is decreasing. 

a.𝑓(𝑥) = −𝑥3 f. 𝑓(𝑥) = √−𝑥 

b. 𝑓(𝑥) = − 1 𝑥2⁄  g. 𝑓(𝑥) = 𝑥3 8⁄  

c. 𝑓(𝑥) = − 1 𝑥⁄  h. 𝑓(𝑥) = −4√𝑥 

d. 𝑓(𝑥) = 1 |𝑥|⁄  i. 𝑓(𝑥) = −𝑥3 2⁄  

e. 𝑓(𝑥) = √|𝑥| j. 𝑓(𝑥) = (−𝑥)2 3⁄  

2. Whether the following functions is even, odd, or neither. Give reasons 

for your answer 

a.𝑓(𝑥) = 3 g. 𝑔(𝑥) = 1 (𝑥2 − 1)⁄  

b. 𝑓(𝑥) = 𝑥−5 h. 𝑔(𝑥) = 𝑥 (𝑥2 − 1)⁄  

c. 𝑓(𝑥) = 𝑥2 + 1 i. ℎ(𝑡) = 1 (𝑡 − 1)⁄  

d. 𝑓(𝑥) = 𝑥2 + 𝑥 k. ℎ(𝑡) = |𝑡3| 
e. 𝑔(𝑥) = 𝑥3 + 𝑥 g. ℎ(𝑡) = 2𝑡 + 1 

f. 𝑔(𝑥) = 𝑥4 + 3𝑥2 − 1 h. ℎ(𝑡) = 2|𝑡| + 1 

1.1.3 Common Functions 

       A variety of important types of functions are frequently encountered 

in calculus. We identify and briefly describe them here. 

1. Linear Functions: A function of the form 𝑓(𝑥)  =  𝑚𝑥 +  𝑏, for 

constants m and b, is called a linear function.  

When 𝑏 =  0 ,the array of lines 𝑓(𝑥)  =  𝑚𝑥 

is lines pass through the origin.  
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The function 𝑓(𝑥)  =  𝑥 where 𝑚 =  1 and 𝑏 =  0 is called the identity 

function. The function 𝑓(𝑥)  = 𝑏 where and 𝑚 =  0 is called the 

Constant functions. 

 

 

 

 A linear function with positive slope whose graph passes through the 

origin is called a proportionality relationship. 

2. Power Functions: A function ƒ(𝑥)  =  𝑥𝑎, where a is a constant, is 

called a power function. There are several important cases to consider. 

(a) a = n, a positive integer. 

 

 

 

The graphs of 𝑦 = 𝑓(𝑥)  =  𝑥𝑛, for n = 1, 2, 3, 4, 5 are defined for all 

real values of x (i.e., −∞ < 𝑥 < ∞). Notice that as the power n gets 

larger, the curves tend to flatten toward the x-axis on the interval (-1, 

1), and to rise more steeply for |𝑥| > 1. Each curve passes through the 

point (1, 1) and through the origin. The graphs of functions with even 

powers are symmetric about the y-axis; those with odd powers are 

symmetric about the origin. The even-powered functions are decreasing 

on the interval (−∞, 0] and increasing on [0, ∞); the odd-powered 

functions are increasing over the entire real line (−∞, ∞). 

(b) 𝑎 =  −1 or 𝑎 =  −2. 

 

 

 

 



15 
 

The functions𝑓(𝑥)  =  𝑥−1 = 1

𝑥
 and 𝑔(𝑥)  =  𝑥−2 = 1

𝑥2  are defined for 

all 𝑥 ≠  0 (you can never divide by zero). The graph of 𝑓(𝑥)  = 1

𝑥
 is the 

hyperbola 𝑥𝑦 =  1, which approaches the coordinate axes far from the 

origin. The graph of 𝑔(𝑥)  = 1

𝑥2 also approaches the coordinate axes. 

The graph of the function ƒ is symmetric about the origin; ƒ is 

decreasing on the intervals (−∞, 0)  and (0, ∞). The graph of the 

function g is symmetric about the y-axis; g is increasing on(−∞, 0) and 

decreasing on (0, ∞). 

(c) 𝑎 = 1

2
, 1

3
, 3

2
 and 2

3
 

     

 

 

The functions 𝑓(𝑥)  =   𝑥
1

2  = √𝑥 and 𝑔(𝑥)  =   𝑥
1

3 =  √𝑥
3

 are the 

square root and cube root functions, respectively. The domain of the 

square root function is [0, ∞), but the cube root function is defined for 

all real x. Their graphs are displayed above, along with the graphs of 

𝑓(𝑥) =  𝑥
3

2 and 𝑓(𝑥)  =   𝑥
2

3. (Recall that 𝑥
3

2 = ( 𝑥
1

2)
3

and  𝑥
2

3 = ( 𝑥
1

3)
2

. 

3. Polynomials: A function p is a polynomial if 

                      𝑝(𝑥)  =  𝑎𝑛 𝑥𝑛  +  𝑎𝑛−1 𝑥𝑛−1  +  ⋯ +  𝑎1 𝑥 +  𝑎0 

where n is a nonnegative integer and the numbers 𝑎0, 𝑎1, ⋯ , 𝑎𝑛, are 

real constants (called the coefficients of the polynomial). All 

polynomials have domain (−∞, ∞). If the leading coefficient 𝑎𝑛 ≠ 0 

and 𝑛 > 0, then n is called the degree of the polynomial. Linear 

functions with 𝑚 ≠ 0 are polynomials of degree 1. Polynomials of 

degree 2, usually written as 𝑝(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, are called 

quadratic functions. Likewise, cubic functions are polynomials 

𝑝(𝑥)  =  𝑎𝑥3  +  𝑏𝑥2  +  𝑐𝑥 +  𝑑 of degree 3.  
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4. Rational Functions: A rational function is a quotient or ratio 𝑓(𝑥) =
𝑝(𝑥)

𝑞(𝑥)
 , where p and q are polynomials. The domain of a rational function 

is the set of all real x for which 𝑞(𝑥)  ≠  0.  

 

 

 

 

 

5. Algebraic Functions: Any function constructed from polynomials 

using algebraic operations (addition, subtraction, multiplication, 

division, and taking roots) lies within the class of algebraic functions. 

All rational functions are algebraic, but also included are more 

complicated functions (such as those satisfying an equation like 𝑦3  −

 9𝑥𝑦 + 𝑥3  =  0.  
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6. Trigonometric Functions: The six basic trigonometric functions are 

sine: sin, cosine, tan, cosecant, secant, cotan. 

 

 

 

7. Exponential Functions: Functions of the form 𝑓(𝑥)  =  𝑎𝑥, where the 

base 𝑎 >  0 is a positive constant and 𝑎 ≠  1, are called exponential 

functions. All exponential functions have domain (−∞, ∞) and range 

(0, ∞), so an exponential function never assumes the value 0.  

 

 

 

 

 

 

8. Logarithmic Functions: These are the functions 𝑓(𝑥) = log𝑎 𝑥, 

where the base 𝑎 ≠  1 is a positive constant. They are the inverse 

functions of the exponential functions. The following Figure shows 

the graphs of four logarithmic functions with various bases. In each 

case the domain is (0, ∞) and the range is (−∞, ∞). 
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9. Transcendental Functions: These are functions that are not algebraic. 

They include the trigonometric, inverse trigonometric, exponential, and 

logarithmic functions, and many other functions as well. A particular 

example of a transcendental function is a catenary (The Latin word 

catena means “chain”). Its graph has the shape of a cable, like a 

telephone line or electric cable, strung from one support to another and 

hanging freely under its own weight.  
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1.2 Combining Functions; Shifting and Scaling Graphs 

1.2.1 Sums, Differences, Products, and Quotients 

    Like numbers, functions can be added, subtracted, multiplied, and 

divided (except where the denominator is zero) to produce new functions.       

     If ƒ and 𝑔 are functions, then for every x that belongs to the domains of 

both ƒ and 𝑔 (that is, for 𝑥 ∈ 𝐷(𝑓)  ∩  𝐷(𝑔)), we define functions 𝑓 +  𝑔, 

ƒ - g, and 𝑓 ∙ 𝑔 by the formulas 

(𝑓 +  𝑔)(𝑥)  =  𝑓(𝑥)  +  𝑔(𝑥) 

(𝑓 −  𝑔)(𝑥)  = 𝑓(𝑥)  −  𝑔(𝑥) 

(𝑓 ∙ 𝑔)(𝑥)  = 𝑓(𝑥) ∙ 𝑔(𝑥). 

    Notice that the + sign on the left-hand side of the first equation 

represents the operation of addition of functions, whereas the + on the 

right-hand side of the equation means addition of the real numbers ƒ(x) 

and 𝑔(𝑥). 

    At any point of 𝐷(𝑓)  ∩  𝐷(𝑔) at which 𝑔(𝑥)  ≠  0, we can also define 

the function 𝑓/𝑔 by the formula 

                                     (
𝑓

𝑔
)(𝑥) = 𝑓(𝑥)

𝑔(𝑥)
 ,        (Where 𝑔(𝑥)  ≠  0). 

     Functions can also be multiplied by constants: If c is a real number, 

then the function 𝑐𝑓 is defined for all x in the domain of ƒ by 

(𝑐𝑓)(𝑥)  =  𝑐𝑓(𝑥). 

Example: 

     Find the domains and ranges of 𝑓, 𝑔, 𝑓 +  𝑔, 𝑓 −  𝑔, 𝑔 −  𝑓, 𝑓 ∙  𝑔, 𝑓/𝑔, 

and 𝑔/𝑓 defined by the formulas 𝑓(𝑥) = √𝑥 and 𝑔(𝑥) = √1 − 𝑥. 

Solution: 

     The functions defined by the formulas 𝑓(𝑥) = √𝑥 and 𝑔(𝑥) = √1 − 𝑥  
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have domains 𝐷(𝑓)  = [0, ∞) and 𝐷(𝑔)  =  (−∞, 1]. The points common 

to these domains are the points [0, ∞) ∩ (−∞, 1] = [0,1]. 

     The following table summarizes the formulas and domains for the 

various algebraic combinations of the two functions.  

Function Formula Domain 

𝑓 +  𝑔  (𝑓 +  𝑔)(𝑥) = √𝑥 + √1 − 𝑥  [0,1] = 𝐷(𝑓) ∩ 𝐷(𝑔)  

𝑓 −  𝑔 (𝑓 −  𝑔)(𝑥) = √𝑥 − √1 − 𝑥 [0,1] 

𝑔 −  𝑓,  (𝑔 −  𝑓)(𝑥) = √1 − 𝑥 − √𝑥 [0,1] 

𝑓 ∙  𝑔,  (𝑓 ∙  𝑔)(𝑥) = 𝑓(𝑥) ∙ 𝑔(𝑥) = √𝑥(1 − 𝑥),  [0,1] 

 𝑓/𝑔,  (
 𝑓

𝑔
)(𝑥) = 𝑓(𝑥)

𝑔(𝑥)
= √

𝑥

1−𝑥
   [0,1) (𝑥 = 1 excluded) 

𝑔/𝑓 (
𝑔

𝑓
)(𝑥) = 𝑔(𝑥)

𝑓(𝑥)
= √1−𝑥

𝑥
   

(0,1] (𝑥 = 0 excluded) 

 

 

 

 

 

 

Exercises: 

1. Find the domains and ranges of 𝑓, 𝑔, 𝑓 +  𝑔 and 𝑓 ∙  𝑔 defined by the 

formulas  

a.𝑓(𝑥) = 𝑥 , 𝑔(𝑥) = √𝑥 − 1 b. 𝑓(𝑥) = √𝑥 + 1 , 𝑔(𝑥) = √𝑥 − 1 

2. Find the domains and ranges of 𝑓, 𝑔, 𝑓/𝑔, and 𝑔/𝑓 defined by the 

formulas  

a.𝑓(𝑥) = 2 , 𝑔(𝑥) = 𝑥2 + 1 b. 𝑓(𝑥) = 1 , 𝑔(𝑥) = 1 + √𝑥 

 

           

The graph of the function ƒ + g  

   

    The graph of the function 𝑓 ∙  𝑔  
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1.2.2 Composite Functions 

Definition: 

     If ƒ and g are functions, the composite function 𝑓 ∘  𝑔 (“ƒ composed 

with 𝑔”) is defined by 

                                   (𝑓 ∘  𝑔 )(𝑥)  =  𝑓(𝑔(𝑥)). 

The domain of 𝑓 ∘  𝑔 consists of the numbers x in the domain of 𝑔 for 

which 𝑔(𝑥) lies in the domain of ƒ. 

  

 

 

 

 

 

 

 

Remark: 

1. To evaluate the composite function 𝑔 ∘  𝑓 (when defined), we find ƒ(x) 

first and then 𝑔(𝑓(𝑥)). The domain of 𝑔 ∘  𝑓 is the set of numbers x in 

the domain of ƒ such that ƒ(x) lies in the domain of 𝑔. 

2. The functions 𝑓 ∘  𝑔 and 𝑔 ∘ 𝑓 are usually quite different.  

Example: 

      If 𝑓(𝑥) = √𝑥 and 𝑔(𝑥)  =  𝑥 +  1, find   

(a) (𝑓 ∘ 𝑔)(𝑥), (b) (𝑔 ∘ 𝑓)(𝑥), (c) (𝑓 ∘ 𝑓)(𝑥), (d) (𝑔 ∘ 𝑔)(𝑥). 

Solution: 

            

  A composite function 𝑓 ∘  𝑔 uses the output 

𝑔(𝑥) of the first function g as the input for the 

second function f. 

            

   Arrow diagram for 𝑓 ∘  𝑔. If x lies in the domain of 

𝑔 and 𝑔(𝑥) lies in the domain of ƒ, then the functions 

ƒ and 𝑔 can be composed to form (𝑓 ∘  𝑔)(x). 
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Composite Domain 

(a) (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) = √𝑔(𝑥) = √𝑥 + 1 [−1, ∞) 

(b) (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)) = 𝑓(𝑥) + 1 = √𝑥 + 1 [0, ∞) 

(c) (𝑓 ∘ 𝑓)(𝑥) =  𝑓(𝑓(𝑥)) = √𝑓(𝑥) = √√𝑥 = 𝑥1 4⁄  [0, ∞) 

(d) (𝑔 ∘ 𝑔)(𝑥) =  𝑔(𝑔(𝑥)) = 𝑔(𝑥) + 1 = (𝑥 + 1) + 1 = 𝑥 + 2 (−∞, ∞) 

Remark: 

1. In previous example the domain of 𝑓 ∘ 𝑔 is [−1, ∞), since 𝑔(𝑥)  =  𝑥 +

 1 is defined for all real x but belongs to the domain of ƒ only if 𝑥 +

 1 ≥  0, that is to say, when 𝑥 ≥ −1. 

2. If 𝑓(𝑥) = 𝑥2 and 𝑔(𝑥)  = √𝑥, then (𝑓 ∘ 𝑔)(𝑥) = (√𝑥)
2

= 𝑥. However, 

the domain of 𝑓 ∘ 𝑔 is [0, ∞), not (−∞, ∞), since √𝑥 requires 𝑥 ≥ 0. 

Exercises: 

1. If 𝑓(𝑥) = 𝑥 + 5 and 𝑔(𝑥) = 𝑥2 − 3, Find the following. 

a) 𝑓(𝑔(0)) b) 𝑔(𝑓(0)) c) 𝑓(𝑔(𝑥)) d) 𝑔(𝑓(𝑥)) 

e) 𝑓(𝑓(−5)) f) 𝑔(𝑔(2)) g) 𝑓(𝑓(𝑥)) h) 𝑔(𝑔(𝑥)) 

2. If 𝑓(𝑥) = 𝑥 − 1 and 𝑔(𝑥) = 1 (𝑥 + 1)⁄ , Find the following. 

a) 𝑓(𝑔(1 2⁄ )) b) 𝑔(𝑓(1 2⁄ )) c) 𝑓(𝑔(𝑥)) d) 𝑔(𝑓(𝑥)) 

e) 𝑓(𝑓(2)) f) 𝑔(𝑔(2)) g) 𝑓(𝑓(𝑥)) h) 𝑔(𝑔(𝑥)) 

3. For the following write a formula for 𝑓 ∘ 𝑔 ∘ ℎ. 
a) 𝑓(𝑥) = 𝑥 + 1, 𝑔(𝑥) = 3𝑥 , ℎ(𝑥) = 4 −

𝑥 

b) 𝑓(𝑥) = 3𝑥 + 4, 𝑔(𝑥) = 2𝑥 − 1 , ℎ(𝑥) = 𝑥2 

c) 𝑓(𝑥) = √𝑥 + 1, 𝑔(𝑥) = 1

𝑥+4
 , ℎ(𝑥) = 1

𝑥
 d) 𝑓(𝑥) =

𝑥+2

3−𝑥
, 𝑔(𝑥) = 𝑥2

𝑥2+1
 , ℎ(𝑥) = √2 − 𝑥 

4. Let 𝑓(𝑥) = 𝑥 − 3, 𝑔(𝑥) = √𝑥, ℎ(𝑥) = 𝑥3, and 𝑗(𝑥) = 2𝑥. Express 

each of the functions in following as a composite involving one or more 

of ƒ, g, h, and j. 

1. 
a) 𝑦 = √𝑥 − 3 b)𝑦 = 2√𝑥 c)𝑦 = 𝑥1 4⁄  

d)𝑦 = 4𝑥 e)𝑦 = √(𝑥 − 3)3 f)𝑦 = (2𝑥 − 6)3 

2. 
a) 𝑦 = 2𝑥 − 3 b) 𝑦 = 𝑥3 2⁄  c) 𝑦 = 𝑥9 

d) 𝑦 = 𝑥 − 6 e) 𝑦 = 2√𝑥 − 3 f) 𝑦 = √𝑥3 − 3 
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5. Copy and complete the following table. 

