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2.6 Continuity 

2.6.1 Continuity at a Point 

Definition: 

    A function 𝑓(𝑥) is continuous at a point 𝑥 = 𝑐 if and only if it meets 

the following three conditions.     

1. 𝑓(𝑐) exists. (c lies in the domain of f ). 

2. lim
𝑥→𝑐

𝑓(𝑥) exists. ( f has a limit as 𝒙 → 𝒄). 

3. lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐) (The limit equals the function value). 

Example: 

     At which numbers does the function f in Figure 

appear to be not continuous? Explain why. What 

occurs at other numbers in the domain? 

Solution: 

      First, we observe that the domain of the function is the closed interval 

[0, 4], so we will be considering the numbers x within that interval. From 

the figure, we notice right away that there are breaks in the graph at the 

numbers 𝑥 = 1, 𝑥 = 2, and 𝑥 = 4. 

At the interior point x = 1, the function is not continuous. 

Since the function fails to have a limit. It does have both a left-hand limit, 

lim
𝑥→1−

𝑓(𝑥) = 0, as well as a right-hand limit, lim
𝑥→1+

𝑓(𝑥) = 1 , but the limit 

values are different, resulting in a jump in the graph. The function is not 

continuous at 𝑥 =  1.However, the function value 𝑓(1) = 1 is equal to the 

limit from the right. 

At the interior point x = 2, the function is not continuous. 

At 𝑥 = 2, the function does have a limit, lim
𝑥→2

𝑓(𝑥) = 1, but the value of the 

function is 𝑓(2)  =  2. The limit and function values are not the same, so 

there is a break in the graph and f is not continuous at 𝑥 = 2. 
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At the interior point x = 4, the function is not continuous. 

At 𝑥 = 4, the function does have a left-hand limit at this right endpoint, 

lim
𝑥→4−

𝑓(𝑥) = 1,but again the value of the function 𝑓(4) = 1 2⁄  differs from 

the value of the limit. We see again a break in the graph of the function at 

this endpoint and the function is not continuous from the left. 

Numbers at which the graph of f has no breaks: 

At x = 3, the function has a limit, lim
𝑥→3

𝑓(𝑥) = 2. Moreover, the limit is the 

same value as the function there, 𝑓(3) = 2. The function is continuous at 

𝑥 = 3. 

At 𝒙 = 𝟎, the function has a right-hand limit at this left endpoint, 

lim
𝑥→0+

𝑓(𝑥) = 1 and the value of the function is the same, 𝑓(0) = 1. The 

function is continuous from the right at x = 0. Because x = 0 is a left 

endpoint of the function’s domain, we have thatlim
𝑥→0

𝑓(𝑥) = 1  and so f is 

continuous at x = 0. 

At all other numbers 𝒙 = 𝒄 in the domain, the function has a limit equal to 

the value of the function, so lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐). For example, lim
𝑥→5 2⁄

𝑓(𝑥) =

𝑓(5 2⁄ ) = 5 2⁄ . No breaks appear in the graph of the function at any of 

these numbers and the function is continuous at each of them. 

    The function f  is continuous at every x in [0, 4] except 𝑥 = 1, 2, and 4. 

Remark: 

     The following definitions capture the continuity ideas we observed in 

previous example. 

Definition: 

        Let c be a real number that is either an interior point or an endpoint 

of an interval in the domain of f.  
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❖ The function f is continuous at c if lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐). 

❖ The function f is right-continuous at c (or continuous from the 

right) if lim
𝑥→𝑐+

𝑓(𝑥) = 𝑓(𝑐). 

❖ The function f is left-continuous at c (or continuous from the left) 

if lim
𝑥→𝑐−

𝑓(𝑥) = 𝑓(𝑐). 

Example: 

The function 𝑓(𝑥) =  √4 − 𝑥2  is continuous over its 

domain [−2, 2]. It is continuous at all points of this interval, 

including the endpoints 𝑥 =  −2 and 𝑥 =  2. 

Example: 

     At which numbers does the function 𝑈(𝑥) = {
1 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

  

is not continuous?  

Solution: 

     The unit step function 𝑈(𝑥) is right-continuous at 𝑥 = 0, but is neither 

left-continuous nor continuous there. It has a jump discontinuity at 𝑥 = 0. 

Example: 

     At which numbers does the function 𝑦 = ⌊𝑥⌋  is 

not continuous?  

Solution: 

     The function 𝑦 = ⌊𝑥⌋. Is discontinuous at every 

integer n, because the left-hand and right-hand 

limits are not equal as 𝑥 → 𝑛: 

         lim
𝑥→𝑛−

⌊𝑥⌋ = 𝑛 − 1  and  lim
𝑥→𝑛+

⌊𝑥⌋ = 𝑛. 

     Since ⌊𝑛⌋ = 𝑛, the greatest integer function is right-continuous at every 

integer n (but not left-continuous). 

     The greatest integer function is continuous at every real number other 

than the integers. For example, lim
𝑥→1.5

⌊𝑥⌋ = ⌊1.5⌋ = 1. 

     In general, if 𝑛 −  1 < 𝑐 < 𝑛, 𝑛 an integer, thenlim
𝑥→𝑐

⌊𝑥⌋ = ⌊𝑐⌋ = 𝑛− 1. 
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Remark: 

    We define a continuous function to be one that is continuous at 

every point in its domain. A function always has a specified domain, so if 

we change the domain, then we change the function, and this may change 

its continuity property as well. If a function is discontinuous at one or 

more points of its domain, we say it is a discontinuous function. 

Example: 

a) The function 𝑓(𝑥) = 1

𝑥
  is a continuous function 

because it is continuous at every point of its 

domain. The point 𝑥 = 0 is not in the domain of 

the function f, so f is not continuous on any interval 

containing 𝑥 = 0. Moreover, there is no way to 

extend f to a new function that is defined and 

continuous at 𝑥 = 0. The function f does not have 

a removable discontinuity at 𝑥 = 0. 

b) The identity function 𝑓(𝑥) = 𝑥 and constant functions are continuous 

everywhere. 

Theorem (Properties of Continuous Functions): 

     If the functions f and g are continuous at 𝒙 = 𝒄, then the following 

algebraic combinations are continuous at 𝒙 = 𝒄. 

1. Sums: 𝒇 +  𝒈  

2. Differences: 𝒇 −  𝒈  

3. Constant multiples: 𝒌 ∙ 𝒇,  for any number k 

4. Products: 𝒇 ∙  𝒈  

5. Quotients: 𝒇 𝒈⁄  ,  provided 𝒈(𝒄) ≠ 𝟎 

6. Powers: 𝒇𝒏, n a positive integer  

7. Roots: √𝒇
𝒏

, provided it is defined on an interval 

containing c, where n is a positive integer 
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Example: 

a) Every polynomial 𝑃(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0 is continuous 

because lim
𝑥→𝑐

𝑃(𝑥) = 𝑃(𝑐). 

b) If 𝑃(𝑥) and 𝑄(𝑥) are polynomials, then the rational function 

𝑃(𝑥) 𝑄(𝑥)⁄  is continuous wherever it is defined (𝑄(𝑐)  ≠  0).   

c) The function 𝑓(𝑥) = | 𝑥| is continuous. If 𝑥 >  0, we have 𝑓(𝑥) = 𝑥, 

a polynomial. If 𝑥 <  0, we have 𝑓(𝑥) = −𝑥, another polynomial. 

Finally, at the origin, lim
𝑥→0

| 𝑥| = | 0| = 0. 

d) The functions 𝑦 = 𝑠𝑖𝑛 𝑥 and 𝑦 = 𝑐𝑜𝑠 𝑥 are continuous at 𝑥 = 0 . Both 

functions are continuous everywhere.  

e) All six trigonometric functions are continuous wherever they are 

defined. For example, 𝑦 = 𝑡𝑎𝑛 𝑥 is continuous on  ⋯∪ (−𝜋 2⁄ , 𝜋 2⁄ ) ∪

(𝜋 2⁄ , 3𝜋 2⁄ ) ∪ ⋯. 

Theorem (Compositions of Continuous Functions): 

     If f is continuous at c, and g is continuous at 𝒇(𝒄), then the 

composition 𝒈 ∘  𝒇 is continuous at c. 

              
Example: 

     Show that the following functions are continuous on their natural 

domains. 

a) 𝑦 = √𝑥2 − 2𝑥 − 5 b) 𝑦 = 𝑥2 3⁄

1+𝑥4
 c) 𝑦 = |𝑥−2

𝑥2−2
| d) 𝑦 = |𝑥 sin 𝑥

𝑥2+2
| 

Solution: 

a) The square root function is continuous on [ 0,∞) because it is a root of 

the continuous identity function 𝑓(𝑥) = 𝑥. The given function is then 

the composition of the polynomial 𝑓(𝑥) = 𝑥2 − 2𝑥 − 5 with the square 

root function 𝑔(𝑡)  = √ 𝑡 , and is continuous on its natural domain. 
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b) The numerator is the cube root of the identity function squared; the 

denominator is an everywhere-positive polynomial. Therefore, the 

quotient is continuous. 

c) The quotient 𝑥 − 2 𝑥2 − 2⁄  is continuous for all 𝑥 = ± √2, and the 

function is the composition of this quotient with the continuous absolute 

value function. 

d) Because the sine function is everywhere-

continuous, the numerator term 𝑥 sin 𝑥 is the 

product of continuous functions, and the 

denominator term 𝑥2 + 2 is an everywhere-

positive polynomial. The given function is the 

composition of a quotient of continuous 

functions with the continuous absolute value 

function. 

Theorem (Limits of Continuous Functions): 

      If 𝐥𝐢𝐦
𝒙→𝒄

𝒇(𝒙) = 𝒃 and g is continuous at the point b, then 

                                    𝐥𝐢𝐦
𝒙→𝒄

𝒈(𝒇(𝒙)) = 𝒈(𝒃). 

Example: 

    As an application of Theorem Limits of Continuous Functions, we 

have the following calculations. 

a) lim
𝑥→𝜋 2⁄

cos(2𝑥 + sin(3𝜋
2
+ 𝑥)) = cos( lim

𝑥→𝜋 2⁄
2𝑥 + lim

𝑥→𝜋 2⁄
(sin(3𝜋

2
+ 𝑥))  

                                                    = cos(𝜋+ sin 2𝜋) = cos 𝜋 = −1. 

b) lim 
𝑥→1

𝑠𝑖𝑛−1( 1−𝑥
1−𝑥2

) = 𝑠𝑖𝑛−1 (lim 
𝑥→1

1−𝑥

1−𝑥2
) Arcsine is continuous. 

                              = 𝑠𝑖𝑛−1 (lim 
𝑥→1

1

1+𝑥
) Cancel common factor (𝟏 − 𝒙). 

                              = 𝑠𝑖𝑛−11
2
= 𝜋

6
.  

c) lim
𝑥→0

(√𝑥 + 1 ∙ 𝑒tan𝑥) = lim 
𝑥→0

√𝑥 + 1 ∙ exp (lim tan 𝑥
𝑥→0

)     exp is continuous.  

                           = 1 ∙ 𝑒0 = 1.  
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Theorem (The Intermediate Value Theorem for Continuous Functions): 

  

    If f is a continuous function on a closed 

interval [ 𝒂, 𝒃 ], and if 𝒚𝟎 is any value between 

𝒇(𝒂) and 𝒇(𝒃), then 𝒚𝟎  =  𝒇 (𝒄) for some c in 

[ 𝒂, 𝒃 ]. 

Example: 

      Show that there is a root of the equation 𝑥3 − 𝑥 − 1 = 0 between 1 

and 2. 

Solution: 

      Let 𝑓(𝑥) = 𝑥3 − 𝑥 − 1. Since 𝑓(1) = 1 − 1 − 1 = −1 <  0 and 

𝑓(2) = 23 − 2 − 1 =  5 >  0, we see that 𝑦0 = 0 is a value between 𝑓(1) 

and 𝑓(2). Since f is a polynomial, it is continuous, and the Intermediate 

Value Theorem says there is a zero of  f  between 1 and 2.  