 𝒈(𝒙) 𝒇(𝒙) (𝒇 ∘ 𝒈)(𝒙) 

a. 𝑥 − 7 √𝑥 ? 

b. 𝑥 + 2 3𝑥 ? 

c. ? √𝑥 − 5 √𝑥2 − 5 
d. 𝑥

𝑥 − 1
 

𝑥

𝑥 − 1
 ? 

e. ? 1 +
1

𝑥
 𝑥 

f. 1

𝑥
 ? 𝑥 

6. Copy and complete the following table. 

 𝒈(𝒙) 𝒇(𝒙) (𝒇 ∘ 𝒈)(𝒙) 

a. 1

𝑥 − 1
 |𝑥| ? 

b. ? 
𝑥 − 1

𝑥
 

𝑥

𝑥 + 1
 

c. ? √𝑥 |𝑥| 

d. √𝑥 ? |𝑥| 

7. Evaluate each expression using the given table of values: 

𝒙 -2 -1 0 1 2 

𝒇(𝒙) 1 0 -2 1 2 
𝒈(𝒙) 2 1 0 -1 0 

 

a) 𝑓(𝑔(−1)) b) 𝑔(𝑓(0)) c) 𝑓(𝑓(−1)) 

d) 𝑔(𝑔(2)) e) 𝑔(𝑓(−2)) f) 𝑓(𝑔(1)) 

8. Evaluate each expression using the functions 

     𝑓(𝑥) = 2 − 𝑥,          𝑔(𝑥) = {
−𝑥 −2 ≤ 𝑥 < 0,

𝑥 − 1 0 ≤ 𝑥 ≤ 2.
 

a) 𝑓(𝑔(0)) b) 𝑔(𝑓(3)) c) 𝑔(𝑔(−1)) 

d) 𝑓(𝑓(2)) e) 𝑔(𝑓(0)) f) 𝑓(𝑔(1 2⁄ )) 

9. write formulas for 𝑓 ∘ 𝑔 and 𝑔 ∘ 𝑓 and find the domain and range of each. 

a.𝑓(𝑥) = √𝑥 + 1 , 𝑔(𝑥) = 1 𝑥⁄  b. 𝑓(𝑥) = 𝑥2 , 𝑔(𝑥) = 1 − √𝑥. 
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10. Let 𝑓(𝑥) =
𝑥

𝑥−2
. Find a function 𝑦 = 𝑔(𝑥) so that (𝑓 ∘ 𝑔)(𝑥) = 𝑥. 

11. Let 𝑓(𝑥) = 2𝑥3 − 4. Find a function 𝑦 = 𝑔(𝑥) so that (𝑓 ∘ 𝑔)(𝑥) = 𝑥 + 2. 

1.2.3 Shifting a Graph of a Function: 

      A common way to obtain a new function from an existing one is by 

adding a constant to each output of the existing function, or to its input 

variable. The graph of the new function is the graph of the original function 

shifted vertically or horizontally, as follows. 

Shift Formulas  

Vertical Shifts  

𝑦 = 𝑓(𝑥) + 𝑘 Shifts the graph of ƒ up k units if 𝑘 >  0 

Shifts it down  |𝑘|  units if 𝑘 <  0 

Horizontal Shifts  

𝑦 = 𝑓(𝑥 + ℎ) Shifts the graph of ƒ left h units if ℎ >  0 

Shifts it right |ℎ| units if ℎ <  0 

Example: 

(a) Shifts the graph of 𝑓(𝑥) = 𝑥2 up 1 unit. 

(b) Shifts the graph of 𝑓(𝑥) = 𝑥2 down 2 unit. 

(c) Shifts the graph of 𝑓(𝑥) = 𝑥2 left 3 unit. 

(d) Shifts the graph of 𝑓(𝑥) = 𝑥2 right 2 unit. 

(e) Shifts the graph of 𝑓(𝑥) = |𝑥| right 2 unit and down 2 unit. 

Solution: 

(a) Adding 1 to the right-hand side of the formula 

𝑓(𝑥) = 𝑥2 to get 𝑓(𝑥) = 𝑥2 + 1 shifts the 

graph up 1 unit. 

(b) Adding -2 to the right-hand side of the formula 

𝑓(𝑥) = 𝑥2 to get 𝑓(𝑥) = 𝑥2 − 2 shifts the 

graph down 2 units. 
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(c) Adding 3 to x in 𝑓(𝑥) = 𝑥2 to get 

𝑓(𝑥) = (𝑥 + 3)2shifts the graph 3 units 

to the left. 

(d) Adding -2 to x in 𝑓(𝑥) = 𝑥2 to get 

𝑓(𝑥) = (𝑥 − 2)2shifts the graph 2 units 

to the right. 

(e)   Adding -2 to x in 𝑓(𝑥) = |𝑥| , and then adding 

-1 to the result, gives 𝑓(𝑥) = |𝑥 − 2| − 1 and 

shifts the graph 2 units to the right and 1 unit 

down. 

1.2.4 Scaling and Reflecting a Graph of a Function: 

      To scale the graph of a function y = ƒ(x) is to stretch or compress it, 

vertically or horizontally. This is accomplished by multiplying the 

function ƒ, or the independent variable x, by an appropriate constant c. 

Reflections across the coordinate axes are special cases where 𝑐 = 1. 

Vertical and Horizontal Scaling and Reflecting Formulas 

For 𝒄 > 𝟏, the graph is scaled: 
𝑦 =  𝑐𝑓(𝑥) Stretches the graph of ƒ vertically by a factor of c. 

𝑦 =  
1

𝑐
𝑓(𝑥) Compresses the graph of ƒ vertically by a factor of c. 

𝑦 =  𝑓(𝑐𝑥) Compresses the graph of ƒ horizontally by a factor of c. 

𝑦 =  𝑐𝑓(𝑥 𝑐⁄ ) Stretches the graph of ƒ horizontally by a factor of c. 

For 𝒄 = −𝟏, the graph is reflected: 
𝑦 =  −𝑓(𝑥) Reflects the graph of ƒ across the x-axis. 

𝑦 = 𝑓(−𝑥) Reflects the graph of ƒ across the y-axis. 

Example: 

       Here we scale and reflect the graph of 𝑦 = √𝑥. 

(a) Vertical: Multiplying the right-hand side of 𝑦 =

√𝑥 by 3 to get y = 32x stretches the graph 

vertically by a factor of 3, whereas multiplying 

by 1/3 compresses the graph by a factor of 3. 
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(b) Horizontal: The graph of 𝑦 = √3𝑥 is a 

horizontal compression of the graph of 𝑦 =

√𝑥 by a factor of 3, and 𝑦 = √𝑥 3⁄  is a 

horizontal stretching by a factor of 3. Note 

that 𝑦 = √3𝑥 = √3√𝑥 so a horizontal 

compression may correspond to a vertical 

stretching by a different scaling factor. 

Likewise, a horizontal stretching may 

correspond to a vertical compression by a 

different scaling factor. 

(c) Reflection: The graph of 𝑦 = −√𝑥 is a 

reflection of 𝑦 = √𝑥 across the x-axis, and 

𝑦 = √−𝑥. is a reflection across the y-axis. 

Example: 

    Given the function 𝑓(𝑥) = 𝑥4 − 4𝑥3  +  10, find 

formulas to 

(a) Compress the graph horizontally by a factor 

of 2 followed by a reflection across the y-axis. 

(b) Compress the graph vertically by a factor of 2 

followed by a reflection across the x-axis. 

Solution: 

(a) We multiply x by 2 to get the horizontal 

compression, and by -1 to give reflection 

across the y-axis. The formula is obtained by 

substituting -2x for x in the right-hand 

side of the equation for ƒ: 

    𝑦 = 𝑓(−2𝑥) = (−2𝑥)4 − 4(−2𝑥)3  +  10 

        = 16𝑥4 + 32𝑥3  +  10. 
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(b) The formula is 

            𝑦 = 1

2
𝑓(𝑥) =

1

2
𝑥4 + 2𝑥3 − 5. 

Exercises: 

1. The accompanying figure shows the graph of 𝑦 = −𝑥2 shifted to two 

new positions. Write equations for the new graphs. 

 

 

 

                    

2. The accompanying figure shows the graph of 𝑦 = 𝑥2 shifted to two new 

positions. Write equations for the new graphs. 

                                  

 

 

 

 

                 

3. Match the equations listed in parts (a)–(d) to the 

graphs in the accompanying figure. 

 

a. 𝑦 = (𝑥 − 1)2 − 4 

b. 𝑦 = (𝑥 − 2)2 + 2 

c. 𝑦 = (𝑥 + 2)2 + 2 

d. 𝑦 = (𝑥 + 3)2 − 2 
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4. The accompanying figure shows the graph of 𝑦 = −𝑥2 shifted to four 

new positions. Write an equation for each new graph. 

 

 

 

 

 

 

 

5. How many units and in what directions the graphs of the given 

equations are to be shifted. Give an equation for the shifted graph. Then 

sketch the original and shifted graphs together, labeling each graph with 

its equation. 

a. 𝑥2 + 𝑦2 = 49 Down 3, left 2 b. 𝑥2 + 𝑦2 = 25  Up 3, left 4 

c. 𝑦 = 𝑥3 Left 1, down 1 d. 𝑦 =  𝑥2/3 Right 1, down 1 

e. 𝑦 = √𝑥 Left 0.81 f. 𝑦 = −√𝑥 Right 3 

g. 𝑦 =  2𝑥 −  7 Up 7 h. 𝑦 =  1

2
(𝑥 + 1) + 5 Down 5, right 1 

i. 𝑦 =  1/𝑥 Up 1, right 1 j. 𝑦 =  1/𝑥2 Left 2, down 1 

6. The accompanying figure shows the graph of a function ƒ(x) with 

domain [0, 2] and range [0, 1]. Find the domains and ranges of the 

following functions, and sketch their graphs. 

a. 𝑓(𝑥) + 2 b. 𝑓(𝑥) − 1 

c. 2𝑓(𝑥) d. −𝑓(𝑥) 

e. 𝑓(𝑥 + 2) f. 𝑓(𝑥 − 1) 

g. 𝑓(−𝑥) h. −𝑓(𝑥 + 1) + 1 

7. By what factor and direction, the graphs of the given functions are to 

be stretched or compressed. Give an equation for the stretched or 

compressed graph. 
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a. 𝑦 = 𝑥2 − 1, stretched vertically by a factor of 3 

b. 𝑦 = 𝑥2 − 1, compressed horizontally by a factor of 2 

c. 𝑦 =  1 +  1/𝑥3 , compressed vertically by a factor of 2 

d. 𝑦 =  1 +  1/𝑥3 , stretched horizontally by a factor of 3 

e. 𝑦 =  √𝑥 + 1 , compressed horizontally by a factor of 4 

f. 𝑦 =  √𝑥 + 1 , stretched vertically by a factor of 3 

g.  𝑦 =  √4 − 𝑥2 , stretched horizontally by a factor of 2 

h. 𝑦 =  √4 − 𝑥2 , compressed vertically by a factor of 3 

i. 𝑦 =  1 − 𝑥3 , compressed horizontally by a factor of 3 

j. 𝑦 =  1 − 𝑥3  , stretched horizontally by a factor of 2 

8. Assume that ƒ is an even function, g is an odd function, and both ƒ 

and g are defined on the entire real line (−∞, ∞). Which of the 

following (where defined) are even? odd? 

a. 𝑓 ∙ 𝑔 b. 𝑓/𝑔 c. 𝑔/𝑓 

d. 𝑓2 = 𝑓 ∙ 𝑓 e. 𝑔2 = 𝑔 ∙ 𝑔 f. 𝑓 ∘ 𝑔 

g. 𝑔 ∘ 𝑓 h. 𝑓 ∘ 𝑓 i. 𝑔 ∘ 𝑔 
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1.3 Trigonometric Functions 

1.3.1 The Six Basic Trigonometric Functions 

    The trigonometric functions of a general angle 𝜃 are defined in terms 

of 𝑥, 𝑦, and r. 

sine:  𝑠𝑖𝑛 𝜃 = 𝑦

𝑟
  cosecant: 𝑐𝑠𝑐 𝜃 = 𝑟

𝑦
 

cosine: 𝑐𝑜𝑠 𝜃 = 𝑥

𝑟
 secant: 𝑠𝑒𝑐 𝜃 = 𝑟

𝑥
 

tangent: 𝑡𝑎𝑛 𝜃 = 𝑦

𝑥
 cotangent: 𝑐𝑜𝑡 𝜃 = 𝑥

𝑦
 

Notice also that 

𝑡𝑎𝑛 𝜃 =
𝑠𝑖𝑛 𝜃

𝑐𝑜𝑠 𝜃
 𝑐𝑜𝑡 𝜃 =

𝑐𝑜𝑠 𝜃

𝑠𝑖𝑛 𝜃
 

𝑠𝑒𝑐 𝜃 =
1

𝑐𝑜𝑠 𝜃
  𝑐𝑠𝑐 𝜃 =

1

𝑠𝑖𝑛 𝜃
  

Remark: 

1. 𝑡𝑎𝑛 𝜃 and 𝑠𝑒𝑐 𝜃 are not defined if 𝑥 = 𝑐𝑜𝑠 𝜃 = 0. This means they 

are not defined if 𝜃 is ±𝜋

2
, ±3𝜋

2
, ⋯. Similarly, 𝑐𝑜𝑡 𝜃 and 𝑐𝑠𝑐 𝜃 are not 

defined for values of 𝜃 for which y = 0, namely 𝜃 = ±𝜋,±2𝜋,⋯. 

 

2. The CAST rule is useful for remembering when 

the basic trigonometric functions are positive or 

negative. 

 

3. The following table shows the Values of 𝑠𝑖𝑛 𝜃, 

𝑐𝑜𝑠 𝜃, and 𝑡𝑎𝑛 𝜃 for selected values of 𝜃. 
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Exercises: 

1. Copy and complete the following tables of function values. If the 

function is undefined at a given angle, enter “UND.” Do not use a 

calculator or tables. 

a)   

𝜃 −𝜋 −2𝜋/3 0 𝜋/2 3𝜋/4 

sin 𝜃      

cos 𝜃      

tan 𝜃      

cot 𝜃      

sec 𝜃      

csc 𝜃      

b)  

𝜃 −3𝜋/2 −𝜋/3 −𝜋/6 𝜋/4 5𝜋/6 

sin 𝜃      

cos 𝜃      

tan 𝜃      

cot 𝜃      

sec 𝜃      

csc 𝜃      

 

2.  In following, one of 𝑠𝑖𝑛 𝑥, 𝑐𝑜𝑠 𝑥, and 𝑡𝑎𝑛 𝑥 is given. Find the other 

two if x lies in the specified interval. 

a) 𝑠𝑖𝑛 𝑥 = 3

5
, 𝑥 ∈ [𝜋

2
, 𝜋] b) 𝑡𝑎𝑛 𝑥 = 2, 𝑥 ∈ [0,

𝜋

2
] 

c) 𝑐𝑜𝑠 𝑥 = 1

3
, 𝑥 ∈ [−𝜋

2
, 0] d) 𝑐𝑜𝑠 𝑥 = − 5

13
, 𝑥 ∈ [𝜋

2
, 𝜋] 

e) 𝑡𝑎𝑛 𝑥 = 1
2
, 𝑥 ∈ [𝜋,

3𝜋

2
] f) 𝑠𝑖𝑛 𝑥 = −1

2
, 𝑥 ∈ [𝜋,

3𝜋

2
] 
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1.3.2 Periodicity and Graphs of the Trigonometric Functions 

       When an angle of measure 𝜃 and an angle of measure 𝜃 + 2𝜋 are in 

standard position, their terminal rays coincide. The two angles therefore 

have the same trigonometric function values: 𝑠𝑖𝑛 (𝜃 + 2𝜋 ) = 𝑠𝑖𝑛 𝜃, 

𝑡𝑎𝑛 (𝜃 + 2𝜋)  =  𝑡𝑎𝑛 𝜃, and so on. Similarly, 𝑐𝑜𝑠 (𝜃 − 2𝜋 ) = 𝑐𝑜𝑠 𝜃, 

𝑠𝑖𝑛 (𝜃 − 2𝜋 ) = 𝑠𝑖𝑛 𝜃, and so on. We describe this repeating behavior by 

saying that the six basic trigonometric functions are periodic. 

Definition: 

        A function ƒ(x) is periodic if there is a positive number p such that 

𝑓(𝑥 +  𝑝) = 𝑓(𝑥) for every value of x. The smallest such value of p is 

the period of ƒ. 

Remark: 

      When we graph trigonometric functions in the coordinate plane, we 

usually denote the independent variable by x instead of 𝜃. The tangent and 

cotangent functions have period 𝑝 = 𝜋, and the other four functions have 

period 2𝜋. 

Periods of Trigonometric Functions 

Period 𝝅 
𝑡𝑎𝑛 (𝑥 + 𝜋)  =  𝑡𝑎𝑛 𝑥 

𝑐𝑜𝑡 (𝑥 + 𝜋)  =  𝑐𝑜𝑡 𝑥 

Period 𝟐𝝅 

𝑠𝑖𝑛 (𝑥 + 2𝜋 ) = 𝑠𝑖𝑛 𝑥 

𝑐𝑜𝑠 (𝑥 + 2𝜋 ) = 𝑐𝑜𝑠 𝑥 

𝑠𝑒𝑐 (𝑥 + 2𝜋 ) = 𝑠𝑒𝑐 𝑥 

𝑐𝑠𝑐 (𝑥 + 2𝜋 ) = 𝑐𝑠𝑐 𝑥 

    Also, the symmetries of their graphs reveal that the cosine and secant 

functions are even and the other four functions are odd. 

Even  Odd 

𝑐𝑜𝑠 (−𝑥 ) = 𝑐𝑜𝑠 𝑥   𝑠𝑖𝑛 (−𝑥 ) = −𝑠𝑖𝑛 𝑥  

𝑠𝑒𝑐 (−𝑥 ) = 𝑠𝑒𝑐 𝑥   𝑡𝑎𝑛 (−𝑥 ) = −𝑡𝑎𝑛 𝑥  

  𝑐𝑠𝑐 (−𝑥 ) = −𝑐𝑠𝑐 𝑥  

  𝑐𝑜𝑡 (−𝑥 ) = −𝑐𝑜𝑡 𝑥  



4 
 

Remark: 

       The following graphs are graphs of the six basic trigonometric 

functions using radian measure. The shading for each trigonometric 

function indicates its periodicity. 

 

 

 

 

 

 

 

 

 

 

1.3.3 Trigonometric Identities 

      The coordinates of any point 𝑃(𝑥, 𝑦) in the plane 

can be expressed in terms of the point’s distance r 

from the origin and the angle u that ray OP makes 

with the positive x-axis. Since 𝑥 𝑟⁄ = 𝑐𝑜𝑠 𝜃 and 

𝑦 𝑟⁄ = 𝑠𝑖𝑛 𝜃, we have 

𝒙 =  𝒓 𝒄𝒐𝒔 𝜽, 𝒚 =  𝒓 𝒔𝒊𝒏 𝜽. 

      When 𝑟 =  1 we can apply the Pythagorean theorem to the reference 

right triangle in and obtain the equation 

                                     𝒄𝒐𝒔𝟐𝜽 + 𝒔𝒊𝒏𝟐𝜽 =  𝟏.                                      (1) 

     This equation, true for all values of 𝜃, is the most frequently used 

identity in trigonometry. Dividing this identity in turn by 𝑐𝑜𝑠2𝜃 and 𝑠𝑖𝑛2𝜃 

gives 
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                                       𝟏 + 𝒕𝒂𝒏𝟐𝜽 =  𝒔𝒆𝒄𝟐𝜽                                     (2) 

                                       𝟏 + 𝒄𝒐𝒕𝟐𝜽 =  𝒄𝒔𝒄𝟐𝜽                                      (3) 

Remark: 

        The following formulas hold for all angles A and B. 

Addition Formulas 

𝒄𝒐𝒔 (𝑨 + 𝑩) = 𝒄𝒐𝒔 𝑨 𝒄𝒐𝒔 𝑩 − 𝒔𝒊𝒏 𝑨 𝒔𝒊𝒏 𝑩 

                      𝒔𝒊𝒏 (𝑨 + 𝑩) = 𝒔𝒊𝒏 𝑨 𝒄𝒐𝒔 𝑩 + 𝒄𝒐𝒔 𝑨 𝒔𝒊𝒏 𝑩                  (4) 

 

Double-Angle Formulas 

𝒄𝒐𝒔 (𝟐𝑨) = 𝒄𝒐𝒔𝟐 𝑨 − 𝒔𝒊𝒏𝟐 𝑨  
                                𝒔𝒊𝒏 (𝟐𝑨) = 𝟐𝒔𝒊𝒏 𝑨 ∙ 𝒄𝒐𝒔 𝑨                                (5) 

    For any angle 𝜃 measured in radians, the sine and cosine functions 

satisfy 

                      −|𝜽| ≤ 𝒔𝒊𝒏 𝜽 ≤ |𝜽|  𝐚𝐧𝐝 − |𝜽| ≤ 𝟏 − 𝐜𝐨𝐬𝜽 ≤ |𝜽| . 

Remark (Transformations of Trigonometric Graphs): 

      The rules for shifting, stretching, compressing, and reflecting the graph 

of a function summarized in the following diagram apply to the 

trigonometric functions. 

        
     The transformation rules applied to the sine function give the general 

sine function or sinusoid formula 

                                𝑓(𝑥) = 𝐴 sin(2𝜋
𝐵
(𝑥 − 𝐶)) + 𝐷. 

Half-Angle Formulas 

𝒄𝒐𝒔𝟐 𝑨 =
𝟏+𝒄𝒐𝒔 (𝟐𝑨)

𝟐
 

                                          𝒔𝒊𝒏𝟐 𝑨 = 𝟏−𝒄𝒐𝒔 (𝟐𝑨)

𝟐
                                         (6) 
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where |𝐴| is the amplitude, B is the period, C is the horizontal shift, and 

D is the vertical shift. A graphical interpretation of the various terms is 

given below. 

             

Exercises: 

1.  Graph the following functions. What is the period of each function? 

a) 𝑠𝑖𝑛 2𝑥 b) 𝑠𝑖𝑛 (𝑥 2⁄ ) c) 𝑐𝑜𝑠 𝜋𝑥 

d) 𝑐𝑜𝑠 𝜋𝑥
2

 e) −𝑠𝑖𝑛 𝜋𝑥
3

 f) −𝑐𝑜𝑠 2𝜋𝑥 

g) 𝑐𝑜𝑠 (𝑥 − 𝜋

2
 ) h) 𝑠𝑖𝑛 (𝑥 + 𝜋

6
 ) i) 𝑠𝑖𝑛 (𝑥 − 𝜋

4
 ) + 1 

j) 𝑐𝑜𝑠 (𝑥 + 2𝜋

3
 ) − 2   

2. Graph 𝑦 = 𝑐𝑜𝑠 𝑥 and 𝑦 = 𝑠𝑒𝑐 𝑥 together for −
3𝜋

2
≤ 𝑥 ≤

3𝜋

2
. Comment 

on the behavior of 𝑠𝑒𝑐 𝑥 in relation to the signs and values of 𝑐𝑜𝑠 𝑥. 

3. Graph 𝑦 = 𝑠𝑖𝑛 𝑥 and 𝑦 = 𝑐𝑠𝑐 𝑥 together for −𝜋 ≤ 𝑥 ≤ 2𝜋. Comment 

on the behavior of 𝑐𝑠𝑐 𝑥 in relation to the signs and values of 𝑠𝑖𝑛 𝑥. 

4. Use the addition formulas to derive the following identities 

a) cos(𝑥 − 𝜋

2
) = 𝑠𝑖𝑛 𝑥 b) cos(𝑥 + 𝜋

2
) = −𝑠𝑖𝑛 𝑥 

c) 𝑠𝑖𝑛(𝑥 + 𝜋

2
) = 𝑐𝑜𝑠 𝑥 d) sin(𝑥 − 𝜋

2
) = −𝑐𝑜𝑠 𝑥 

5. Express the given quantity in terms of 𝑠𝑖𝑛 𝑥 and 𝑐𝑜𝑠 𝑥. 

a) cos(𝜋 + 𝑥) b) 𝑠𝑖𝑛(2𝜋 − 𝑥) 

c) 𝑠𝑖𝑛 (
3𝜋

2
− 𝑥) d) cos (

3𝜋

2
+ 𝑥) 
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6. Evaluate 𝑠𝑖𝑛
7𝜋

12
 as 𝑠𝑖𝑛 (

𝜋

4
+
𝜋

3
) . 

7. Evaluate 𝑐𝑜𝑠
11𝜋

12
 as 𝑐𝑜𝑠 (

𝜋

4
+
2𝜋

3
) . 

8. Evaluate 𝑐𝑜𝑠
𝜋

12
 . 

9. Evaluate 𝑠𝑖𝑛
5𝜋

12
 . 

10. Find the function values using the Half-Angle Formulas 

a) 𝑐𝑜𝑠2
𝜋

8
 b) 𝑐𝑜𝑠2

5𝜋

12
 c) 𝑠𝑖𝑛2  

𝜋

12
 d) 𝑠𝑖𝑛2  

3𝜋

8
 

11. solve for the angle 𝜃, where 0 ≤ 𝜃 ≤ 2𝜋. 

a) 𝑠𝑖𝑛2𝜃 = 3

4
 b) 𝑠𝑖𝑛2𝜃 = 𝑐𝑜𝑠2𝜃 

c) 𝑠𝑖𝑛2𝜃 − cos 𝜃 = 0 d) 𝑐𝑜𝑠2𝜃 − cos 𝜃 = 0 

 

1.4 Exponential Functions 

     When a positive quantity 𝑃 doubles, it increases by a factor of 2 and the 

quantity becomes 2𝑃. If it doubles again, it becomes 2(2𝑃)  =  22𝑃, and 

a third doubling gives 2(22𝑃)  =  23𝑃. Continuing to double in this 

fashion leads us to consider the function 𝑓(𝑥) = 2𝑥. We call this an 

exponential function because the variable x appears in the exponent of 2𝑥. 

Functions such as 𝑔(𝑥) = 10𝑥 and ℎ(𝑥)  =  (1/ 2)𝑥 are other examples 

of exponential functions. In general, if 𝑎 ≠ 1 is a positive constant, the 

function 𝒇(𝒙) = 𝒂𝒙 is the exponential function with base a. 

      For integer and rational exponents, the value of an exponential function 

𝑓(𝑥) = 𝑎𝑥 is obtained arithmetically by taking an appropriate number of 

products, quotients, or roots. If 𝑥 = 𝑛 is a positive integer, the number an 

is given by multiplying a by itself n times: 

𝑎𝑛 = 𝑎 ∙ 𝑎⋯𝑎⏟    
𝑛 factors

, 

If 𝑥 = 0, then we set 𝑎0 = 1, and if 𝑥 = −𝑛 for some positive integer n, 

then 𝑎−𝑛 = 1

𝑎𝑛
= (1

𝑎
)𝑛. If 𝑥 = 1/ 𝑛 for some positive integer n, then 

𝑎1/𝑛 = √𝑎
𝑛
, 
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which is the positive number that when multiplied by itself n times gives 

a. If 𝑥 =  𝑝/𝑞 is any rational number, then 

                                       𝑎𝑝/𝑞 = √𝑎𝑝
𝑞

= (√𝑎
𝑞
)
𝑝

. 

When x is irrational, the meaning of 𝑎𝑥 is not immediately apparent. The 

value of 𝑎𝑥 can be approximated by raising a to rational numbers that get 

closer and closer to the irrational number x. 

  

Graphs of exponential functions. 

Remark (Rules for Exponents): 

If 𝑎 > 0 and 𝑏 > 0, the following rules hold for all real numbers x and y. 

1. 𝑎𝑥 ∙ 𝑎𝑦 = 𝑎𝑥+𝑦 2. 𝑎
𝑥

𝑎𝑦
= 𝑎𝑥−𝑦 

3. (𝑎𝑥)𝑦 = (𝑎𝑦)𝑥 = 𝑎𝑥𝑦 4. 𝑎𝑥 ∙ 𝑏𝑥 = (𝑎 ∙ 𝑏)𝑥 

5. 𝑎
𝑥

𝑏𝑥
= (𝑎

𝑏
)
𝑥
  

Example: 

Use the rules for exponents to simplify some numerical expressions. 

1. 31.1 ∙ 30.7 = 31.1+0.7 = 31.8 Rule 1 

2. (√10)
3

√10
= (√10)

3−1
= (√10)

2
= 10  

Rule 2 

3. (5√2)
√2
= 5√2∙√2 = 52 = 25  

Rule 3 

4. 7𝜋 ∙ 8𝜋 = (56)𝜋 Rule 4 

5. (4
9
)
1 2⁄

= 41 2⁄

91 2⁄
=
2

3
 

Rule 5 
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Remark: 

     The most important exponential function used for modeling natural, 

physical, and economic phenomena is the natural exponential function, 

whose base is the special number e. The number e is irrational, and its 

value to nine decimal places is 2.718281828. 

    The function 𝑦 = 𝑦0 𝑒 
𝑘𝑥, where k is a nonzero constant, is a model for 

exponential growth if 𝑘 > 0 and a model for exponential decay if 𝑘 <  0. 

Here 𝑦0 is a positive constant that represents the value of the function when 

𝑥 = 0.  

 
 

Graph of exponential growth, k = 1.5 > 0 Graph of exponential decay, k = −1.2 < 0 

Exercises: 

1. In following, sketch the given curves together in the appropriate 

coordinate plane, and label each curve with its equation 

a) 𝑦 = 2𝑥 , 𝑦 = 4𝑥 , 𝑦 = 3−𝑥 , 𝑦 = (
1

5
)𝑥 b) 𝑦 = 2−𝑡 𝑎𝑛𝑑 𝑦 = −2𝑡 

c) 𝑦 = 3𝑥 , 𝑦 = 8𝑥 , 𝑦 = 2−𝑥 , 𝑦 = (
1

4
)𝑥 d) 𝑦 = 3−𝑡 𝑎𝑛𝑑 𝑦 = −3𝑡 

e) 𝑦 = 𝑒𝑥  𝑎𝑛𝑑 𝑦 = 1/𝑒𝑥 f) 𝑦 = −𝑒𝑥  𝑎𝑛𝑑 𝑦 = −𝑒−𝑥 

2. In each of following, sketch the shifted exponential curves. 

a) 𝑦 = 2𝑥 − 1 𝑎𝑛𝑑 𝑦 = 2−𝑥 − 1 b) 𝑦 = 3𝑥 + 2 𝑎𝑛𝑑 𝑦 = 3−𝑥 + 2 

c) 𝑦 = 1 − 𝑒𝑥  𝑎𝑛𝑑 𝑦 = 1 − 𝑒−𝑥 d) 𝑦 = −1 − 𝑒𝑥  𝑎𝑛𝑑 𝑦 = −1 − 𝑒−𝑥 

3. Use the laws of exponents to simplify the expressions in following. 

a) 162 ∙ 16−1.75 b) 91/3 ∙ 9−1/6 c) 4
4.2

43.7
 d) 3

5/3

32/3
 

e) (251/8)
4
 f) (13√2)

√2/2
 

g) 2√3 ∙ 7√3 h) (√3)1/2 ∙ (√12)1/2 

i) ( 2
√2
)
4
 j) (√6

3
)
2
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1.5 Inverse Functions and Logarithms 

Definition: 

       A function 𝑓(𝑥) is one-to-one on a domain D if 𝑓(𝑥1) ≠  𝑓(𝑥2) 

whenever 𝑥1 ≠ 𝑥2 in D. 

Example: 

a) 𝑓(𝑥) = √𝑥 is one-to-one on any domain of nonnegative 

numbers because 𝑓(𝑥1) = √𝑥1 ≠  𝑓(𝑥2) = √𝑥2  whenever 

𝑥1 ≠ 𝑥2. 

b) 𝑓(𝑥) = 𝑥3 is one-to-one on their domain (−∞,∞) because 

𝑓(𝑥1) = 𝑥1
3 ≠  𝑓(𝑥2) = 𝑥2

3  whenever 𝑥1 ≠ 𝑥2. 

c) 𝑔(𝑥) = 𝑥2 is not one-to-one on interval (−∞,∞) because 

𝑓(−2) = (−2)2 = 4 = 22 = 𝑓(2). 

d) 𝑔(𝑥)  =  𝑠𝑖𝑛 𝑥 is not one-to-one on the interval [0, 𝜋] 

because 𝑠𝑖𝑛 (𝜋/6)  =  𝑠𝑖𝑛 (5𝜋/6). In fact, for each 

element 𝑥1 in the subinterval [0, 𝜋/2) there is a 

corresponding element 𝑥2 in the subinterval (𝜋/2, 𝜋] 

satisfying 𝑠𝑖𝑛 𝑥1  =  𝑠𝑖𝑛 𝑥2. The sine function is one-to-

one on [0, 𝜋/2], however, because it is an increasing 

function on [0, 𝜋/2] and therefore gives distinct outputs 

for distinct inputs in that interval. 

The Horizontal Line Test for One-to-One Functions: 

     A function 𝑦 =  𝑓(𝑥) is one-to-one if and only if its graph intersects 

each horizontal line at most once. 

Definition: 

    Suppose that ƒ is a one-to-one function on a domain D with range R. The 

inverse function 𝑓−1  is defined by 

                                𝑓−1(𝑏) = 𝑎   𝑖𝑓   𝑓(𝑎) = 𝑏. 
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The domain of 𝑓−1 is R and the range of 𝑓−1 is D. 

Example: 

      Suppose a one-to-one function 𝑦 = 𝑓(𝑥) is given by a table of values 

         

 

A table for the values of 𝑥 =  𝑓−1(𝑦) can then be obtained by simply 

interchanging the values in each column of the table for 𝑓: 

 

 

Remark: 

      The graphs of a function and its inverse are closely related. To read the 

value of a function from its graph, we start at a point x on the x-axis, go 

vertically to the graph, and then move horizontally to the y-axis to read the 

value of y. The inverse function can be read from the graph by reversing 

this process. Start with a point y on the y-axis, go horizontally to the graph 

of  𝑦 = 𝑓(𝑥), and then move vertically to the x-axis to read the value of 

𝑥 = 𝑓−1(𝑦). 

  
To find the value of ƒ at x, we start at x, 

go up to the curve, and then over to the 

y-axis. 

The graph of 𝑓−1 is the graph of ƒ, but 

with x and y interchanged. To find the x 

that gave 𝑦, we start at y and go over to 

the curve and down to the x-axis. The 

domain of 𝑓−1 is the range of ƒ. The range 

of 𝑓−1 is the domain of ƒ. 

𝑥 1 2 3 4 5 6 7 8 

𝑓(𝑥) 3 4.5 7 10.5 15 20.5 27 34.5 

𝑦 3 4.5 7 10.5 15 20.5 27 34.5 

𝑓−1(𝑦)  1 2 3 4 5 6 7 8 
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To draw the graph of 𝑓−1 in the more 

usual way, we reflect the system across 

the line 𝑦 =  𝑥. 

Then we interchange the letters x and y. 

We now have a normal-looking graph 

of 𝑓−1 as a function of x. 

     The graph of 𝑦 = 𝑓−1(𝑥) is obtained by reflecting the graph of 𝑦 = 𝑓(𝑥) about 

the line 𝑦 = 𝑥. 

Example: 

     Find the inverse of 𝑦 = 1

2
𝑥 + 1, expressed as a function of x. 

Solution: 

1. Solve for x in terms of y: 
The graph is a straight line 

satisfying the horizontal line 

test 

𝑦 =
1

2
𝑥 + 1  

          2𝑦 = 𝑥 + 2   

𝑥 = 2𝑦 − 2  

2. Interchange x and y: Expresses the function in the 

usual form where y is the 

dependent variable. 

𝑦 = 2𝑥 − 2  

The inverse of the function 𝑓(𝑥) = 1

2
𝑥 + 1 is the function 𝑓−1(𝑥) = 2𝑥 − 2. 

To check, we verify that both compositions give the identity function: 

                 𝑓−1(𝑓(𝑥)) = 2(1
2
𝑥 + 1) − 2 = 𝑥 + 2 − 2 = 𝑥  

                   𝑓(𝑓−1(𝑥)) = 1

2
(2𝑥 − 2) + 1 = 𝑥 − 1 + 1 = 𝑥.  
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Example: 

     Find the inverse of 𝑦 = 𝑥2, 𝑥 ≥ 0, expressed as a function of x. 

Solution: 

     For 𝑥 ≥ 0, the graph satisfies the horizontal line 

test, so the function is one-to-one and has an inverse. 

To find the inverse, we first solve for x in terms of y: 

             𝑦 = 𝑥2  

             √𝑦  = √𝑥2 = |𝑥| = 𝑥     |𝒙| = 𝒙 because 𝒙 ≥ 𝟎 

We then interchange x and y, obtaining 𝑦 = √𝑥. 

The inverse of the function 𝑦 = 𝑥2, 𝑥 ≥ 0, is the function 𝑦 = √𝑥. 

Remark: 

       Notice that the function 𝑦 = 𝑥2, 𝑥 ≥ 0, with domain restricted to the 

nonnegative real numbers, is one-to-one  and has an inverse. On the other 

hand, the function 𝑦 = 𝑥2, with no domain restrictions, is not one-to-one 

and therefore has no inverse. 

Remark: 

        If a is any positive real number other than 1, then the base a  

exponential function 𝑓(𝑥) = 𝑎𝑥 is one-to-one. It therefore has an inverse. 