Example: 

     Use the Intermediate Value Theorem to prove that 

the equation √2𝑥 + 5 = 4 − 𝑥2  has a solution. 

Solution: 

      We rewrite the equation as √2𝑥 + 5 + 𝑥2 − 4 = 0, 

and set 𝑓(𝑥) = √2𝑥 + 5 + 𝑥2 − 4. Now 𝑔(𝑥) = √2𝑥 + 5 is continuous on 

the interval [−5 2⁄ ,∞) since it is formed as the composition of two 

continuous functions, the square root function with the nonnegative linear 

function 𝑦 = 2𝑥 + 5. Then f is the sum of the function g and the quadratic 

function 𝑦 = 𝑥2 − 4, and the quadratic function is continuous for all values 

of x. It follows that 𝑓(𝑥) = √2𝑥 + 5 + 𝑥2 − 4 is continuous on the interval 

[− 5 2⁄ ,∞). By trial and error, we find the function values 𝑓(0) =  √5 −

4 ≈ −1.76 and 𝑓(2) = √ 9  =  3. Note that f is continuous on the finite 
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closed interval [ 0, 2], which is a subset of the domain [−5 2⁄ ,∞). Since 

the value 𝑦0 = 0 is between the numbers 𝑓(0) = −1.76 and 𝑓(2) = 3, by 

the Intermediate Value Theorem there is a number 𝑐 ∈  [ 0, 2] such that 

𝑓(𝑐) = 0. We have found a number c that solves the original equation. 

Exercises: 

1. Say whether the function graphed is continuous on [−1, 3]. If not, where 

does it fail to be continuous and why? 

a)  

 

b)  

 
c)  

 

d)  

 

2. Let 𝑓(𝑥) =

{
 
 

 
 
𝑥2 − 1, −1 ≤ 𝑥 < 0
2𝑥,           0 < 𝑥 < 1
1,                    𝑥 = 1
−2𝑥 + 4, 1 < 𝑥 < 2
0.               2 < 𝑥 < 3

 graphed in the accompanying figure 

a)  1) Does 𝑓(−1) exist? 

2) Does lim
𝑥→−1+

𝑓(𝑥) exist? 

3) Does lim
𝑥→−1+

𝑓(𝑥) = 𝑓(−1)? 

4) Is f continuous at x = −1? 

b)  1) Does 𝑓(1) exist? 

2) Does lim
𝑥→1

𝑓(𝑥) exist? 

3) Does lim
𝑥→1

𝑓(𝑥) = 𝑓(1)? 

4) Is f continuous at x = 1? 

c)  1) Is f defined at x = 2? (Look at the definition of f.) 

2) Is f continuous at x = 2? 
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d)  At what values of x is f continuous? 

e)  To what new value should 𝑓(1) be changed to remove the discontinuity? 

3. At what points are the following functions being continuous? 
a) 𝑦 = 1

𝑥−2
− 3𝑥 b) 𝑦 = 1

(𝑥+2)2
+ 4 c) 𝑦 = 𝑥+1

𝑥2−4𝑥+3
 

d) 𝑦 =
𝑥+3

𝑥2−3𝑥−10
 e) 𝑦 = |𝑥 − 1| + sin 𝑥   f) 𝑦 = 1

|𝑥|+1
− 𝑥2

2
 

g) 𝑦 = cos𝑥

𝑥
 h) 𝑦 = 𝑥+2

cos𝑥
 i) 𝑦 = csc2𝑥 

j) 𝑦 = tan 𝜋𝑥
2

 k) 𝑦 = 𝑥tan𝑥

𝑥2+1
 l) 𝑦 = √𝑥4+1

1+𝑠𝑖𝑛2𝑥
 

m) 𝑦 = √2𝑥 + 3 n) 𝑦 = √3𝑥 − 1
4

 o) 𝑦 = (2𝑥 − 1)1 3⁄   

p) 𝑦 = (2 − 𝑥)1 5⁄  q) 𝑓(𝑥) = {
𝑥2−𝑥−6
𝑥−3

, 𝑥≠3

5. 𝑥=3
 

r) 𝑓(𝑥) = {

𝑥3−8

𝑥2−4
, 𝑥 ≠ 2, 𝑥 ≠ −2

3, 𝑥 = 2
4. 𝑥 = −2

 

s) 𝑓(𝑥) = {

1−𝑥, 𝑥<0

𝑒𝑥, 0≤𝑥≤1

𝑥2+2. 𝑥>1

 

 

t) 𝑓(𝑥) = 𝑥+3

2−𝑒𝑥
  

4. Find the limits in following. Are the functions continuous at the point 

being approached? 

a) lim
𝑥→𝜋

sin(𝑥 − sin 𝑥) b) lim
𝑡→0

sin (𝜋
2
cos(tan 𝑡)) 

c) lim
𝑦→1

sec ( 𝑦 𝑠𝑒𝑐2𝑦−𝑡𝑎𝑛2𝑦−1) d) lim
𝑥→0

tan ( 𝜋
4
cos(sin 𝑥1 3⁄ )) 

e) lim
𝑡→0

cos ( 𝜋

√19−3sec 2𝑡
 f) lim

𝑥→𝜋 6⁄
√𝑐𝑠𝑐2𝑥 + 5√3 tan 𝑥 

g) lim
𝑥→0+

sin(
𝜋

2
𝑒√𝑥 h) lim

𝑥→1
𝑐𝑜𝑠−1(ln√𝑥) 

i) lim
𝑥→0

sec ( 𝑒𝑥 + 𝜋 tan 𝜋

4sec𝑥
−1) j) lim

𝑥→0
sin ( 𝜋+tan𝑥

tan𝑥−2sec𝑥
) 

k) lim
𝑡→0

tan (1 − sin 𝑡

𝑡
) l) lim

𝜃→0
cos ( 𝜋𝜃

sin𝜃
) 

5. For what value of a is 𝑓(𝑥) = {𝑥
2−1, 𝑥<3
2𝑎𝑥. 𝑥≥3

 continuous at every x? 