Its inverse is called the logarithm function with base a. 

Definition: 

     The logarithm function with base a, written 𝑦 = log𝑎 𝑥  , is the inverse 

of the base a exponential function 𝑦 = 𝑎𝑥 (𝑎 >  0, 𝑎 ≠  1). 

Remark: 

      The graph of 𝑦 = 𝑎𝑥 , 𝑎 >  1, increases rapidly for x > 0, so its inverse, 

𝑦 = log𝑎 𝑥 , increases slowly for x > 1. Logarithms with base e and base 

10 are so important in applications that many calculators have special keys 

for them. They also have their own special notation and names: 
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                       log𝑒 𝑥 is written as ln 𝑥.  

                       log10 𝑥 is written as log 𝑥. 

The function 𝑦 = 𝑙𝑛 𝑥 is called the natural 

logarithm function, and 𝑦 =  𝑙𝑜𝑔 𝑥 is often 

called the common logarithm function. Since the 

logarithm is the inverse function of 

exponentiation, it follows that: 

                       log𝑎 𝑥 = 𝑦 ⇔ 𝑎𝑦 = 𝑥  

                           ln 𝑥 = 𝑦 ⇔ 𝑒𝑦 = 𝑥  

In particular, because 𝑒1  =  𝑒, we obtain ln 𝑒 = 1. 

Theorem (Algebraic Properties of the Natural Logarithm): 

      For any numbers b > 0 and x > 0, the natural logarithm satisfies the 

following rules: 

1. Product Rule: 𝒍𝒏 𝒃𝒙 = 𝒍𝒏𝒃 + 𝒍𝒏𝒙    

2. Quotient Rule: 𝒍𝒏 𝒃
𝒙
= 𝒍𝒏𝒃 − 𝒍𝒏𝒙   

3. Reciprocal Rule 𝒍𝒏 𝟏
𝒙
= − 𝒍𝒏𝒙  Rule 2 with 𝒃 = 𝟏 

4. Power Rule: 𝒍𝒏 𝒙𝒓 = 𝒓 𝒍𝒏𝒙   

Example: 

    Use the properties in Theorem Algebraic Properties of the Natural 

Logarithm to rewrite three expressions. 

a) 𝑙𝑛 4 + 𝑙𝑛 sin 𝑥 = ln(4 sin 𝑥) Product Rule 

b) 𝑙𝑛 𝑥+1
2𝑥−3

= 𝑙𝑛(𝑥 + 1) − 𝑙𝑛(2𝑥 − 3) Quotient Rule 

c) 𝑙𝑛 1
8
= − 𝑙𝑛 8 Reciprocal Rule 

           = − 𝑙𝑛 23 = −3 ln 2   Power Rule 

Because 𝑎𝑥 and log𝑎 𝑥 are inverses, composing them in either order gives 

the identity function. 

Remark (Inverse Properties for 𝒂𝒙 and 𝐥𝐨𝐠𝒂 𝒙): 

1. Base 𝑎(𝑎 >  0, 𝑎 ≠  1):      𝑎𝑙𝑜𝑔𝑎 𝑥 = 𝑥, 𝑥 > 0 

                                        log𝑎 𝑎
𝑥 = 𝑥 

2. Base 𝑒:                                     𝑒𝑙𝑛 𝑥 = 𝑥, 𝑥 > 0 

                                                     𝑙𝑛 𝑒𝑥 = 𝑥 
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Remark: 

Every exponential function is a power of the natural exponential 

function. 

                                        𝑎𝑥 = 𝑒𝑥𝑙𝑛 𝑎 

That is, 𝑎𝑥 is the same as 𝑒𝑥 raised to the power 𝑙𝑛 𝑎: 𝑎𝑥 = 𝑒𝑘𝑥   for 

𝑘 =  𝑙𝑛 𝑎.For example 2𝑥 = 𝑒(ln 2)𝑥 = 𝑒𝑥𝑙𝑛 2. 

Remark (Change-of-Base Formula): 

    Since 𝑙𝑛 𝑥 = ln(𝑎𝑙𝑜𝑔𝑎 𝑥) = (𝑙𝑜𝑔𝑎 𝑥)(ln 𝑎) then every logarithmic 

function is a constant multiple of the natural logarithm. 

                            𝐥𝐨𝐠𝒂 𝒙 =
𝐥𝐧 𝒙

𝐥𝐧 𝒂 
, (𝑎 >  0, 𝑎 ≠  1) . 

Remark (Inverse Trigonometric Functions): 

     The six basic trigonometric functions are not one-to-one (since their 

values repeat periodically). However, we can restrict their domains to 

intervals on which they are one-to-one. 

    The sine function increases from −1 at 𝑥 =

−𝜋/2 to +1 at 𝑥 = 𝜋/2. By restricting its 

domain to the interval [−𝜋/2, 𝜋/2] we make it 

one-to-one, so that it has an inverse which is 

called 𝑎𝑟𝑐𝑠𝑖𝑛 𝑥. Similar domain restrictions 

can be applied to all six trigonometric 

functions. 

     Now the domain restrictions that make the trigonometric functions one-

to-one is shown in following: 
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Since these restricted functions are now one-to-one, they have inverses, 

which we denote by 

        𝑦 = 𝑠𝑖𝑛−1𝑥 𝑜𝑟 𝑦 = arcsin 𝑥 ,      𝑦 = 𝑐𝑜𝑠−1𝑥 𝑜𝑟 𝑦 = arccos  𝑥 

        𝑦 = 𝑡𝑎𝑛−1𝑥 𝑜𝑟 𝑦 = arctan 𝑥 ,      𝑦 = 𝑐𝑜𝑡−1𝑥 𝑜𝑟 𝑦 = arccot  𝑥 

𝑦 = 𝑠𝑒𝑐−1𝑥 𝑜𝑟 𝑦 = arcsec 𝑥 ,      𝑦 = 𝑐𝑠𝑐−1𝑥 𝑜𝑟 𝑦 = arccsc  𝑥 

The −1 in the expressions for the inverse means “inverse.” It does not 

mean reciprocal. For example, the reciprocal of 𝑠𝑖𝑛 𝑥 is (𝑠𝑖𝑛 𝑥 )−1 =
1

𝑠𝑖𝑛 𝑥
  =  𝑐𝑠𝑐 𝑥  . 

   The graphs of the six inverse trigonometric functions are obtained by 

reflecting the graphs of the restricted trigonometric functions through the 

line 𝑦 =  𝑥. 
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     The graph of 𝑦 = 𝑎𝑟𝑐𝑠𝑖𝑛 𝑥  is symmetric about the origin. The arcsine 

is therefore an odd function: 𝑎𝑟𝑐𝑠𝑖𝑛(−𝑥)  =  −𝑎𝑟𝑐𝑠𝑖𝑛 𝑥. The graph of 

𝑦 =  𝑎𝑟𝑐𝑐𝑜𝑠 𝑥 has no such symmetry. 

Definition: 

      𝑦 =  𝑎𝑟𝑐𝑠𝑖𝑛 𝑥 is the number in [−𝜋/2, 𝜋/2]for which 𝑠𝑖𝑛 𝑦 =  𝑥. 

      𝑦 =  𝑎𝑟𝑐𝑐𝑜𝑠 𝑥 is the number in [ 0, 𝜋 ] for which 𝑐𝑜𝑠 𝑦 =  𝑥. 

Example: 

     Evaluate (a) 𝑎𝑟𝑐𝑠𝑖𝑛 (√3
2
) and (b) arccos(−1

2
). 

Solution: 

(a) We see that 𝑎𝑟𝑐𝑠𝑖𝑛 (√3
2
) = 𝜋

3
 because 𝑠𝑖𝑛( 

𝜋

3
)  =

√3

2
 and 

𝜋

3
 belongs to the 

range[−𝜋/2, 𝜋/2] of the arcsine function.  

(b) We see that arccos(−1

2
) = 2𝜋

3
 because 𝑐𝑜𝑠 ( 

2𝜋

3
) = −

1

2
 and 

2𝜋

3
 belongs 

to the range[ 0, 𝜋 ] of the arcsine function. 

Remark: 

      Using the same procedure illustrated in previous example, we can 

create the following table of common values for the arcsine and arccosine 

functions. 
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Remark: 

 
 

the arccosine of x satisfies the identity 

𝑎𝑟𝑐𝑐𝑜𝑠 𝑥 +  𝑎𝑟𝑐𝑐𝑜𝑠 (−𝑥)  = 𝜋 , 

Or 

𝑎𝑟𝑐𝑐𝑜𝑠 (−𝑥) = 𝜋 −  𝑎𝑟𝑐𝑐𝑜𝑠 𝑥. 

Also, we can see that for 𝑥 >  0, 
𝑎𝑟𝑐𝑠𝑖𝑛 𝑥 + 𝑎𝑟𝑐𝑐𝑜𝑠 𝑥 = 𝜋/2. 

Exercises: 

1. Which of the functions graphed in following are one-to-one, and which 

are not? 

a)  

 

b)  

 

c)  
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d)  

 

e)  

 

f)  

 

2. In following, determine from its graph whether the function is one-to-

one. 

a) 𝑓(𝑥) = {
3 − 𝑥, 𝑥 < 0
3, 𝑥 ≥ 0

 b) 𝑓(𝑥) = {
2𝑥 + 6, 𝑥 ≤ −3
𝑥 + 4, 𝑥 > −3

 

c) 𝑓(𝑥) = {
1 − 𝑥

2
, 𝑥 ≤ 0

𝑥
𝑥+2

 , 𝑥 > 0
 d) 𝑓(𝑥) = {

2 − 𝑥2, 𝑥 ≤ 1

𝑥2, 𝑥 > 1
 

3. Each of following shows the graph of a function 𝑦 = 𝑓(𝑥). Copy the 

graph and draw in the line 𝑦 = 𝑥. Then use reflection with respect to 

the line 𝑦 = 𝑥 to add the graph of 𝑓−1 to your sketch. (It is not necessary 

to find a formula for 𝑓−1.) Identify the domain and range of 𝑓−1. 

a)  

 

b)  

 

c)  

 

d)  

 

e)  

 

f)  

 

4. a)  Graph the function 𝑓(𝑥) = √1 − 𝑥2, 0 ≤ 𝑥 ≤ 1 . What symmetry  

      does the graph have? 

b)  Show that f is its own inverse. (Remember that √𝑥2 = 𝑥 if 𝑥 ≥ 0. 
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5.  a) Graph the function 𝑓(𝑥) = 1/𝑥. What symmetry does the graph  

 have? 

 b) Show that 𝑓 is its own inverse. 

6. Each of following gives a formula for a function 𝑦 = 𝑓(𝑥) and shows 

the graphs of 𝑓 and 𝑓−1. Find a formula for 𝑓−1 in each case. 

a)  𝑓(𝑥) = 𝑥2 + 1, 𝑥 ≥ 0 b)  𝑓(𝑥) = 𝑥2, 𝑥 ≤ 0 c)  𝑓(𝑥) = 𝑥3 − 1 

   
d)  
 
 
 

 
 

 

 
 

𝑓(𝑥) = 𝑥2 − 2𝑥 + 1, 𝑥 ≥ 1 e)  𝑓(𝑥) = (𝑥 + 1)2, 𝑥 ≥ −1 f)  𝑓(𝑥) = 𝑥2 3⁄ , 𝑥 ≥ 0 

   
8. Each of following gives a formula for a function 𝑦 = 𝑓 (𝑥). In each 

case, find 𝑓−1(𝑥) and identify the domain and range of 𝑓−1. As a 

check, show that 𝑓(𝑓−1(𝑥)) = 𝑓−1( 𝑓 (𝑥)) = 𝑥. 

a) 𝑓(𝑥) = 𝑥5 b) 𝑓(𝑥) = 𝑥4, 𝑥 ≥ 0 c) 𝑓(𝑥) = 𝑥3 + 1 
d) 𝑓(𝑥) = (1/2)𝑥 − 7/2 e) 𝑓(𝑥) = 1/𝑥2, 𝑥 > 0 f) 𝑓(𝑥) = 1/𝑥3, 𝑥 ≠ 0 
g) 𝑓(𝑥) = 𝑥+3

𝑥−2
 h) 𝑓(𝑥) = √𝑥

√𝑥−3
  

9. Express the following logarithms in terms of ln 2 and ln 3. 

a) 𝑙𝑛 0.75 b) 𝑙𝑛(4/9) c) 𝑙𝑛(1/ 2) d) 𝑙𝑛√9
3

 e) 𝑙𝑛3√2 f) 𝑙𝑛√13.5 

10. Use the properties of logarithms to write the expressions in following 

as a single term. 
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a) ln sin 𝜃 − ln (sin𝜃
5
) b) ln(3𝑥2 − 9𝑥) + ln ( 1

3𝑥
) c) 1

2
ln(4𝑡4) − ln 2 

d) ln sec 𝜃 + ln cos 𝜃 e) ln(8𝑥 + 4) − ln 22 f) 3 ln √𝑡2 − 1
3

− ln (𝑡 + 1) 

11. Find simpler expressions for the quantities in following: 

a) 𝑒ln 7.2 b) 𝑒− ln𝑥
2
 c) 𝑒ln 𝑥−ln𝑦 d) 𝑒ln(𝑥

2+𝑦2) 

e) 𝑒−ln 0.3 f) 𝑒ln 𝜋𝑥−ln2 g) 2 ln√𝑒 h) ln(ln 𝑒𝑒)) 

i) ln(𝑒−𝑥
2−𝑦2) j) ln (𝑒sec𝜃) k) ln (𝑒(𝑒

𝑥))) l) ln (𝑒2 ln 𝑥) 

12. In following, solve for y in terms of t or x, as appropriate. 

a) ln 𝑦 = 2𝑡 + 4 b) ln 𝑦 = −𝑡 + 5 

c) ln(𝑦 − 𝑏) = 5𝑡 d) ln(𝑐 − 2𝑦) = 𝑡 
e) ln(𝑦 − 1) − ln 2 = 𝑥 + ln 𝑥 f) ln(𝑦2 − 1) − ln(𝑦 + 1) = ln(sin 𝑥)) 

13. Express the ratios in following as ratios of natural logarithms and 

simplify. 

a) log2 𝑥
log3 𝑥

 b) 
log2 𝑥

log8 𝑥
 c) 

log𝑥 𝑎

log𝑥2 𝑎
 d) log9 𝑥

log3 𝑥
 e) 

log
√10

𝑥

log
√2

𝑥
 f) log𝑎 𝑏

log𝑏 𝑎
 

14. In following, find the exact value of each expression.  

a) 𝑠𝑖𝑛−1(−1
2
) b) 𝑠𝑖𝑛−1( 1

√2
) c) 𝑠𝑖𝑛−1(−√3

2
) d) 𝑐𝑜𝑠−1(1

2
) e) 𝑐𝑜𝑠−1(−1

√2
) 

f) 𝑐𝑜𝑠−1(√3
2
) g) arccos(−1) h) arccos(0) i) arcsin(−1) j) arcsin(

−1

√2
) 
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Chapter Two: Limits and Continuity. 

2.1 Limits of Function Values 

      In this section we hall study the function’s 𝑦 = 𝑓(𝑥) behavior near a 

particular point c, but not at c. For instance, how does the behave of the 

function 𝑓(𝑥) = 𝑥2−1

𝑥−1
 near 𝑥 =  1. 

     The given formula defines ƒ for all real 

numbers x except 𝑥 =  1 (we cannot divide by 

zero). For any 𝑥 ≠  1, we can simplify the 

formula by factoring the numerator and canceling 

common factors: 

      𝑓(𝑥) = (𝑥−1)(𝑥+1)

𝑥−1
= 𝑥 + 1     for  𝑥 ≠ 1. 

     The graph of ƒ is the line 𝑦 =  𝑥 +  1 with the 

point (1, 2) removed. This removed point is shown 

as a “hole”. Even though 𝑓(1) is not defined, it is 

clear that we can make the value of ƒ(x) as close 

as we want to 2 by choosing x close enough to 1. 

       

x 𝑓(𝑥) =
𝑥2−1

𝑥−1
 

0.9  1.9 

0.99  1.99 

0.999  1.999 

0.999999  1.999999 

 1.1 2.1 

 1.01 2.01 

 1.001 2.001 

 1.000001 2.000001 
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     suppose 𝑓(𝑥) is defined on an open interval about c, except possibly 

at c itself. If 𝑓(𝑥) is arbitrarily close to the number L (as close to L as we 

like) for all x sufficiently close to c, we say that ƒ approaches the limit L 

as x approaches c, and write 

                                            lim
𝑥→𝑐

𝑓(𝑥) = 𝐿, 

which is read “the limit of 𝑓(𝑥) as x approaches c is L.” For instance, in 

Example we would say that 𝑓(𝑥) = 𝑥2−1

𝑥−1
 approaches the limit 2 as x 

approaches 1, and write 

                                             lim
𝑥→1

𝑥2−1

𝑥−1
= 2. 

Example: 

a) If ƒ is the identity function 𝑓(𝑥) = 𝑥, then for 

any value of c  

                            lim
𝑥→𝑐

𝑓(𝑥) = lim
𝑥→𝑐

𝑥 = 𝑐.  

 

b)  If ƒ is the constant function 𝑓(𝑥) = 𝑘 

(function with the constant value k), then for 

any value of c  

                             lim
𝑥→𝑐

𝑓(𝑥) = lim
𝑥→𝑐

𝑘 = 𝑘. 

Example: 

      Discuss the behavior of the following functions, explaining why they 

have no limit as 𝑥 → 0. 

a) 𝑈(𝑥) = {
0 𝑥 < 0
1 𝑥 ≥ 0

, b) 𝑔(𝑥) = {
1

𝑥
𝑥 ≠ 0

0 𝑥 = 0
, c) 𝑓(𝑥) = {

0 𝑥 ≤ 0

sin
1

𝑥
𝑥 > 0. 

Solution: 
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a) It jumps: The unit step function 𝑈(𝑥) has no 

limit as 𝑥 → 0 because its values jump at 

𝑥 =  0. For negative values of x arbitrarily 

close to zero, 𝑈(𝑥) = 0. For positive values 

of x arbitrarily close to zero, 𝑈(𝑥) = 1. 

There is no single value L approached by 

𝑈(𝑥) as 𝑥 → 0. 

b) It grows too “large” to have a limit: 𝑔(𝑥) has 

no limit as 𝑥 → 0 because the values of g 

grow arbitrarily large in absolute value as 

𝑥 → 0 and do not stay close to any fixed real 

number. We say the function is not bounded. 

c) It oscillates too much to have a limit: 𝑓(𝑥) 

has no limit as 𝑥 → 0  because the function’s 

values oscillate between +1 and -1 in every 

open interval containing 0. The values do not 

stay close to any one number as 𝑥 → 0. 

 

Exercises: 

1. For the function 𝑔(𝑥) graphed here, find the 

following limits or explain why they do not exist. 

 

 a) lim
𝑥→1

𝑔(𝑥), b) lim
𝑥→2

𝑔(𝑥), c) lim
𝑥→3

𝑔(𝑥), d) lim
𝑥→2.5

𝑔(𝑥). 
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2. For the function ƒ(t) graphed here, find the following 

limits or explain why they do not exist. 

a) lim
𝑡→−2

𝑓(𝑡) b) lim
𝑡→−1

𝑓(𝑡) 

c) lim
𝑡→0

𝑓(𝑡) d) lim
𝑡→0.5

𝑓(𝑡) 

3. Which of the following statements about the 

function 𝑦 = 𝑓(𝑥) graphed here are true, and 

which are false? 

a) lim
𝑥→0

𝑓(𝑥) exists. b) lim
𝑥→0

𝑓(𝑥) = 0 

c) lim
𝑥→0

𝑓(𝑥) = 1 d) lim
𝑥→1

𝑓(𝑥) = 1 

e) lim
𝑥→1

𝑓(𝑥) = 0 f) lim
𝑥→𝑐

𝑓(𝑥) exists at every point c in (-1,1). 

g) lim
𝑥→1

𝑓(𝑥) does not exist. 

4. Which of the following statements about the 

function 𝑦 = 𝑓(𝑥) graphed here are true, and 

which are false? 

5. Find the limits in following 

a) lim
𝑥→−3

(𝑥2 − 13) b) lim
𝑥→2

(−𝑥2 + 5𝑥 − 2) 

c) lim
𝑡→6

8(𝑡 − 5)(𝑡 − 7) d) lim
𝑥→−2

(𝑥3 − 2𝑥2 + 4𝑥 + 8) 

e) lim
𝑥→2

2𝑥+5

11−𝑥3 f) lim
𝑠→2 3⁄

(8 − 3𝑠)(2𝑠 − 1) 

g) lim
𝑠→−1 2⁄

4𝑥(3𝑥 + 4)2 h) lim
𝑦→2

𝑦+2

𝑦2+5𝑦+6
 

i) lim
𝑦→−3

(5 − 𝑦)4 3⁄  j) lim
𝑧→4

√𝑧2 − 10 

k) lim
ℎ→0

3

√3ℎ+1+1
 l) lim

𝑥→−3

𝑥+3

𝑥2+4𝑥+3
 

m) lim
𝑥→5

𝑥−5

𝑥2−25
 n) lim

𝑥→2

𝑥2−7𝑥+10
𝑥−2

 

o) lim
𝑥→−5

𝑥2+3𝑥−10
𝑥+5

 p) lim
𝑡→−1

𝑡2+3𝑡+2

𝑡2−𝑡−2
 

a) lim
𝑥→2

𝑓(𝑥) does not exist. b) lim
𝑥→2

𝑓(𝑥) = 2. 

c) lim
𝑥→1

𝑓(𝑥) does not exist. d) lim
𝑥→𝑐

𝑓(𝑥) exists at every point c in (-1,1). 

e) lim
𝑥→𝑐

𝑓(𝑥) exists at every point c in (1,3). 
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q) lim
𝑡→1

𝑡2+𝑡−2

𝑡2−1
 r) lim

𝑦→0

𝑦3+8𝑦2

3𝑦4−16𝑦2 

s) lim
𝑥→−2

−2𝑥−4

𝑥3+2𝑥2 t) lim
𝑥→1

1
𝑥−1

+
1

𝑥+1
𝑥

 

u) lim
𝑥→1

𝑥−1−1
𝑥−1

 v) lim
𝑢→2

𝑣3−8

𝑣4−16
 

w) lim
𝑢→1

𝑢4−1

𝑢3−1
 x) lim

𝑥→4

4𝑥−𝑥2

2−√𝑥
 

y) lim
𝑥→9

√𝑥−3
𝑥−9

 z)  lim
𝑥→𝜋 4⁄

sin2 𝑥 

aa) lim
𝑥→0

(2 sin 𝑥 − 1) bb) lim
𝑥→𝜋 3⁄

tan 𝑥 

cc) lim
𝑥→0

sec 𝑥 dd) lim
𝑥→0

(𝑥2 − 1)(2 − cos 𝑥) 

ee) lim
𝑥→0

1+𝑥+sin 𝑥
3 cos 𝑥

 ff) lim
𝑥→0

√7 + sec2 𝑥 

gg) lim
𝑥→−𝜋

√𝑥 + 4 cos(𝑥 + 𝜋)  

 

2.2 The Limit Laws 

     To calculate limits of functions that are arithmetic combinations of 

functions having known limits, we can use several fundamental rules.   

Theorem (Limit Laws): 

     If L, M, c, and k are real numbers and 𝐥𝐢𝐦
𝒙→𝒄

𝒇(𝒙) = 𝑳 and 

𝐥𝐢𝐦
𝒙→𝒄

𝒈(𝒙) = 𝑴 then  

1. Sum Rule: 𝐥𝐢𝐦
𝒙→𝒄

(𝒇(𝒙) + 𝒈(𝒙)) = 𝑳 + 𝑴 

2. Difference Rule: 𝐥𝐢𝐦
𝒙→𝒄

(𝒇(𝒙) − 𝒈(𝒙)) = 𝑳 − 𝑴 

3. Constant Multiple Rule: 𝐥𝐢𝐦
𝒙→𝒄

(𝒌 ∙ 𝒇(𝒙)) = 𝒌 ∙ 𝑳 

4. Product Rule: 𝐥𝐢𝐦
𝒙→𝒄

(𝒇(𝒙) ∙ 𝒈(𝒙)) = 𝑳. 𝑴 

5. Quotient Rule: 𝐥𝐢𝐦
𝒙→𝒄

𝒇(𝒙)

𝒈(𝒙)
=

𝑳

𝑴
,    𝑴 ≠ 𝟎. 

6. Power Rule: 𝐥𝐢𝐦
𝒙→𝒄

[𝒇(𝒙)]𝒏 = 𝑳𝒏, 𝒏 a positive integer. 

7. Root Rule: 𝐥𝐢𝐦
𝒙→𝒄

√𝒇(𝒙)𝒏
= √𝑳

𝒏
= 𝑳𝟏 𝒏⁄ , 𝒏 a positive integer. 

      (If n is even, we assume that 𝐥𝐢𝐦
𝒙→𝒄

𝒇(𝒙) = 𝑳 > 𝟎. ) 
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Example: 

       Use the fundamental rules of limits to find the following limits. 

a) lim
𝑥→𝑐

(𝑥3 + 4𝑥2 − 3) b) lim
𝑥→𝑐

𝑥4−𝑥2−1

𝑥2+5
 c) lim

𝑥→−2
√4𝑥2 − 3 

Solution: 

a) lim
𝑥→𝑐

(𝑥3 + 4𝑥2 − 3) = 𝑙𝑖𝑚
𝑥→𝑐

𝑥3 + lim 4𝑥2

𝑥→𝑐
− lim

𝑥→𝑐
 3 Sum and Difference Rules 

 = 𝑐3 + 4𝑐2 − 3 Power and Multiple Rules 

b) lim
𝑥→𝑐

𝑥4−𝑥2−1

𝑥2+5
 =

lim
𝑥→𝑐

(𝑥4−𝑥2−1)

lim
𝑥→𝑐

(𝑥2+5)
 Quotient Rule 

 
=

lim
𝑥→𝑐

𝑥4−lim
𝑥→𝑐

𝑥2−lim
𝑥→𝑐

1

lim
𝑥→𝑐

𝑥2+lim
𝑥→𝑐

5
 Sum and Difference Rules 

 =
𝑐4−𝑐2−1

𝑐2+5
 Power or Product Rule 

c) lim
𝑥→−2

√4𝑥2 − 3 = √ lim
𝑥→−2

(4𝑥2 − 3)   Root Rule with 𝒏 =  𝟐 

 
= √ lim

𝑥→−2
4𝑥2 − lim

𝑥→−2
3 Difference Rule 

 = √4(−2)2 − 3 Product and Multiple Rules 

 = √16 − 3  

 = √13  

Theorem (Limits of Polynomials): 

      If 𝑷(𝒙) = 𝒂𝒏 𝒙𝒏 + 𝒂𝒏−𝟏 𝒙𝒏 +  ⋯ + 𝒂𝟎, then 

             𝐥𝐢𝐦
𝒙→𝒄

𝑷(𝒙) = 𝑷(𝒙) = 𝒂𝒏 𝒄𝒏 + 𝒂𝒏−𝟏 𝒄𝒏 +  ⋯ + 𝒂𝟎. 

Theorem (Limits of Rational Functions): 

      If 𝑷(𝒙) and 𝑸(𝒙) are polynomials and 𝑸(𝒄)  ≠ 𝟎, then 

𝐥𝐢𝐦
𝒙→𝒄

𝑷(𝒙)
𝑸(𝒙)

= 𝑷(𝒄)

𝑸(𝒄)
. 

Example: 

lim
𝑥→−1

𝑥3+4𝑥2−3

𝑥2+5
=

(−1)3+4(−1)2−3

(−1)2+5
=

0

6
= 0. 

Example: 

      Evaluate lim
𝑥→0

√𝑥2+100−10

𝑥2  
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Solution: 

lim
𝑥→0

√𝑥2+100−10

𝑥2 = lim
𝑥→0

√𝑥2+100−10

𝑥2 ∙
√𝑥2+100+10

√𝑥2+100+10
  

                       = lim
𝑥→0

𝑥2+100−100

𝑥2(√𝑥2+100+10)
 

                       = lim
𝑥→0

𝑥2

𝑥2(√𝑥2+100+10)
           Common factor 𝒙𝟐 

                       = lim
𝑥→0

1

(√𝑥2+100+10)
              Cancel 𝒙𝟐 for 𝒙 ≠  𝟎. 

                       =
1

(√02+100+10)
           Denominator not 0 at 𝒙 =  𝟎; substitute 

                          =
1

20
= 0.05. 

Theorem (The Sandwich Theorem): 

     Suppose that 𝒈(𝒙) ≤ 𝒇(𝒙) ≤ 𝒉(𝒙) for all x in some open interval 

containing c, except possibly at 𝒙 =  𝒄 itself. Suppose also that 

                            𝐥𝐢𝐦
𝒙→𝒄

𝒈(𝒙) = 𝐥𝐢𝐦
𝒙→𝒄

𝒉(𝒙) = 𝑳.  

Then 𝐥𝐢𝐦
𝒙→𝒄

𝒇(𝒙) = 𝑳. 

Example: 

      Given that 

           1 − 𝑥2

4
≤ 𝑢(𝑥) ≤ 1 + 𝑥2

2
    for all 𝑥 ≠ 0, 

find lim
𝑥→0

𝑢(𝑥), no matter how complicated u is. 

Solution: 

   Since lim
𝑥→0

(1 − 𝑥2

4
) = 1 and lim

𝑥→0
(1 − 𝑥2

2
) = 1,by the Sandwich Theorem 

implies that lim
𝑥→0

𝑢(𝑥) = 1. 
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Example: 

   The Sandwich Theorem helps us establish several important limit rules: 

a) lim
𝜃→0

sin 𝜃 = 0 b) lim
𝜃→0

cos 𝜃 = 1 

c) For any function ƒ, lim
𝑥→𝑐

|𝑓(𝑥)| = 0 implies lim
𝑥→𝑐

𝑓(𝑥) = 0. 

Solution: 

a) Since −|𝜃| ≤ 𝑠𝑖𝑛 𝜃 ≤ |𝜃|, for all 𝜃 and since 

lim
𝜃→0

−|𝜃| lim
𝜃→0

|𝜃| = 0, we have lim
𝜃→0

sin 𝜃 = 0. 

 

b) Since −|𝜃| ≤ 1 − cos 𝜃 ≤ |𝜃|, for all 𝜃 and 

since lim
𝜃→0

−|𝜃| lim
𝜃→0

|𝜃| = 0, we have lim
𝜃→0

1 −

cos 𝜃 = 0 or lim
𝜃→0

cos 𝜃 = 1. 

 

c) Since −|𝑓(𝑥)| ≤ 𝑓(𝑥) ≤ |𝑓(𝑥)| and −|𝑓(𝑥)|  and |𝑓(𝑥)| have limit 0 as 

𝑥 → 𝑐, it follows that lim
𝑥→𝑐

𝑓(𝑥) = 0. 

Theorem: 

      If 𝑓(𝑥) ≤ 𝑔(𝑥) for all x in some open interval containing c, except 

possibly at 𝑥 = 𝑐 itself, and the limits of ƒ and g both exist as x approaches 

c, then 

                                     lim
𝑥→𝑐

𝑓(𝑥) ≤ lim
𝑥→𝑐

𝑔(𝑥). 

Exercises: 

1. If √5 − 2𝑥2 ≤ 𝑓(𝑥) ≤ √5 − 𝑥2 for −1 ≤ 𝑥 ≤ 1, find lim
𝑥→0

𝑓(𝑥). 

2. If 2 − 𝑥2 ≤ 𝑔(𝑥) ≤ 2 for all x, find lim
𝑥→0

𝑔(𝑥). 

3. It can be shown that the inequalities 1 − 𝑥2

6
≤ 𝑥 sin 𝑥

2−2 cos 𝑥
< 1 hold for all 

values of x close to zero. What, if anything, does this tell you about 

lim
𝑥→0

𝑥 sin 𝑥

2−2 cos 𝑥
 ? Give reasons for your answer. 
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4. Suppose that the inequalities 1

2
− 𝑥2

24
≤ 1−cos 𝑥

𝑥2 <
1

2
 hold for values of x 

close to zero. What, if anything, does this tell you about lim
𝑥→0

1−cos 𝑥

𝑥2  ? 

Give reasons for your answer. 

5. Find the limits in following 

a) lim
ℎ→0

√5ℎ+4−2
ℎ

 b) lim
𝑥→−1

√𝑥2+8−3
𝑥+1

 

c)  lim
𝑥→1

𝑥−1

√𝑥+3−2
 d)  lim

𝑥→−2

𝑥+2

√𝑥2+5−3
 

e) lim
𝑥→2

√𝑥2+12−4
𝑥−2

 f)  lim
𝑥→4

4−𝑥

5−√𝑥2+9
 

g) lim
𝑥→−3

−2−√𝑥2−5
𝑥+3

  

 

2.3 The Precise Definition of a Limit 

Definition: 

       Let 𝑓(𝑥) be defined on an open interval 

about c, except possibly at c itself. We say that 

the limit of 𝑓(𝑥) as x approaches c is the number 

L, and write 

                             lim
𝑥→𝑐

𝑓(𝑥) = 𝐿, 

if, for every number 𝜖 > 0, there exists a 

corresponding number 𝛿 > 0 such that for all x, 

         0 < |𝑥 − 𝑐| < 𝛿 ⇒ |𝑓(𝑥) − 𝐿| < 𝜖. 

Examples: Testing the Definition 

Example: 

       Show that lim
𝑥→1

(5𝑥 − 3) = 2. 

Solution: 
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     Set c = 1, 𝑓(𝑥) = 5𝑥 − 3, and 𝐿 = 2 

in the definition of limit. For any given 

𝜖 > 0, we have to find a suitable 𝛿 > 0  

so that if 𝑥 ≠ 1 and x is within distance 𝛿 

of c = 1, that is, whenever 0 < |𝑥 − 1| <

𝛿, it is true that 𝑓(𝑥) is within distance 𝜖 

of 𝐿 = 2, so |𝑓(𝑥) − 2| < 𝜖. 

    We find 𝛿 by working backward from 

the 𝜖 -inequality: 

       |(5𝑥 − 3) − 2| = |5𝑥 − 5| = 5|𝑥 − 1| < 𝜖 ⇒ |𝑥 − 1| < 𝜖 5⁄ . 

    Thus, we can take 𝛿 = 𝜖 5⁄ . If 0 < |𝑥 − 1| < 𝛿 = 𝜖 5⁄ , then 

        |(5𝑥 − 3) − 2| = |5𝑥 − 5| = 5|𝑥 − 1| < 5𝜖

5
= 𝜖. 

Which proves that lim
𝑥→1

(5𝑥 − 3) = 2. 

Example: 

      Prove the following results 

a) lim
𝑥→𝑐

𝑥 = 𝑐 

b) lim
𝑥→𝑐

𝑘 = 𝑘. (k constant). 

Solution: 

a)   Let 𝜖 > 0 be given. We must find 𝛿 > 0   such that 

for all x 

                          0 < |𝑥 − 𝑐| < 𝛿 ⇒ |𝑥 − 𝑐| < 𝜖. 

The implication will hold if 𝛿 equals 𝜖 or any smaller positive number. 

This proves that lim
𝑥→𝑐

𝑥 = 𝑐.      

b) Let 𝜖 > 0 be given. We must find 𝛿 > 0   such that 

for all x 

                          0 < |𝑥 − 𝑐| < 𝛿 ⇒ |𝑘 − 𝑘| < 𝜖.      

Since k - k = 0, we can use any positive number for 𝛿 and 

the implication will hold. This proves that lim
𝑥→𝑐

𝑘 = 𝑘. 
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Example: 

       For the limit lim
𝑥→5

√𝑥 − 1 = 2, find a 𝛿 > 0  that works for 𝜖 = 1. 

That is, find a 𝛿 > 0   such that for all x 

      0 < |𝑥 − 5| < 𝛿 ⇒ |√𝑥 − 1 − 2| < 1. 

Solution: 

     We organize the search into two steps. 

1. Solve the inequality |√𝑥 − 1 − 2| < 1 to find an interval containing 

𝑥 =  5 on which the inequality holds for all 𝑥 ≠  5. 

|√𝑥 − 1 − 2| < 1 

−1 < √𝑥 − 1 − 2 < 1 

1 < √𝑥 − 1 < 3 

1 < 𝑥 − 1 < 9 

2 < 𝑥 < 10. 

The inequality holds for all x in the open interval (2, 10), so it holds for 

all 𝑥 ≠  5 in this interval as well. 