6. For what value of b is 𝑔(𝑥) = {
𝑥, 𝑥<−2

𝑏𝑥2. 𝑥≥−2
 continuous at every x? 

7. For what value of a is 𝑓(𝑥) = {𝑎
2𝑥−2𝑎, 𝑥≥2
12. 𝑥<2

 continuous at every x? 
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8. For what value of b is 𝑔(𝑥) = {
𝑥−𝑏
𝑏+1

, 𝑥<0

𝑥2+𝑏. 𝑥>0
 continuous at every x? 

9. For what value of a and b is 𝑓(𝑥) = {
−2, 𝑥≤−1
𝑎𝑥−𝑏, −1<𝑥<1
3. 𝑥≥1

 continuous at every x? 

10. For what value of a and b is 𝑔(𝑥) = {
𝑎𝑥+2𝑏, 𝑥≤0

𝑥2+3𝑎−𝑏, 0<𝑥≤2
3𝑥−5. 𝑥>2

 continuous at every x? 

11. Show that the equation 𝑥3 −  15𝑥 +  1 =  0 has three solutions in the 

interval [-4, 4]. 
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Chapter Three: Derivatives. 

3.1 Tangent Lines and the Derivative at a Point: 

     In this section we define the slope and tangent line to a curve at a point, 

and the derivative of a function at a point. The derivative gives a way to 

find both the slope of a graph and the instantaneous rate of change of a 

function. 

3.1.1 Finding a Tangent Line to the Graph of a Function: 

Definition: 

      The slope of the curve 𝑦 = 𝑓(𝑥) at the point 

𝑃(𝑥0, 𝑓(𝑥0)) is the number 

       lim
ℎ→0

𝑓(𝑥0+ℎ)−𝑓(𝑥0)
ℎ

    (Provided the limit exists). 

The tangent line to the curve at P is the line through P with this slope. 

Example:  

a) Find the slope of the curve 𝑦 = 1 𝑥⁄  at any 

point 𝑥 = 𝑎 ≠ 0. What is the slope at the point 

𝑥 = −1? 

b) Where does the slope equal −1 4⁄ ? 

c) What happens to the tangent line to the curve at 

the point (𝑎, 1 𝑎⁄ ) as a change? 

Solution: 

a) Here 𝑓(𝑥) = 1 𝑥⁄ . The slope at (𝑎, 1 𝑎⁄ )  is  

      lim
ℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)
ℎ

= lim
ℎ→0

1
𝑎+ℎ

 − 
1
𝑎

ℎ
 = lim

ℎ→0

𝑎−𝑎−ℎ
𝑎(𝑎+ℎ)

ℎ
= lim

ℎ→0

−ℎ
𝑎(𝑎+ℎ)

ℎ
= lim

ℎ→0

−1
𝑎(𝑎+ℎ)

= − 1

𝑎2.  

Notice how we had to keep writing “lim
ℎ→0

” before each fraction until the 

stage at which we could evaluate the limit by substituting ℎ = 0. The 
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number a may be positive or negative, but not 0. When 𝑎 = −1, the 

slope is − 1

(−1)2 = −1. 

b) The slope of 𝑦 = 1 𝑥⁄  at the point where 𝑥 = 𝑎 

is − 1

𝑎2. It will be −1

4
, provided that 

                                 − 1

𝑎2 = −1

4
 .  

This equation is equivalent to 𝑎2 = 4, so 𝑎 = 2 

or 𝑎 = −2. The curve has slope −1

4
 at the two 

points (2, 1 2⁄ ) and (−2, − 1 2⁄ ). 

c) The slope − 1

𝑎2 is always negative if 𝑎 ≠ 0. As 𝑎 → 0+ , the slope 

approaches −∞ and the tangent line becomes increasingly steep. We 

see this situation again as 𝑎 → 0−. As a moves away from 𝑥 = 0 in 

either direction, the slope approaches 0 and the tangent line levels off, 

becoming closer and closer to a horizontal line. 

3.1.2 Derivative at a Point: 

Definition: 

     The derivative of a function f at a point 𝒙𝟎, denoted 𝑓′(𝑥0), is 

                                     lim
ℎ→0

𝑓(𝑥0+ℎ)−𝑓(𝑥0)
ℎ

 ,  

Provided the limit exists. 

Remark: 

    All of the following are interpretations for the limit of the difference 

quotient 

lim
ℎ→0

𝑓(𝑥0+ℎ)−𝑓(𝑥0)
ℎ

. 

1. The slope of the graph of 𝑦 = 𝑓(𝑥) at 𝑥 = 𝑥0. 

2. The slope of the tangent line to the curve 𝑦 = 𝑓(𝑥) at 𝑥 = 𝑥0. 

3. The rate of change of 𝑓(𝑥) with respect to x at 𝑥 = 𝑥0. 

4. The derivative 𝑓′(𝑥0) at 𝑥 = 𝑥0. 
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Remark: 

     If we write 𝑧 = 𝑥 + ℎ, then ℎ = 𝑧 − 𝑥 and h 

approaches 0 if and only if z approaches x. 

Therefore, an equivalent definition of the 

derivative is as follows. This formula is 

sometimes more convenient to use when finding 

a derivative function, and it focuses on the point 

z that approaches x. 

           𝑓′(𝑥) = lim
𝑧→𝑥

𝑓(𝑧)−𝑓(𝑥)
𝑧−𝑥

.    (Alternative Formula for the Derivative) 

Remark: 

        The process of calculating a derivative is called differentiation. To emphasize the 

idea that differentiation is an operation performed on a function 𝑦 = 𝑓(𝑥), we use the 

notation  
𝑑

𝑑𝑥
𝑓(𝑥) as another way to denote the derivative 𝑓′(𝑥). 

Example: 

       Differentiate 𝑓(𝑥) = 𝑥

𝑥−1
. 

Solution: 

       We use the definition of derivative, which requires us to calculate 

𝑓(𝑥 + ℎ) and then subtract 𝑓(𝑥) to obtain the numerator in the difference 

quotient. We have 𝑓(𝑥) = 𝑥

𝑥−1
 and 𝑓(𝑥 + ℎ) = (𝑥+ℎ)

(𝑥+ℎ)−1
 , so 

𝑓′(𝑥)  = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)
ℎ

  Definition 

 
= lim

ℎ→0

(𝑥+ℎ)
(𝑥+ℎ)−1

 − 
𝑥

𝑥−1
ℎ

  Substitute. 