2. Find a value of 𝛿 > 0 to place the centered interval 

5 − 𝛿 < 𝑥 < 5 + 𝛿 (centered at 𝑥 = 5) inside the 

interval (2, 10). The distance from 5 to the nearer 

endpoint of (2, 10) is 3. If we take 𝛿 = 3 or any 

smaller positive number, then the inequality 0 <
|𝑥 − 5| < 𝛿 will automatically place x between 2 and 

10 to make |√𝑥 − 1 − 2| < 1: 

        0 < |𝑥 − 5| < 𝛿 ⇒ |√𝑥 − 1 − 2| < 1. 

Example: 

    Prove that lim
𝑥→2

𝑓(𝑥) = 4 if 𝑓(𝑥) = {𝑥2 𝑥 ≠  2
1 𝑥 = 2

. 

Solution: 
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        Our task is to show that given 𝜖 > 0 there exists a 𝛿 > 0 such that for 

all x 

                   0 < |𝑥 − 2| < 𝛿 ⇒ |𝑓(𝑥) − 4| < 𝜖.  

1. Solve the inequality |𝑓(𝑥) − 4| < 𝜖 to find an interval containing 𝑥 = 2 

on which the inequality holds for all 𝑥 ≠ 2. 

 For 𝑥 ≠ 𝑐 = 2, we have 𝑓(𝑥) = 𝑥2, and the inequality to solve is 

|𝑥2 − 4| < 𝜖:  

|𝑥2 − 4| < 𝜖 

−𝜖 < 𝑥2 − 4 < 𝜖 

4 − 𝜖 < 𝑥2 < 4 + 𝜖 

                                         √4 − 𝜖 < |𝑥| < √4 + 𝜖      {Assumes 𝜖 < 4} 

√4 − 𝜖 < 𝑥 < √4 + 𝜖 An open interval about 𝑥 =  2 

that solves the inequality 

The inequality |𝑓(𝑥) − 4| < 𝜖 holds for all 𝑥 ≠ 2 in 

the open interval (√4 − 𝜖, √4 + 𝜖 ).  

2. Find a value of 𝛿 > 0 that places the centered interval 

(2 − 𝛿, 2 + 𝛿) inside the interval (√4 − 𝜖, √4 + 𝜖 ). 

Take 𝛿 to be the distance from 𝑥 = 2  to the nearer 

endpoint of (√4 − 𝜖, √4 + 𝜖 ). In other words, take 

𝛿 =  𝑚𝑖𝑛 {2 − √4 − 𝜖 , √4 + 𝜖 − 2},  the  minimum 

(the smaller) of the two numbers 2 − √4 − 𝜖 and √4 + 𝜖 − 2. If 𝛿 has 

this or any smaller positive value, the inequality 0 < |𝑥 − 2| < 𝛿 will 

automatically place x between √4 − 𝜖 and √4 + 𝜖 to make |𝑓(𝑥) −

4| < 𝜖. For all x, 

                       0 < |𝑥 − 2| < 𝛿 ⇒ |𝑓(𝑥) − 4| < 𝜖. 

     If 𝜖 ≥ 4 , then we take 𝛿 to be the distance from 𝑥 =  2 to the nearer 

endpoint of the interval (0, √4 + 𝜖 ). In other words, take 𝛿 =

 𝑚𝑖𝑛 {2 , √4 + 𝜖 − 2}.  
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Exercises: 

1. In following sketch, the interval (𝑎, 𝑏) on the x-axis with the point c 

inside. Then find a value of 𝛿 > 0 such that for all x, 0 < |𝑥 − 𝑐| <

𝛿 ⇒ 𝑎 < 𝑥 < 𝑏. 
a) 𝑎 = 1, 𝑏 = 7, 𝑐 = 5 b) 𝑎 = 1, 𝑏 = 7, 𝑐 = 2 

c) 𝑎 = − 7 2⁄ , 𝑏 = − 1 2⁄ , 𝑐 = −3 d) 𝑎 = − 7 2⁄ , 𝑏 = − 1 2⁄ , 𝑐 = − 3 2⁄  

e) 𝑎 = 4 9⁄ , 𝑏 = 4 7⁄ , 𝑐 = 1 2⁄   

2. In Exercises 7–14, use the graphs to find a 𝛿 > 0  such that for all x 

                       0 < |𝑥 − 𝑐| < 𝛿 ⇒ |𝑓(𝑥) − 𝐿| < 𝜖. 
a)  

 

b)  

 

c)  

 

d)  

 

e)  

 

f)  

 

g)  

 

h)  
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3.  Each of following gives a function ƒ(x) and numbers L, c, and  𝜖 > 0. 

In each case, find an open interval about c on which the inequality  

|𝑓(𝑥) − 𝐿| < 𝜖 holds. Then give a value for 𝛿 > 0   such that for  all x 

satisfying 0 < |𝑥 − 𝑐| < 𝛿 the inequality |𝑓(𝑥) − 𝐿| < 𝜖. 
a) 𝑓(𝑥) = 𝑥 + 1, 𝐿 = 5, 𝑐 = 4, 𝜖 = 0.01 b) 𝑓(𝑥) = 2𝑥 − 2, 𝐿 = −6, 𝑐 = −2, 𝜖 = 0.02 

c) 𝑓(𝑥) = √𝑥 + 1, 𝐿 = 1, 𝑐 = 0, 𝜖 = 0.1 d) 𝑓(𝑥) = √𝑥, 𝐿 = 1 2⁄ , 𝑐 = 1 4⁄ , 𝜖 = 0.1 

e) 𝑓(𝑥) = √19 − 𝑥, 𝐿 = 3, 𝑐 = 10, 𝜖 = 1 f) 𝑓(𝑥) = √𝑥 − 7, 𝐿 = 4, 𝑐 = 23, 𝜖 = 1 

g) 𝑓(𝑥) = 1 𝑥⁄ , 𝐿 = 1 4⁄ , 𝑐 = 4, 𝜖 = 0.05 h) 𝑓(𝑥) = 𝑥2 + 1, 𝐿 = 3, 𝑐 = √3, 𝜖 = 0.1 

i) 𝑓(𝑥) = 𝑥2, 𝐿 = 4, 𝑐 = −2, 𝜖 = 0.5 j) 𝑓(𝑥) = 1 𝑥⁄ , 𝐿 = −1, 𝑐 = −1, 𝜖 = 0.1 

4. Each of following gives a function 𝑓(𝑥), a point c, and a positive 

number 𝜖. Find 𝐿 = lim
𝑥→𝑐

𝑓(𝑥).Then find a number 𝛿 > 0    such that for 

all x 

                        0 < |𝑥 − 𝑐| < 𝛿 ⇒ |𝑓(𝑥) − 𝐿| < 𝜖. 

a) 𝑓(𝑥) = 3 − 2𝑥, 𝑐 = 3, 𝜖 = 0.02 b) 𝑓(𝑥) = −3𝑥 − 2, 𝑐 = −1, 𝜖 = 0.03 

c) 𝑓(𝑥) = 𝑥2−4

𝑥−2
, 𝑐 = 2, 𝜖 = 0.05 d) 𝑓(𝑥) = 𝑥2+6𝑥+5

𝑥+5
, 𝑐 = −5, 𝜖 = 0.05 

e) 𝑓(𝑥) = √1 − 5𝑥, 𝑐 = −3, 𝜖 = 0.5 f) 𝑓(𝑥) = 4 𝑥⁄ , 𝑐 = 4, 𝜖 = 0.4 

 

5. Prove the limit statements of following 
a) lim

𝑥→4
(9 − 𝑥) = 5 b) lim

𝑥→3
(3𝑥 − 7) = 2 

c) lim
𝑥→9

√𝑥 − 5 = 2 d) lim
𝑥→0

√4 − 𝑥 = 2 

e) lim
𝑥→1

𝑓(𝑥) = 1 𝑖𝑓 𝑓(𝑥) = {𝑥2 𝑥 ≠ 1
2 𝑥 = 1

 f) lim
𝑥→−2

𝑓(𝑥) = 4 𝑖𝑓 𝑓(𝑥) = {𝑥2 𝑥 ≠ −2
1 𝑥 = −2

 

g) lim 
𝑥→1

(1 𝑥⁄ ) = 1 h) lim
𝑥→√3

(1 𝑥2⁄ ) = 1 3⁄  

i) lim 
𝑥→−3

𝑥2−9
𝑥+3

= −6 j) lim 
𝑥→1

𝑥2−1
𝑥−1

= 2 

k) lim
𝑥→1

𝑓(𝑥) = 2 𝑖𝑓 𝑓(𝑥) = {
4 − 2𝑥 𝑥 < 1
6𝑥 − 4 𝑥 ≥ 1

 l) lim
𝑥→0

𝑓(𝑥) = 0 𝑖𝑓 𝑓(𝑥) = {
2𝑥 𝑥 < 0

𝑥 2⁄ 𝑥 ≥ 0
 

m) lim
𝑥→0

𝑥 sin 1 𝑥⁄ = 0  n) lim
𝑥→0

𝑥2 sin 1 𝑥⁄ = 0  
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2.4 One-Sided Limits 

Definition: 

     We say that 𝑓(𝑥) has right-hand limit L at c, and write 

                                           lim
𝑥→𝑐+

𝑓(𝑥) = 𝐿, 

if for every number 𝜖 > 0 there exists a corresponding number 𝛿 > 0  such 

that for all x 

                            𝑐 < 𝑥 < 𝑐 + 𝛿 ⇒ |𝑓(𝑥) − 𝐿| < 𝜖.  

    We say that ƒ has left-hand limit L at c, and write 

                                           lim
𝑥→𝑐−

𝑓(𝑥) = 𝐿, 

if for every number 𝜖 > 0 there exists a corresponding number 𝛿 > 0  such 

that for all x 

                            𝑐 − 𝛿 < 𝑥 < 𝑐 ⇒ |𝑓(𝑥) − 𝐿| < 𝜖.  

                 
         Intervals associated with                        Intervals associated with 

   the definition of right-hand limit.           the definition of left-hand limit. 
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Example 

      Prove that lim
𝑥→0

√𝑥 = 0. 

Solution: 

     Let 𝜖 > 0  be given. Here c = 0 and L = 0, 

so we want to find a 𝛿 > 0 such that for all x 

             0 < 𝑥 < 𝛿 ⇒ |√𝑥− 0| < 𝜖, 

             0 < 𝑥 < 𝛿 ⇒ √𝑥 < 𝜖. 

Squaring both sides of this last inequality gives 𝑥 < 𝜖2 if 0 < 𝑥 < 𝛿. If 

we choose 𝛿 = 𝜖2 we have 

       0 < 𝑥 < 𝛿 = 𝜖2  ⇒ √𝑥 < 𝜖      or       0 < 𝑥 < 𝜖2  ⇒ |√𝑥 − 0| < 𝜖. 

According to the definition, this shows that lim
𝑥→0

√𝑥 = 0. 

Example: 

      Show that 𝑦 = 𝑠𝑖𝑛 (1
𝑥
) has no limit as x approaches zero from either 

side. 

Solution: 

     As x approaches zero, its reciprocal, 
1

𝑥
, 

grows without bound and the values of 𝑠𝑖𝑛 (1
𝑥
)  

cycle repeatedly from -1 to 1. There is no single 

number L that the function’s values stay 

increasingly close to as x approaches zero.  

   This is true even if we restrict x to positive values or to negative values. 

The function has neither a right-hand limit nor a left-hand limit at 𝑥 =  0. 

Theorem (Limit of the Ratio (𝒔𝒊𝒏 𝜽) 𝜽⁄  as 𝜽 →  𝟎): 

                       𝐥𝐢𝐦
𝜽 → 𝟎

𝒔𝒊𝒏 𝜽
𝜽
= 𝟏     ( 𝜽 𝐢𝐧 𝐫𝐚𝐝𝐢𝐚𝐧𝐬)                                      (1) 
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Example: 

   Show that   

Solution: 

a) Using the half-angle formula 𝑐𝑜𝑠 ℎ = 1 − 2 𝑠𝑖𝑛2 (ℎ 2⁄ ), we calculate 

                                lim
ℎ → 0

cosℎ −1
ℎ

= lim
ℎ → 0

− 2 𝑠𝑖𝑛
2 (ℎ 2⁄ )

ℎ
 

                                                   = − lim
𝜃 → 0

𝑠𝑖𝑛 𝜃

𝜃
∙ 𝑠𝑖𝑛 𝜃           Let 𝜃 = ℎ 2⁄ . 

                                                   = −(1)(0).  

b)  Equation (1) does not apply to the original fraction. We need a 2x in 

the denominator, not a 5x. We produce it by multiplying numerator 

and denominator by 2 5⁄ :  

   lim
𝑥 → 0

𝑠𝑖𝑛 2𝑥
5𝑥

= lim
𝑥 → 0

(2 5⁄ )∙𝑠𝑖𝑛 2𝑥
(2 5⁄ )∙ 5𝑥

=
2

5
lim
𝑥 → 0

𝑠𝑖𝑛 2𝑥
 2𝑥

=
2

5
(1) =

2

5
    Now, Eq. (1) applies 

                                                                                            with 𝜽 = 𝟐𝒙.  

Example: 

       Find  lim
𝑡 → 0

tan 𝑡 ∙sec 2𝑡
3𝑡

 

Solution: 

       From the definition of 𝑡𝑎𝑛 𝑡 and 𝑠𝑒𝑐 2𝑡, we have 

                lim
𝑡 → 0

tan 𝑡 ∙sec 2𝑡
3𝑡

= lim
𝑡 → 0

1

3
∙ 1
𝑡
∙ sin 𝑡
cos 𝑡

∙ 1

cos2𝑡
  

                                      =
1

3
lim
𝑡 → 0

sin 𝑡

𝑡
∙ 1

cos 𝑡
∙ 1

cos 2𝑡
 

                                      =
1

3
(1)(1)(1). 

Theorem: 

        A function 𝒇(𝒙) has a limit as x approaches c if and only if it has 

left-hand and right-hand limits there and these one-sided limits are 

equal: 

𝐥𝐢𝐦
𝒙→𝒄

𝒇(𝒙) = 𝑳  ⇔    𝐥𝐢𝐦
𝒙→𝒄+

𝒇(𝒙) = 𝑳      𝐚𝐧𝐝    𝐥𝐢𝐦
𝒙→𝒄−

𝒇(𝒙) = 𝑳. 

a) lim
ℎ → 0

cosℎ −1
ℎ

= 0     and b) lim
𝑥 → 0

𝑠𝑖𝑛 2𝑥
5𝑥

= 2

5
 .     
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Example: 

     For the function graphed in following Figure 

At 𝑥 = 0:     lim
𝑥→0+

𝑓(𝑥) = 1, 

lim
𝑥→0−

𝑓(𝑥) and lim
𝑥→0

𝑓(𝑥) do not exist. 

The function is not defined to the 

left of 𝑥 = 0. 

At 𝑥 = 1       lim
𝑥→1−

𝑓(𝑥) = 0 even though 𝑓(1) = 1, 

                        lim
𝑥→1+

𝑓(𝑥) = 1,  

                       lim
𝑥→1

𝑓(𝑥) does not exist. The right- and left-hand limits are  

                       not equal. 

At 𝑥 = 2       lim
𝑥→2−

𝑓(𝑥) = 1, 

                       lim
𝑥→2+

𝑓(𝑥) = 1, 

                        lim
𝑥→2

𝑓(𝑥) = 1 even though 𝑓(2) = 2. 

At 𝑥 = 3       lim
𝑥→3−

𝑓(𝑥) = lim
𝑥→3+

𝑓(𝑥) = lim
𝑥→3

𝑓(𝑥) = 𝑓(3) = 2, 

At 𝑥 = 4       lim
𝑥→4−

𝑓(𝑥) = 1 even though 𝑓(4) ≠ 1, 

lim
𝑥→4+

𝑓(𝑥) and lim
𝑥→4

𝑓(𝑥) do not exist. The function is not 

defined to the right of 𝑥 = 4. 

      At every other point c in [0, 4], 𝑓(𝑥) has limit 𝑓(𝑐). 

Exercises: 

1. Which of the following statements about the 

function 𝑦 = 𝑓(𝑥) graphed here are true, and which 

are false? 
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a) lim
𝑥→−1+

𝑓(𝑥) = 1 b) lim
𝑥→0−

𝑓(𝑥) = 0 c) lim
𝑥→0−

𝑓(𝑥) = 1 

d) lim
𝑥→0−

𝑓(𝑥) = lim
𝑥→0+

𝑓(𝑥) e) lim
𝑥→0

𝑓(𝑥) exists. f) lim
𝑥→0

𝑓(𝑥) = 0 

g) lim
𝑥→0

𝑓(𝑥) = 1 h) lim
𝑥→1

𝑓(𝑥) = 1 i) lim
𝑥→1

𝑓(𝑥) = 0 

j) lim
𝑥→2−

𝑓(𝑥) = 2 k) lim
𝑥→−1−

𝑓(𝑥) does not exist. l) lim
𝑥→2+

𝑓(𝑥) = 0 

2. Let 𝑓(𝑥) = {
3 − 𝑥 𝑥 < 2
𝑥
2
+1 𝑥 > 2. 

a) Find lim
𝑥→2+

𝑓(𝑥) and lim
𝑥→2−

𝑓(𝑥). 

b) Does llim
𝑥→2

𝑓(𝑥) exist? If so, what is it? If not, why not? 

c) Find lim
𝑥→4+

𝑓(𝑥) and lim
𝑥→4−

𝑓(𝑥). 

d) Does llim
𝑥→4

𝑓(𝑥) exist? If so, what is it? If not, why not? 

3. Let 𝑓(𝑥) = {
0 𝑥 ≤ 0
sin 1

𝑥
𝑥 > 0. 

a) Does lim
𝑥→0+

𝑓(𝑥) exist? If so, what is it? If not,  

     why not? 
b) Does lim

𝑥→0−
𝑓(𝑥) exist? If so, what is it? If not,    

     why not? 
c) Does lim

𝑥→0
𝑓(𝑥) exist? If so, what is it? If not,  

     why not? 
4. Graph the following functions. Then answer these questions 

a) What are the domain and range of ƒ? 

b) At what points c, if any, does lim
𝑥→𝑐

𝑓(𝑥) exist? 

c) At what points does only the left-hand limit exist? 

d) At what points does only the right-hand limit exist? 

 

1. 𝑓(𝑥) = {
√1 − 𝑥2 0 ≤ 𝑥 < 1
1 1 ≤ 𝑥 < 2
2 𝑥 = 2

 2. 𝑓(𝑥) = {
𝑥 −1 ≤ 𝑥 < 0  or 0 < 𝑥 ≤ 1
1 𝑥 = 0
0 𝑥 < −1 or 𝑥 > 1

 

5. Find the limits in following 

a) lim
𝑥→−0.5−

√𝑥+2

𝑥+1
 b) lim

ℎ→0+
√ℎ2+4ℎ+5−√5

ℎ
 

c) lim
ℎ→0−

√6−√5ℎ2+11ℎ+6
ℎ

 d) lim
𝑥→1−

(
1
𝑥+1

)(
𝑥+6
𝑥
)(
3−𝑥
7
) 
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e) lim
𝑥→2−

(𝑥 + 3)|𝑥+2|
𝑥+2

 f) lim
𝑥→2+

(𝑥 + 3)|𝑥+2|
𝑥+2

 

g) lim
𝑥→1−

√2𝑥(𝑥−1)
|𝑥−1|

 h) lim
𝑥→1∓

√2𝑥(𝑥−1)
|𝑥−1|

 

i) lim
𝜃→3∓

⌊𝜃⌋
𝜃

 j) lim
𝜃→3−

⌊𝜃⌋
𝜃

 

k) lim
𝑡→4∓

(𝑡−⌊𝑡⌋) l) lim
𝑡→4−

(𝑡−⌊𝑡⌋) 

m) lim
𝑡→0

sin𝑘𝑡
𝑡
   (𝑘 constant) n) lim

ℎ→0−
ℎ

sin 3ℎ
 

o) lim
𝑥→0

tan2𝑥
𝑥

 p) lim
𝑥→0

𝑥csc 2𝑥
cos5𝑥

 

q) lim
𝑥→0

6𝑥2(cot 𝑥)(csc 2𝑥) r) lim
𝑥→0

𝑥+𝑥cos𝑥
sin𝑥cos 𝑥

 

s) lim
𝑥→0

𝑥2−𝑥+sin𝑥
2𝑥

 t) lim
𝜃→0

1−cos𝜃
sin 2𝜃

 

u) lim
𝑥→0

𝑥−𝑥cos𝑥

sin2 3𝑥
 v) lim

𝑦→0

sin 3𝑦cot 5𝑦
𝑦cot 4𝑦

 

w) lim
𝜃→0

tan𝜃

𝜃2 cot 3𝜃
 x) lim

𝜃→0

𝜃 cot 4𝜃

sin2 𝜃cot2 2𝜃
 

 

2.5 Limits Involving Infinity, Infinite Limits. 

      In this section we investigate the behavior of a function when the 

magnitude of the independent  variable x becomes increasingly large, or 

𝑥 → ±∞. We further extend the concept of  limit to infinite limits. Infinite 

limits provide useful symbols and language for describing the behavior of 

functions whose values become arbitrarily large in magnitude. We use 

these  ideas to analyze the graphs of functions having horizontal or vertical 

asymptotes. 

2.5.1 Finite Limits as 𝒙 → ±∞: 

 Definition: 

1. We say that ƒ(x) has the limit L as x approaches infinity and write 

lim
𝑥→∞

𝑓(𝑥) = 𝐿 

if, for every number 𝜖 > 0, there exists a corresponding number M 

such that for all x in the domain of ƒ 
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                                   |𝑓(𝑥) − 𝐿| < 𝜖 whenever 𝑥 >  𝑀. 

2. We say that ƒ(x) has the limit L as x approaches negative infinity and 

write 

                                              lim
𝑥→−∞

𝑓(𝑥) = 𝐿 

if, for every number 𝜖 > 0, there exists a corresponding number N such 

that for all x in the domain of ƒ 

                                   |𝑓(𝑥) − 𝐿| < 𝜖 whenever 𝑥 <  𝑁. 

Example(*): 

       Show that 

a) lim
𝑥→∞

1
𝑥
=0 b) lim

𝑥→−∞

1
𝑥
=0 

Solution: 

a) Let 𝜖 > 0 be given. We must find a number M such that 

                |
1

𝑥
− 0| = |

1

𝑥
| < 𝜖 whenever 𝑥 >  𝑀. 

The implication will hold if 𝑀 =  1 𝜖⁄  or any 

larger positive number. This proves lim
𝑥→∞

1
𝑥
=0. 

b) Let 𝜖 > 0 be given. We must find a number N   

     such that 

                  |
1

𝑥
− 0| = |

1

𝑥
| < 𝜖 whenever 𝑥 < 𝑁. 

The implication will hold if 𝑁 =  −1 𝜖⁄  or any number less than 

−1 𝜖⁄ . This proves lim
𝑥→∞

1
𝑥
=0. 

Remark: 

     Limits at infinity have properties similar to those of finite limits. 

Theorem: 

    All the Limit Laws are true when we replace 𝒍𝒊𝒎
𝒙→𝒄

 by 𝒍𝒊𝒎
𝒙→∞

 or 𝒍𝒊𝒎
𝒙→−∞

. 

That is, the variable x may approach a finite number c or ±∞. 
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Example: 

     Used the properties of Limit Laws to calculate limits in the same 

way as when x approaches a finite number c. 

a) lim
𝑥→∞

(5 +
1

𝑥
) = lim

𝑥→∞
5 + lim

𝑥→∞

1

𝑥
                             Sum Rule 

                             = 5 + 0 = 5.                               Known limits  

b) lim
𝑥→−∞

𝜋√3

𝑥2
= lim
𝑥→−∞

𝜋√3 ∙
1

𝑥
∙
1

𝑥
                               Product Rule 

           = lim
𝑥→−∞

𝜋√3 ∙ lim
𝑥→−∞

1

𝑥
∙ lim
𝑥→−∞

1

𝑥
            Known limits 

           = 𝜋√3 ∙ 0 ∙ 0 = 0.  

2.5.2 Limits at Infinity of Rational Functions: 

Remark: 

     To determine the limit of a rational function as 𝑥 → ±∞, we first divide 

the numerator and denominator by the highest power of x in the 

denominator. The result then depends on the degrees of the polynomials 

involved. 

     The following examples illustrate what happens when the degree of the 

numerator is less than or equal to the degree of the denominator. 

Examples: 

a) lim
𝑥→∞

5𝑥2+8𝑥−3

3𝑥2+2
= lim
𝑥→∞

5+(8 𝑥⁄ )−(3 𝑥2⁄ )

3+(2 𝑥2⁄ )
       

                                    Divide numerator and 

                                         denominator by 𝒙𝟐. 

                          =
5+0−0

3+0
=
5

3
. 

 

b) lim
𝑥→−∞

11𝑥+2

2𝑥3−1
= lim
𝑥→∞

(11 𝑥2⁄ )+(2 𝑥3⁄ )

2−(1 𝑥3⁄ )
 

                                         Divide numerator and 

                                               denominator by 𝒙𝟑. 

                           =
0+0

2−0
= 0.  
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2.5.3 Horizontal Asymptotes:  

Remark: 

    If the distance between the graph of a function and some fixed line 

approaches zero as a point on the graph moves increasingly far from the 

origin, we say that the graph approaches the line asymptotically and that 

the line is an asymptote of the graph. 

     Looking at 𝑓(𝑥)  =  1 𝑥⁄ , we observe that the x-axis is an asymptote of 

the curve on the right because lim
𝑥→∞

1
𝑥
=0 and on the left because lim

𝑥→−∞

1
𝑥
=0. We 

say that the x-axis is a horizontal asymptote of the graph of 𝑓(𝑥)  =  1 𝑥⁄ . 

Definition: 

      A line 𝑦 = 𝑏 is a horizontal asymptote of the graph of a function 

𝑦 = 𝑓(𝑥) if either lim
𝑥→∞

𝑓(𝑥) = 𝑏 or lim
𝑥→−∞

𝑓(𝑥) = 𝑏. 

Remark: 

     The graph of a function can has zero, one, or two horizontal asymptotes, 

depending on whether the function has limits as 𝑥 → ∞ and as 𝑥 → −∞. 

For example, the function 𝑓(𝑥) =
5𝑥2+8𝑥−3

3𝑥2+2
 has the line 𝑦 =

5

3
  as a 

horizontal asymptote on both the right and the left because lim
𝑥→∞

𝑓(𝑥) =
5

3
 

and lim
𝑥→∞

𝑓(𝑥) =
5

3
. 

Example: 

     Find the horizontal asymptotes of the graph of 

                                 𝑓(𝑥) =
𝑥3−2

|𝑥|3+1
. 

 Solution: 

         We calculate the limits as 𝑥 → ±∞. 

For 𝑥 ≥  0: lim
𝑥→∞

𝑥3−2

|𝑥|3+1
= lim
𝑥→∞

𝑥3−2

𝑥3+1
= lim
𝑥→∞

1−(2 𝑥3⁄ )

1+(1 𝑥3⁄ )
= 1. 
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For 𝑥 <  0: lim
𝑥→−∞

𝑥3−2

|𝑥|3+1
= lim
𝑥→−∞

𝑥3−2

(−𝑥)3+1
= lim
𝑥→−∞

1−(2 𝑥3⁄ )

−1+(1 𝑥3⁄ )
= −1. 

      The horizontal asymptotes are 𝑦 =  −1 and 𝑦 =  1. Notice that the 

graph crosses the horizontal asymptote 𝑦 =  −1 for a positive value of x. 

Example: 

     Find the horizontal asymptotes of the graph of 

                                        𝑓(𝑥) = 𝑒𝑥. 

 Solution: 

      The x-axis (the line 𝑦 =  0) is a horizontal 

asymptote of the graph of 𝑓(𝑥) = 𝑒𝑥 because 

lim
𝑥→−∞

𝑒𝑥 = 0.  To see this, we use the definition 

 of a limit as x approaches −∞. So let 𝜖 > 0 be given, but arbitrary. We 

must find a constant N such that |𝑒𝑥 − 0| < 𝜖 whenever 𝑥 < 𝑁. 

       Now |𝑒𝑥 − 0| = 𝑒𝑥, so the condition that needs to be satisfied 

whenever x < N is 𝑒𝑥 < 𝜖. 

      Let 𝑥 =  𝑁 be the number where 𝑒𝑥 = 𝜖 . Since 𝑒𝑥 is an increasing 

function, if x < N, then 𝑒𝑥 < 𝜖 . We find N by taking the natural 

logarithm of both sides of the equation 𝑒𝑁 = 𝜖,  so 𝑁 =  𝑙𝑛𝜖. With this 

value of N the condition is satisfied, and we conclude that lim
𝑥→−∞

𝑒𝑥 = 0. 

Remark: 

      Sometimes it is helpful to transform a limit in which x approaches  

∞ to a new limit by  setting 𝑡 =  1 𝑥⁄  and seeing what happens as t 

approaches 0. 

Example: 

       Find  a) lim
𝑥→∞

sin 1
𝑥
 b) lim

𝑥→±∞
𝑥 sin 1

𝑥
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Solution: 

a) We introduce the new variable 𝑡 =  1 𝑥⁄ . From Example (*), we know 

that 𝑡 → 0+ as 𝑥 → ∞. Therefore, lim
𝑥→∞

sin 1
𝑥
= lim
𝑡→0+

sin 𝑡 = 0. 

b) We calculate the limits as 𝑥 → ∞ and 𝑥 → −∞: 

    lim
𝑥→∞

𝑥 sin 1
𝑥
= lim
𝑡→0+

sin 𝑡

𝑡
= 1 and lim

𝑥→−∞
𝑥 sin 1

𝑥
= lim
𝑡→0−

sin 𝑡

𝑡
= 1.  

    The graph of 𝑥 sin 1
𝑥
, show that the line y = 1 is a horizontal 

     asymptote.  

Remark: 

     Similarly, we can investigate the behavior of 𝑦 =  𝑓 (1
𝑥
 ) as 𝑥 → 0 by 

investigating 𝑦 =  𝑓 (𝑡 ) as 𝑡 → ±∞, where 𝑡 =  1 𝑥⁄ . 

Example: 

     Find lim
𝑥→0−

𝑒1 𝑥⁄ . 

Solution: 

We let 𝑡 =  1 𝑥⁄  so that lim
𝑥→0−

𝑒1 𝑥⁄ = lim
𝑡→−∞

𝑒𝑡 = 0. 

Example: 

     Find lim
𝑥→0+

𝑥⌊1
𝑥
⌋. 

Solution: 

     We let 𝑡 =  1 𝑥⁄  so that lim
𝑥→0+

𝑥⌊1
𝑥
⌋ = lim

𝑡→∞

1
𝑡
⌊𝑡⌋. 

From the graph of 𝑥⌊1
𝑥
⌋, we see that 𝑡 − 1 ≤ ⌊𝑡⌋ ≤  𝑡,  

which gives 

                          1 −
1

𝑡
≤
1

𝑡
⌊𝑡⌋ ≤ 1              Multiply inequalities by 

𝟏

𝒕
> 𝟎. 

It follows from the Sandwich Theorem that lim
𝑡→∞

1
𝑡
⌊𝑡⌋ = 1,  so 1 is the 

value of the limit we seek. 



12 
 

Remark: 

       The Sandwich Theorem also holds for limits as 𝑥 → ±∞. You must be 

sure, though, that the function whose limit you are trying to find stays 

between the bounding functions at very large values of x in magnitude 

consistent with whether 𝑥 → ∞  or 𝑥 → −∞. 

Example: 

      Using the Sandwich Theorem, find the 

horizontal asymptote of the curve 

                           𝑦 =  2 +  𝑠𝑖𝑛 𝑥

𝑥
. 

Solution: 

    We are interested in the behavior as 𝑥 → ±∞. Since 

                                         0 ≤ |
 𝑠𝑖𝑛 𝑥

𝑥
| ≤ |

 1

𝑥
| 

and lim
𝑥→±∞

|
1

𝑥
| = 0, we have lim

𝑥→±∞

 𝑠𝑖𝑛 𝑥

𝑥
= 0 by the Sandwich Theorem. 

Hence, lim
𝑥→±∞

(2 +  𝑠𝑖𝑛 𝑥

𝑥
) = 2 + 0 = 2, and the line y = 2 is a horizontal  

asymptote of the curve on both left and right. This example illustrates 

that a curve may cross one of its horizontal asymptotes many times. 

Example: 

        Find lim
𝑥→∞

(𝑥 − √𝑥2 + 16). 

Solution: 

     Both of the terms x and √𝑥2 + 16 approach infinity as 𝑥 → ∞, so what 

happens to the difference in the limit is unclear (we cannot subtract  from  

because the symbol does not represent a real number). In this situation we 

can multiply the numerator and the denominator by the conjugate radical 

expression to obtain an equivalent algebraic expression: 

lim
𝑥→∞

(𝑥 − √𝑥2 + 16) = lim
𝑥→∞

(𝑥 − √𝑥2 + 16) ∙ 𝑥+
√𝑥2+16

𝑥+√𝑥2+16
      Multiply and divide          
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                                                                                                     by the conjugate. 

                                   = lim
𝑥→∞

𝑥2−(𝑥2+16)

𝑥+√𝑥2+16
= lim
𝑥→∞

−16

𝑥+√𝑥2+16
  

As 𝑥 → ∞, the denominator in this last expression becomes arbitrarily large, while 

the numerator remains constant, so we see that the limit is 0. We can also obtain this 

result by a direct calculation using the Limit Laws: 

                           lim
𝑥→∞

−16

𝑥+√𝑥2+16
= lim

𝑥→∞

−16
𝑥

1+√
𝑥2

𝑥2
+
16

𝑥2

= 0

1+√1+0
= 0. 

2.5.4 Oblique Asymptotes: 

Remark: 

      If the degree of the numerator of a rational function is 1 greater than 

the degree of the denominator, the graph has an oblique or slant line 

asymptote. We find an equation for the asymptote by dividing numerator 

by denominator to express ƒ as a linear function plus a remainder that goes 

to zero as 𝑥 → ±∞. 

Example: 

        Find the oblique asymptote of the graph of 𝑓(𝑥) = 𝑥2−3

2𝑥−4
 . 

Solution:  

𝑓(𝑥) = 𝑥2−3

2𝑥−4
= 𝟐∙(𝑥2−3)

𝟐.(2𝑥−4)
=

2𝑥2−6

2(2𝑥−4)
=
2𝑥2−𝟖+𝟐

2(2𝑥−4)
  

         = (2𝑥2−8)+2

2(2𝑥−4)
= (2𝑥2−8)

2(2𝑥−4)
+ 2

2(2𝑥−4)
  

         =
(2𝑥2−4𝑥+4𝑥−8)

2(2𝑥−4)
+
(2𝑥2−4𝑥+4𝑥−8)+2

2(2𝑥−4)
  

𝑓(𝑥) = 𝑥2−3

2𝑥−4
= 𝑥2−𝟒+𝟏

(2𝑥−4)
=

𝑥2−4

(2𝑥−4)
+

1

(2𝑥−4)
     

         =
(𝒙−𝟐)(𝑥+2)

2(𝒙−𝟐)
+

1

(2𝑥−4)
= (𝑥+2)

2
+ 1

(2𝑥−4)
= (𝑥

2
+ 1)⏟    

𝒍𝒊𝒏𝒆𝒂𝒓 𝒈(𝒙)

+
1

(2𝑥−4)
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     As 𝑥 → ±∞, the part 
1

(2𝑥−4)
, whose magnitude gives the vertical 

distance between the  graphs of f and g, goes to zero, making the slanted 

line  𝑔(𝑥) = 𝑥

2
+ 1   an asymptote of the graph of  f. The line 𝑦 = 𝑔(𝑥) is 

an asymptote both to the right and to the left. 

Notice in Example 

2.5.5 Infinite Limits: 

Remark: 

      Let us look again at the function 𝑓(𝑥) =  1 𝑥⁄ . 

As 𝑥 → 0+, the values of ƒ grow without bound, 

eventually reaching and surpassing every positive 

real number. That is, given any positive real number 

B, however large, the values of ƒ become larger 

still. 

      Thus, ƒ has no limit as 𝑥 → 0+. It is 

nevertheless convenient to describe the behavior of 

ƒ by saying that ƒ(x) approaches ∞ as 𝑥 → 0+. We 

write lim
𝑥→0+

𝑓(𝑥) = lim
𝑥→0+

1

𝑥
=  ∞. 

      In writing this equation, we are not saying that the limit exists. Nor 

are we saying that there is a real number ∞, for there is no such number. 

Rather, this expression is just a concise way of saying that lim
𝑥→0+

1

𝑥
 does not 

exist because 1
𝑥
 becomes arbitrarily large and positive as 𝑥 → 0+. 