 = lim
ℎ→0

(𝑥+ℎ)(𝑥−1)−𝑥(𝑥+ℎ−1)
(𝑥+ℎ−1)(𝑥−1)

     𝒂

𝒃
− 𝒄

𝒅
= 𝒂𝒅−𝒄𝒃

𝒃𝒅
  

 = lim
ℎ→0

1
ℎ

 ∙ −ℎ
(𝑥+ℎ−1)(𝑥−1)

  Simplify. 

 = lim
ℎ→0

−1
(𝑥+ℎ−1)(𝑥−1)

= −1

(𝑥−1)2.  Cancel 𝒉 ≠ 𝟎 and evaluate. 
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Example: 

a) Find the derivative of 𝑓(𝑥) = √𝑥 for 𝑥 > 0. 

b) Find the tangent line to the curve 𝑓(𝑥) = √𝑥 

at 𝑥 = 4. 

Solution: 

a) We use the alternative formula to calculate 𝑓′: 

𝑓′(𝑥)  = lim
𝑧→𝑥

𝑓(𝑧)−𝑓(𝑥)
𝑧−𝑥

   

 = lim
𝑧→𝑥

√𝑧−√𝑥
𝑧−𝑥

   

 = lim
𝑧→𝑥

√𝑧−√𝑥

(√𝑧−√𝑥)(√𝑧+√𝑥)
  

𝟏

𝒂𝟐−𝒃𝟐 = 𝟏

(𝒂−𝒃)(𝒂+𝒃)
   

 = lim
𝑧→𝑥

1

√𝑧+√𝑥
= 1

2√𝑥
. Cancel and evaluate. 

b) The slope of the curve at 𝑥 = 4 is 𝑓′(4) =
1

2√4
=

1

4
 . 

     The tangent line is the line through the point (4,2) with slope 
1

4
:  

                𝑦−2

𝑥−4
= 1

4
⇒ 𝑦 = 2 +

1

4
(𝑥 − 4) ⇒ 𝑦 =

1

4
𝑥 + 1. 

Remark: 

     There are many ways to denote the derivative of a function 𝑦 = 𝑓(𝑥), 

where the independent variable is x and the dependent variable is y. Some 

common alternative notations for the derivative are 

            𝑓′(𝑥) = 𝑦′ =
𝑑𝑦

𝑑𝑥
=

𝑑𝑓

𝑑𝑥
=

𝑑

𝑑𝑥
𝑓(𝑥) = 𝐷(𝑓)(𝑥) = 𝐷𝑥𝑓(𝑥).     

    The symbols 𝑑  𝑑𝑥⁄  and D indicate the operation of differentiation. We 

read 𝑑𝑦  𝑑𝑥⁄  as “the derivative of y with respect to x,” and 𝑑𝑓  𝑑𝑥⁄  and 

(𝑑  𝑑𝑥⁄ )𝑓(𝑥) as “the derivative of  f with respect to x.” The “prime” 

notations 𝑦′ and 𝑓′  originate with Newton. The 𝑑  𝑑𝑥⁄  notations are 

similar to those used by Leibniz. The symbol 𝑑𝑦  𝑑𝑥⁄  should not be 

regarded as a ratio; it simply denotes a derivative. 
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     To indicate the value of a derivative at a specified number 𝑥 = 𝑎, we 

use the notation 𝑓′(𝑎) =
𝑑𝑦

𝑑𝑥
|

𝑥=𝑎
=

𝑑𝑓

𝑑𝑥
|

𝑥=𝑎
=

𝑑

𝑑𝑥
𝑓(𝑥)|

𝑥=𝑎
. For instance, in 

previous Example, 𝑓′(4) =
𝑑

𝑑𝑥
√𝑥|

𝑥=4
=

1

2√𝑥
|
𝑥=4

=
1

2√4
=

1

4
. 

Exercises: 

1. In following, find an equation for the tangent line to the curve at the 

given point. Then sketch the curve and tangent line together. 

a) 𝑦 = 4 − 𝑥2, (−1,3) b) 𝑦 = (𝑥 − 1)2 + 1, (1,1) 

c) 𝑦 = 2√𝑥, (1,2) d) 𝑦 = 1

𝑥2, (−1,1) 

e) 𝑦 = 𝑥3, (−2, −8) f) 𝑦 = 1

𝑥3, (−2, 1

8
) 

2. In following, find the slope of the function’s graph at the given point. 

Then find an equation for the line tangent to the graph there. 

a) 𝑓(𝑥) = 𝑥2 + 1, (2,5) b) 𝑓(𝑥) = 𝑥 − 2𝑥2, (1, −1) 

c) 𝑔(𝑥) = 𝑥

𝑥−2
, (3,3) d) 𝑔(𝑥) = 8

𝑥2, (2,2) 

e) ℎ(𝑡) = 𝑡3, (2,8) f) ℎ(𝑡) = 𝑡3 + 3𝑡, (1,4) 

g) 𝑓(𝑥) = √𝑥, (4,2) h) 𝑓(𝑥) = √𝑥 + 1, (8,3) 

3. In following, find the slope of the curve at the point indicated. 

a) 𝑦 = 5𝑥 − 3𝑥2, 𝑥 = 1 b) 𝑦 = 𝑥3 − 2𝑥 + 7, 𝑥 = −2 

c) 𝑦 = 1

𝑥−1
, 𝑥 = 3 d) 𝑦 = 𝑥−1

𝑥+1
, 𝑥 = 0 

4. Using the definition, calculate the derivatives of the functions in 

following. Then find the values of the derivatives as specified. 

a) 𝑓(𝑥) = 4 − 𝑥2;    𝑓′(−3), 𝑓′(0), 𝑓′(1) 

b) 𝐹(𝑥) = (𝑥 − 1)2 + 1;   𝐹′(−1), 𝐹′(0), 𝐹′(2) 

c) 𝑔(𝑡) = 1

𝑡2;    𝑔′(−1), 𝑔′(2), 𝑔′(√3) 

d) 𝑘(𝑧) = 1−𝑧

2𝑧
;    𝑘′(−1), 𝑘′(1), 𝑘′(√2) 

e) 𝑝(𝜃) = √3𝜃;   𝑝′(1), 𝑝′(3), 𝑝′(2 3⁄ ) 

f) 𝑟(𝑠) = √2𝑠 + 1;   𝑟′(0), 𝑟′(1), 𝑟′(1 2⁄ ) 
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5. In following, find the indicated derivatives. 

a) 
𝑑𝑦

𝑑𝑥
 if 𝑦 = 2𝑥3 b) 

𝑑𝑟

𝑑𝑠
 if 𝑟 = 𝑠3 − 2𝑠2 + 3 

c) 
𝑑𝑠

𝑑𝑡
 if 𝑠 = 𝑡

2𝑡+1
 d) 

𝑑𝑣

𝑑𝑡
 if 𝑣 = 𝑡 − 1

𝑡
 

e) 
𝑑𝑝

𝑑𝑞
 if 𝑝 = 𝑞3 2⁄  f) 

𝑑𝑧

𝑑𝑤
 if 𝑧 = 1

√𝑤2−1
 

6. In following, differentiate the functions and find the slope of the tangent 

line at the given value of the independent variable. 

a) 𝑓(𝑥) = 𝑥 + 9

𝑥
, 𝑥 = −3. b) 𝑘(𝑥) = 1

2+𝑥
, 𝑥 = 2. 

c) 𝑠 = 𝑡3 − 𝑡2, 𝑡 = −1. d) 𝑦 = 𝑥+3

1−𝑥
, 𝑥 = −2. 

7. In following, differentiate the functions. Then find an equation of the 

tangent line at the indicated point on the graph of the function. 

a) 𝑦 =  𝑓(𝑥) = 8

√𝑥−2
 ,(𝑥,𝑦)=(6,4) b) 𝑤 =  𝑔(𝑧) = 1+√4−𝑧 ,(𝑧,𝑤)=(3,2) 

8. In following, find the values of the derivatives. 

a) 
𝑑𝑠

𝑑𝑡
|

𝑡=−1
if 𝑠 = 1 − 3𝑡2 b) 

𝑑𝑦

𝑑𝑥
|

𝑥=√3
if 𝑦 = 1 − 1

𝑥
 

c) 
𝑑𝑟

𝑑𝜃
|

𝜃=0
if 𝑟 = 2

√4−𝜃
 d) 

𝑑𝑤

𝑑𝑧
|

𝑧=4
if 𝑤 = 𝑧 + √𝑧 

9. Use the alternative formula to find the derivative of the following 

functions 

a) 𝑓(𝑥) =
1

𝑥+2
 b) 𝑓(𝑥) = 𝑥2 − 3𝑥 + 4 

c) 𝑔(𝑥) =
𝑥

𝑥−1
 d) 𝑔(𝑥) = 1 + √𝑥 
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3.2 Differentiability on an Interval; One-Sided Derivatives: 

Definition: 

      A function 𝑦 = 𝑓(𝑥) is differentiable on an 

open interval (finite or infinite) if it has a 

derivative at each point of the interval. It is 

differentiable on a closed interval [𝑎, 𝑏] if it is 

differentiable on the interior (a, b) and if the 

limits 

       lim
ℎ→0+

𝑓(𝑎+ℎ)−𝑓(𝑎)
ℎ

       Right - hand derivative at 𝒂 

        lim
ℎ→0−

𝑓(𝑏+ℎ)−𝑓(𝑏)
ℎ

       Left - hand derivative at 𝒃, 

exist at the endpoints. 

Remark: 

      Right-hand and left-hand derivatives may or may not be defined at 

any point of a function’s domain. Because a function has a derivative at 

an interior point if and only if it has left-hand and right-hand derivatives 

there, and these one-sided derivatives are equal. 

Example: 

    Show that the function 𝑦 = |𝑥| is differentiable 

on (−∞, 0) and on (0, ∞) but has no derivative at 

𝑥 =  0. 

Solution: 

     The graph of the function 𝑦 = 𝑚𝑥 +  𝑏 is a straight line with slope m. 

Thus, to the right of the origin, when 𝑥 > 0, 

      
𝑑

𝑑𝑥
(|𝑥|) =

𝑑

𝑑𝑥
(𝑥) =

𝑑

𝑑𝑥
(1. 𝑥) = 1.  |𝒙| = 𝒙 since  𝒙 > 𝟎,

𝒅

𝒅𝒙
(𝒎𝒙 + 𝒃 ) = 𝒎 

To the left, when 𝑥 <  0,  



8 
 

      
𝑑

𝑑𝑥
(|𝑥|) =

𝑑

𝑑𝑥
(−𝑥) =

𝑑

𝑑𝑥
(−1. 𝑥) = 1.  |𝒙| = −𝒙 since  𝒙 < 𝟎, 

      The two branches of the graph come together at an angle at the origin, 

forming a non-smooth corner. There is no derivative at the origin because 

the one-sided derivatives differ there: 

     Right-hand derivative of |𝑥| at zero = lim
ℎ→0+

|0+ℎ|−|0|
ℎ

= lim
ℎ→0+

|ℎ|
ℎ

 

                                                               = lim
ℎ→0+

ℎ
ℎ
       |𝒉| = 𝒉 when 𝒉 > 𝟎. 

                                                               = lim
ℎ→0+

1 = 1  

        Left-hand derivative of |𝑥| at zero = lim
ℎ→0−

|0+ℎ|−|0|
ℎ

= lim
ℎ→0−

|ℎ|
ℎ

 

                                                               = lim
ℎ→0−

ℎ
ℎ
       |𝒉| = −𝒉 when 𝒉 > 𝟎. 

                                                               = lim
ℎ→0−

−1 = −1.  

Example: 

       Find the derivative of 𝑓(𝑥) = √𝑥 for 𝑥 > 0. 

Solution: 

         
𝑑

𝑑𝑥
(√𝑥) = lim

ℎ→0

√𝑥+ℎ−√𝑥
ℎ

= lim
ℎ→0

√𝑥+ℎ−√𝑥
ℎ

∙ √𝑥+ℎ+√𝑥

√𝑥+ℎ+√𝑥
 

                       = lim
ℎ→0

𝑥+ℎ−𝑥

ℎ(√𝑥+ℎ+√𝑥)
= lim

ℎ→0

ℎ

ℎ(√𝑥+ℎ+√𝑥)
  

                       = lim
ℎ→0

1

(√𝑥+ℎ+√𝑥)
=

1

2√𝑥
.   

We apply the definition to examine whether the derivative exists at 𝑥 = 0: 

                     lim
ℎ→0+

√0+ℎ−√0
ℎ

= lim
ℎ→0+

√ℎ
ℎ

= lim
ℎ→0+

1

√ℎ
= ∞. 

      Since the (right-hand) limit is not finite, there is no derivative at 𝑥 =

 0. Since the slopes of the secant lines joining the origin to the points 

(ℎ, √ℎ ) on a graph of 𝑦 = √ 𝑥 approach, the graph has a vertical tangent 

line at the origin.  
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Theorem (Differentiable Implies Continuous): 

       If f has a derivative at 𝒙 = 𝒄, then f is continuous at 𝒙 = 𝒄. 

Remark: 

      The converse of Theorem (Differentiable Implies Continuous) is false. 

A function need not have a derivative at a point where it is continuous, for 

example the function |𝑥| is continuous at 𝑥 = 0 not differentiable at 𝑥 = 0. 

Exercises: 

1. Compute the right-hand and left-hand derivatives as limits to show that 

the functions in following are not differentiable at the point P. 

a)  

 

b)  

 
c)  

 

d)  

 
2. In following, determine whether the piecewise-defined function is 

differentiable at 𝑥 =  0. 

a) 𝑓(𝑥) = {
2𝑥 − 1 𝑥 ≥ 0

𝑥2 + 2𝑥 + 7 𝑥 < 0
 b) 𝑔(𝑥) = {𝑥2 3⁄ 𝑥 ≥ 0

𝑥1 3⁄ 𝑥 < 0
 

c) 𝑓(𝑥) = {
2𝑥 + tan 𝑥 𝑥 ≥ 0

𝑥2, 𝑥 < 0
 d) 𝑓(𝑥) = {

2𝑥 − 𝑥3 − 1 𝑥 ≥ 0
𝑥 − 1

𝑥+1
𝑥 < 0

 

3. Each figure in following shows the graph of a function over a closed 

interval D. At what domain points does the function appear to be 

i. differentiable? 
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      ii. continuous but not differentiable? 

      iii. neither continuous nor differentiable? 

Give reasons for your answers. 

a)  

 

b)  

 

c)  

 

d)  

 

e)  

 

f)  
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3.3 Differentiation Rules 

      This section introduces several rules that allow us to differentiate 

constant functions, power functions, polynomials, exponential functions, 

rational functions, and certain combinations of them, simply and directly, 

without having to take limits each time. 

Theorem (Derivative of a Constant Function): 

       If f has the constant value 𝒇(𝒙) = 𝒄, then 
𝒅𝒇

𝒅𝒙
=

𝒅

𝒅𝒙
(𝒄) = 𝟎. 

Proof:  

      We apply the definition of the 

derivative to 𝑓(𝑥) = 𝑐, the function whose 

outputs have the constant value c. At every 

value of x, we find that 

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)
ℎ

= lim
ℎ→0

𝑐−𝑐
ℎ
= lim
ℎ→0

0 = 0. ■ 

Theorem (Power Rule): 

      If n is any real number, then 
𝒅

𝒅𝒙
𝒙𝒏 = 𝒏𝒙𝒏−𝟏,  for all x where the 

powers 𝒙𝒏 and 𝒙𝒏−𝟏 are defined. 

Example: 

       Differentiate the following powers of x. 

a) 𝑥3 b) 𝑥2 3⁄  c) 𝑥√2 d) 1
𝑥4

 e) 𝑥−4 3⁄  f) √𝑥2+𝜋 

Solution: 

a) 
𝑑

𝑑𝑥
(𝑥3) = 3𝑥3−1 = 3𝑥2,   

b) 
𝑑

𝑑𝑥
(𝑥2 3⁄ ) = 2

3
𝑥(2 3⁄ )−1 =

2

3
𝑥−1 3⁄ ,   

c) 
𝑑

𝑑𝑥
(𝑥√2) = √2𝑥√2−1, 

d) 
𝑑

𝑑𝑥
( 1
𝑥4
) =

𝑑

𝑑𝑥
(𝑥−4) = −4𝑥−4−1 = −4𝑥−5 = − 4

𝑥5
,   

e) 
𝑑

𝑑𝑥
(𝑥−4 3⁄ ) = −4

3
𝑥−(4 3⁄ )−1 = −

4

3
𝑥−7 3⁄ ,   

f) 
𝑑

𝑑𝑥
(√𝑥2+𝜋) =

𝑑

𝑑𝑥
(𝑥

2+𝜋
2 ) =

𝑑

𝑑𝑥
(𝑥1+

𝜋
2) = (1 + 𝜋

2
)𝑥1+

𝜋
2
−1 = (1 + 𝜋

2
)𝑥

𝜋
2 ,   
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Theorem (Derivative Constant Multiple Rule): 

        If u is a differentiable function of x, and c is a constant, then 

                                           
𝒅

𝒅𝒙
(𝒄𝒖) = 𝒄

𝒅𝒖

𝒅𝒙
. 

Proof:  
𝑑

𝑑𝑥
(𝑐𝑢) = lim

ℎ→0

𝑐𝑢(𝑥+ℎ)−𝑐𝑢(𝑥)
ℎ

          Derivative definition with 𝒇(𝒙) = 𝒄𝒖(𝒙). 

             = 𝑐 lim
ℎ→0

𝑢(𝑥+ℎ)−𝑢(𝑥)
ℎ

         Constant Multiple Rule for Limits. 

              = 𝑐
𝑑𝑢

𝑑𝑥
 . ■                       𝒖 is differentiable.  

Example: 

a) The derivative formula 

               
𝑑

𝑑𝑥
(3𝑥2) = 3 ∙ 2𝑥 = 6𝑥.    

says that if we rescale the graph of 𝑦 = 𝑥2 by 

multiplying each y-coordinate by 3, then we multiply 

the slope at each point by 3. 

b) The derivative of the negative of a differentiable 

function u is the negative of the function’s derivative. 

The Constant Multiple Rule with 𝑐 =  −1 gives 

       
𝑑

𝑑𝑥
(−𝑢) =

𝑑

𝑑𝑥
(−1 ∙ 𝑢) = −1 ∙ 

𝑑

𝑑𝑥
(𝑢) = −

𝑑𝑢

𝑑𝑥
 . 

Theorem (Derivative Sum Rule): 

      If u and  are differentiable functions of x, then their sum 𝒖 + 𝒗  is 

differentiable at every point where u and  are both differentiable. At such 

points, 

                                       
𝒅

𝒅𝒙
(𝒖 + 𝒗) =

𝒅𝒖

𝒅𝒙
+
𝒅𝒗

𝒅𝒙
. 

Proof:  

        We apply the definition of the derivative to 𝑓(𝑥) = 𝑢(𝑥) + 𝑣(𝑥): 

      
𝑑

𝑑𝑥
(𝑢(𝑥) + 𝑣(𝑥)) = lim

ℎ→0

[𝑢(𝑥+ℎ)+𝑣(𝑥+ℎ)]−[𝑢(𝑥)+𝑣(𝑥)]
ℎ

  

                                        = lim
ℎ→0

[
𝑢(𝑥+ℎ)−𝑢(𝑥)

ℎ
+
𝑣(𝑥+ℎ)−𝑣(𝑥)

ℎ
]  

                                   = lim
ℎ→0

𝑢(𝑥+ℎ)−𝑢(𝑥)
ℎ

+ lim
ℎ→0

𝑣(𝑥+ℎ)−𝑣(𝑥)
ℎ

=
𝑑𝑢

𝑑𝑥
+
𝑑𝑣

𝑑𝑥
. ■  
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Remark: 

1. Combining the Sum Rule with the Constant Multiple Rule gives the 

Difference Rule, which says that the derivative of a difference of 

differentiable functions is the difference of their derivatives: 

           
𝑑

𝑑𝑥
(𝑢 − 𝑣) =

𝑑

𝑑𝑥
[𝑢 + (−1)𝑣] =

𝑑𝑢

𝑑𝑥
+ (−1)

𝑑𝑣

𝑑𝑥
=
𝑑𝑢

𝑑𝑥
−
𝑑𝑣

𝑑𝑥
 . ■  

2. The Sum Rule also extends to finite sums of more than two functions. 

If 𝑢1 ,  𝑢2 , … , 𝑢𝑛 are differentiable at x, then so is 𝑢1 +  𝑢2 +⋯+ 𝑢𝑛  
and  

                   
𝑑

𝑑𝑥
(𝑢1 +  𝑢2 +⋯+ 𝑢𝑛) =

𝑑𝑢1

𝑑𝑥
+
𝑑𝑢2

𝑑𝑥
+⋯+

𝑑𝑢𝑛

𝑑𝑥
 . 

Example: 

      Find the derivative of the polynomial 𝑦 = 𝑥3 + 4

3
𝑥2 − 5𝑥 + 1. 

Solution: 

      
𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
𝑥3 +

𝑑

𝑑𝑥
(4
3
𝑥2) −

𝑑

𝑑𝑥
(5𝑥) +

𝑑

𝑑𝑥
(1)   Sum and Difference Rules 

           = 3𝑥2 +
4

3
∙ 2𝑥 − 5 + 0 = 3𝑥2 +

8

3
𝑥 − 5.    

Example: 

      Does the curve 𝑦 = 𝑥4 − 2𝑥2 + 2 have any horizontal 

tangent lines? If so, where? 

Solution: 

      The horizontal tangent lines, if any, occur where the 

slope 𝑑𝑦/𝑑𝑥 is zero. We have 

          
𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
(𝑥4 − 2𝑥2 + 2 ) = 4𝑥3 − 4𝑥.  

Now solve the equation 
𝑑𝑦

𝑑𝑥
= 0 for x:  

                 4𝑥3 − 4𝑥 = 0 ⇒ 4𝑥(𝑥2 − 1) = 0 ⇒ 𝑥 = 0,1,−1.   

The curve 𝑦 = 𝑥4 − 2𝑥2 + 2  has horizontal tangent lines at x = 0,1, and 

−1. The corresponding points on the curve are (0, 2), (1,1), and (−1,1).  

Definition: 

      For any numbers 𝑎 > 0 and x, the exponential function with base a is 

                                             𝑎𝑥 = 𝑒𝑥 ln𝑎. 
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Remark: 

     The derivative of 𝑓(𝑥)  =  𝑎𝑥, is 

           
𝑑

𝑑𝑥
( 𝑎𝑥) = lim

ℎ→0

 𝑎𝑥+ℎ− 𝑎𝑥

ℎ
      Derivative definition 

                         = lim
ℎ→0

 𝑎𝑥∙ 𝑎ℎ− 𝑎𝑥

ℎ
      𝒂𝒙+𝒉 =  𝒂𝒙 ∙  𝒂𝒉 

                         = lim
ℎ→0

 𝑎𝑥∙
 𝑎ℎ−1
ℎ

        Factoring out 𝒂𝒙 

                         =  𝑎𝑥 ∙ lim
ℎ→0

 𝑎ℎ−1
ℎ

      𝒂𝒙 is constant as  𝒉 → 𝟎    

                         = lim
ℎ→0

 𝑎ℎ−1
ℎ⏟    

𝐚 𝐟𝐢𝐱𝐞𝐝 𝐧𝐮𝐦𝐛𝐞𝐫 𝑳

∙  𝑎𝑥.  

     