Example: 

     Find lim
𝑥→1+

1

𝑥−1
 and lim

𝑥→1−
1

𝑥−1
.  
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Geometric Solution: 

    The graph of 𝑦 =
1

𝑥−1
 is the graph of 𝑦 =

1

𝑥
 

shifted 1 unit to the right. Therefore, 𝑦 =
1

𝑥−1
 

behaves near 1 exactly the way 𝑦 =
1

𝑥
 behaves 

near 0: 

              lim
𝑥→1+

1

𝑥−1
= ∞   and     lim

𝑥→1−
1

𝑥−1
= −∞. 

Analytic Solution: 

    Think about the number 𝑥 − 1 and its reciprocal. As 𝑥 → 1+, we have 

(𝑥 − 1) → 0+ and 1

𝑥−1
→ ∞. As 𝑥 → 1−, we have (𝑥 − 1) → 0− and 1

𝑥−1
→ −∞. 

Example: 

     Discuss the behavior of 𝑓(𝑥) =  1
𝑥2

 as 𝑥 → 0. 

Solution: 

      As x approaches zero from either side, the 

values of 
1

𝑥2
 are positive and become arbitrarily 

large. This means that lim
𝑥→0
𝑓(𝑥) = lim

𝑥→0

1

𝑥2
=  ∞. 

   The function 𝑦 =  
1

𝑥
  shows no consistent behavior as 𝑥 → 0. We have 1

𝑥
→ ∞ 

if 𝑥 → 0+, but 1
𝑥
→ −∞ if 𝑥 → 0−. All we can say about lim 

𝑥→0

1

𝑥
 is that it does 

not exist. The function 𝑦 =  
1

𝑥2
 is different. Its values approach infinity as x 

approaches zero from either side, so we can say that lim
𝑥→0

 
1

𝑥2
=  ∞. 

Example: 

      The following examples illustrate that rational functions can behave 

in various ways near zeros of the denominator 
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a) lim
𝑥→2

 
(𝑥−2)2

𝑥2−4
= lim
𝑥→2

(𝑥−2)2

(𝑥−2)(𝑥+2)
= lim
𝑥→2

(𝑥−2)

(𝑥+2)
= 0. Can substitute 2 for x after 

algebraic manipulation 

eliminates division by 0. 

b) lim
𝑥→2

 
(𝑥−2)

𝑥2−4
= lim
𝑥→2

(𝑥−2)

(𝑥−2)(𝑥+2)
= lim
𝑥→2

1

(𝑥+2)
= 1

4
. Again substitute 2 for x 

 after algebraic manipulation 

eliminates division by 0. 

c) lim
𝑥→2+

 
(𝑥−3)

𝑥2−4
= lim
𝑥→2+

(𝑥−3)

(𝑥−2)(𝑥+2)
= −∞. The values are negative for 

𝒙 > 𝟐 near 2. 

d) lim
𝑥→2−

 
(𝑥−3)

𝑥2−4
= lim
𝑥→2−

(𝑥−3)

(𝑥−2)(𝑥+2)
= ∞. The values are positive for 𝒙 <

𝟐 near 2. 

e) lim
𝑥→2

 
(𝑥−3)

𝑥2−4
= lim
𝑥→2

(𝑥−3)

(𝑥−2)(𝑥+2)
 does not exist. Limits from left and from right 

differ. 

f) lim
𝑥→2

 
(2−𝑥)

(𝑥−2)3
= lim
𝑥→2

−(𝑥−2)

(𝑥−2)3
= lim
𝑥→2

−1

(𝑥−2)2
= −∞. Denominator is positive, 

so values are negative near 

𝒙 = 𝟐. 

       In parts (a) and (b), the effect of the zero in the denominator at 𝑥 = 2 

is canceled because the numerator is zero there also. Thus, a finite limit 

exists. This is not true in part (f), where cancellation still leaves a zero 

factor in the denominator. 

Example: 

      Find lim
𝑥→−∞

 
2𝑥5−6𝑥4+1

3𝑥2+𝑥−7
 . 

Solution: 

     We are asked to find the limit of a rational function as 𝑥 → −∞, so we 

divide the numerator and denominator by 𝑥2, the highest power of x in the 

denominator: 

lim
𝑥→−∞

 
2𝑥5−6𝑥4+1

3𝑥2+𝑥−7
= lim
𝑥→−∞

 
2𝑥3−6𝑥2+𝑥−2

3+𝑥−1−7𝑥−2
= lim
𝑥→−∞

 
2𝑥2(𝑥−3)+𝑥−2

3+𝑥−1−7𝑥−2
= −∞,   𝒙−𝟐 → 𝟎, (𝒙 − 𝟑) → −∞ 

because the numerator tends to −∞ while the denominator approaches 3 

as 𝑥 → −∞. 
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2.5.6 Precise Definitions of Infinite Limits: 

Definition: 

1. We say that 𝑓(𝑥) approaches infinity as x approaches c, and write 

                                                 lim
𝑥→𝑐

𝑓(𝑥) = ∞,  

 if for every positive real number B there exists a corresponding  𝛿 > 0 

such that 

                          𝑓(𝑥) > 𝐵     whenever   0 < |𝑥 − 𝑐| < 𝛿. 

2. We say that 𝑓(𝑥) approaches negative infinity as x approaches c, and 

write 

                                                 lim
𝑥→𝑐

𝑓(𝑥) = −∞,  

 if for every negative real number −𝐵 there exists a corresponding  𝛿 > 0 

such that 

                          𝑓(𝑥) < −𝐵     whenever   0 < |𝑥 − 𝑐| < 𝛿. 

  
For 𝑐 − 𝛿 <  𝑥 <  𝑐 + 𝛿 , the graph 

of 𝑓(𝑥) lies above the line 𝑦 =  𝐵. 

For 𝑐 − 𝛿 <  𝑥 <  𝑐 + 𝛿 , the graph 

of 𝑓(𝑥) lies below the line 𝑦 = − 𝐵. 

Example: 

      Prove that lim
𝑥→0

 
1

𝑥2
= ∞ . 

Solution: 

      Given B > 0, we want to find  𝛿 > 0 such that 

                        
1

𝑥2
> 𝐵     whenever   0 < |𝑥 − 0| < 𝛿. 



18 
 

       Now,  
1

𝑥2
> 𝐵  if and only if   𝑥2 <

1

𝐵
  or, equivalently, |𝑥| <

1

√𝐵
 . Thus, 

choosing  𝛿 =
1

√𝐵
  (or any smaller positive number), we  see  that  if 

0 < |𝑥| < 𝛿 then 
1

𝑥2
>

1

𝛿2
≥ 𝐵. Therefore, by definition, lim

𝑥→0
 
1

𝑥2
= ∞ . 

2.5.7 Vertical Asymptotes: 

Definition: 

     A line 𝑥 = 𝑎 is a vertical asymptote of the graph of a function 𝑦 = 𝑓(𝑥) 
if either 

                        lim
𝑥→𝑎+

𝑓(𝑥) = ±∞   and  lim
𝑥→𝑎−

𝑓(𝑥) = ±∞ . 

Example: 

      Find the horizontal and vertical asymptotes of the curve 𝑦 = 𝑥+3

𝑥+2
 . 

Solution: 

       We are interested in the behavior as 𝑥 → ±∞,  and the 

behavior as 𝑥 → −2, where the denominator is zero.   

           𝑦 = 𝑥+3

𝑥+2
=
𝑥+𝟐+𝟏

𝑥+2
=
𝑥+2

𝑥+2
+

1

𝑥+2
= 1 +

1

𝑥+2
 . 

      We see that the curve in question is the graph of 

𝑓(𝑥) =
1

𝑥
 shifted 1 unit up and 2 units left. The 

asymptotes, instead of being the coordinate axes, are  

now the lines y = 1 and 𝑥 =  −2. As 𝑥 → ±∞., the curve approaches the 

horizontal asymptote y = 1; as 𝑥 → −2, the curve approaches the vertical 

asymptote 𝑥 =  −2. 

Example: 

      Find the horizontal and vertical asymptotes of the curve 𝑓(𝑥) = −8

𝑥2−4
 . 
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Solution: 

     We are interested in the behavior as 𝑥 → ±∞ and 

as 𝑥 → ±2., where the denominator is zero. Notice 

that f is an even function of x, so its graph is 

symmetric with respect to the y-axis. 

a) The behavior as 𝑥 → ±∞. Since lim
𝑥→∞

𝑓(𝑥) = 0,   

the line y = 0 is a horizontal asymptote of the  

graph to the right. By symmetry it is an asymptote to the left as well. 

Notice that the curve approaches the x-axis from only the negative side 

(or from below). Also, 𝑓(0) = 2. 

b) The behavior as 𝑥 → ±2. Since lim
𝑥→2+

𝑓(𝑥) = −∞ and lim
𝑥→2−

𝑓(𝑥) = ∞,the 

line 𝑥 =  2 is a vertical asymptote both from the right and from the left. By 

symmetry, the line 𝑥 =  −2 is also a vertical asymptote. 

There are no other asymptotes because f has a finite limit at all other points. 

Example: 

       The graph of the natural logarithm function has the 

y-axis (the line 𝑥 = 0) as a vertical asymptote. We see 

this from the graph (which  is the reflection of the graph 

of the  natural   exponential  function  across  the  line 

𝑦 =  𝑥) and the fact that the x-axis is a horizontal 

asymptote of 𝑦 =  𝑒𝑥. Thus, 

                                             lim
𝑥→0+

ln 𝑥 = −∞.  

       The same result is true for 𝑦 =  log𝑎 𝑥 whenever 𝑎 >  1. 

Example: 

     The curves 𝑦 = sec 𝑥 =
1

cos𝑥
 and 𝑦 = tan 𝑥 = sin𝑥

cos𝑥
 both have vertical 

asymptotes at odd-integer multiples of  𝜋 2⁄ , which are the points where 

𝑐𝑜𝑠 𝑥 =  0. 
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Exercises: 

1. For the function f whose graph is given, 

determine the following limits. Write  

∞ or −∞ where appropriate 

a) lim
𝑥→4

𝑓(𝑥) b) lim
𝑥→2+

𝑓(𝑥) c) lim
𝑥→2−

𝑓(𝑥) 

d) lim
𝑥→2

𝑓(𝑥) e) lim
𝑥→3+

𝑓(𝑥) f) lim
𝑥→3−

𝑓(𝑥) 

g)  lim
𝑥→−3

𝑓(𝑥) h) lim
𝑥→0+

𝑓(𝑥) i) lim
𝑥→0−

𝑓(𝑥) 

j)  lim
𝑥→0

𝑓(𝑥) k) lim
𝑥→∞

𝑓(𝑥) l) lim
𝑥→−∞

𝑓(𝑥) 

2. In following, find the limit of each function 

     a) as 𝑥 → ∞       and       

     b) as 𝑥 → −∞.  

i.   𝑓(𝑥) = 2

𝑥
− 3 ii.  𝑓(𝑥) = 𝜋 − 2

𝑥2
 iii.   𝑔(𝑥) = 1

2+(1 𝑥⁄ )
 

iv. 𝑔(𝑥) = 1

8−(5 𝑥2⁄ )
  v.  ℎ(𝑥) = −5+(7 𝑥⁄ )

3−(1 𝑥2⁄ )
 vi.  ℎ(𝑥) = 3−(2 𝑥⁄ )

4+(√2 𝑥2⁄ )
 

3. Find the limits in following 

a) lim
𝑥→∞

sin2𝑥
𝑥

 b) lim
𝜃→−∞

cos𝜃
3𝜃

 

c) lim
𝑡→−∞

2−t+sin 𝑡
𝑡+cos 𝑡

 d)   lim
𝑟→∞

𝑟+sin𝑟
2𝑟+7−5sin𝑟

 

4. In following, find the limit of each rational function  

     a) as 𝑥 → ∞       and       

     b) as 𝑥 → −∞.  
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     Write  ∞ or −∞ where appropriate. 

i) 𝑓(𝑥) = 2𝑥+3

5𝑥+7
 ii) 𝑓(𝑥) = 2𝑥3+7

𝑥3−𝑥2+𝑥+7
 

iii) ℎ(𝑥) = 7𝑥3

𝑥3−3𝑥2+6𝑥
 iv) 𝑔(𝑥) = 10𝑥5+𝑥4+31

𝑥6
 

v) 𝑓(𝑥) = 3𝑥7+5𝑥2−1

6𝑥3−7𝑥+3
 vi) ℎ(𝑥) = 5𝑥8−2𝑥3+9

3+𝑥−4𝑥5
 

5. The process by which we determine limits of rational functions applies 

equally well to ratios containing non-integer or negative powers of x. 

Divide numerator and denominator by the highest power of x in the 

denominator and proceed from there. Find the limits in following. 

Write ∞ or −∞ where appropriate. 

a) lim
𝑥→∞

√8𝑥
2−3

2𝑥2+𝑥
 b) lim

𝑥→−∞
(
𝑥2+𝑥−1

8𝑥2−3
)
1 3⁄

 

c) lim
𝑥→−∞

(
1−𝑥3

𝑥2+7𝑥
)
5

 
d) lim
𝑥→∞

2+√𝑥

2−√𝑥
 

e) lim
𝑥→∞

2√𝑥+𝑥−1

3𝑥−7
 f) lim

𝑥→−∞

√𝑥
3

−5𝑥+3

2𝑥+𝑥2 3⁄ −4
 

g) lim
𝑥→∞

√𝑥2+1
𝑥+1

 h) lim
𝑥→−∞

4−3𝑥3

√𝑥6+9
 

6. Find the limits in following. Write ∞ or −∞ where appropriate. 

a) lim
𝑥→0+

1
3𝑥

 b) lim
𝑥→0−

5
2𝑥

 c) lim
𝑥→5−

3𝑥
2𝑥+10

 

d) lim
𝑥→7

4

(𝑥−7)2
 e) lim

𝑥→0

−1

𝑥2(𝑥+1)
 f) lim

𝑥→0

−1

𝑥2 3⁄
 

g) lim
𝑥→(𝜋 2⁄ )−

tan𝑥 h) lim
𝑥→(−𝜋 2⁄ )+

sec𝑥 i) lim
𝜃→0−

(1+csc𝜃) 

j) lim
𝜃→0

(2−cot𝜃)   

7. Find the limits in following. Write ¬∞ or -∞ where appropriate. 

1) 𝐥𝐢𝐦 𝟏

𝒙𝟐−𝟒
 as 2) 𝐥𝐢𝐦 𝒙

𝒙𝟐−𝟏
 as 

a) 𝑥 → 2+ b) 𝑥 → 2− a) 𝑥 → 1+ b) 𝑥 → 1− 

c) 𝑥 → −2+ d) 𝑥 → −2− c) 𝑥 → −1+ d) 𝑥 → −1− 

3) 𝐥𝐢𝐦 (𝒙
𝟐

𝟐
−
𝟏

𝒙
) as 4) 𝐥𝐢𝐦 𝒙

𝟐−𝟏

𝟐𝒙+𝟒
 as 

a) 𝑥 → 0+ b) 𝑥 → 0− a) 𝑥 → −2+ b) 𝑥 → −2− 

c) 𝑥 → √2
3

 d) 𝑥 → −1 c) 𝑥 → 1+ d) 𝑥 → 0− 

5) 𝐥𝐢𝐦 𝒙
𝟐−𝟑𝒙+𝟐

𝒙𝟑−𝟐𝒙𝟐
 as 6) 𝐥𝐢𝐦 𝒙

𝟐−𝟑𝒙+𝟐

𝒙𝟑−𝟒𝒙
 as 

a) 𝑥 → 0+ b) 𝑥 → 2+ a) 𝑥 → 2+ b) 𝑥 → −2+ 
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c) 𝑥 → 2− d) 𝑥 → 2 c) 𝑥 → 0− d) 𝑥 → 1+ 
e) What, if anything, can be said 

about the limit as 𝑥 → 0? 
e) What, if anything, can be said   

     about the limit as 𝑥 → 0? 

7) 𝐥𝐢𝐦 (𝟐− 𝟑

𝒙𝟏 𝟑⁄
) as 8) 𝐥𝐢𝐦 ( 𝟏

𝒙𝟑 𝟓⁄
+𝟕) as 

a) 𝑥 → 0+ b) 𝑥 → 0− a) 𝑥 → 0+ b) 𝑥 → 0− 

9) 𝐥𝐢𝐦 ( 𝟏

𝒙𝟐 𝟑⁄
+

𝟐

(𝒙−𝟏)𝟐 𝟑⁄
) as 10) 𝐥𝐢𝐦 ( 𝟏

𝒙𝟏 𝟑⁄
+

𝟐

(𝒙−𝟏)𝟒 𝟑⁄
) as 

a) 𝑥 → 0+ b) 𝑥 → 0− a) 𝑥 → 0+ b) 𝑥 → 0− 

c) 𝑥 → 1+ d) 𝑥 → 1− c) 𝑥 → 1+ d) 𝑥 → 1− 
 

8. Graph the rational functions in following. Include the graphs and 

equations of the asymptotes and dominant terms. 

a) 𝑦 = 1

𝑥−1
 b) 𝑦 = 1

𝑥+1
 c) 𝑦 = 1

2𝑥+4
 

d) 𝑦 = −3

𝑥−3
 e) 𝑦 = 𝑥+3

𝑥+2
 f) 𝑦 = 2𝑥

𝑥+1
 

9. Determine the domain of each function in following. Then use various 

limits to find the asymptotes. 

a) 𝑦 = 4 + 3𝑥2

𝑥2+1
 b) 𝑦 = 2𝑥

𝑥2−1
 c) 𝑦 =

√𝑥2+4

𝑥
 d) 𝑦 = 𝑥3

𝑥3−8
 

10. Find the limits in following 

a) lim
𝑥→∞

(√𝑥+9−√𝑥+4) b) lim
𝑥→∞

(√𝑥2+25−√𝑥2−1) c) lim
𝑥→−∞

(√𝑥2+3+𝑥) 

d) lim
𝑥→−∞

(2𝑥+√4𝑥2+3𝑥−2) e) lim
𝑥→∞

(√9𝑥2−𝑥−3𝑥) f) lim
𝑥→∞

(√𝑥2+𝑥−√𝑥2−𝑥) 

11. Graph the rational functions in following. Include the graphs and 

equations of the asymptotes. 

a) 𝑦 = 𝑥2

𝑥−1
 b) 𝑦 = 𝑥2+1

𝑥−1
 c) 𝑦 = 𝑥2−4

𝑥−1
 

d) 𝑦 = 𝑥2−1

2𝑥+4
 e) 𝑦 = 𝑥2−1

𝑥
 f) 𝑦 = 𝑥3+1

𝑥2
 

 

 

 

 

 

 


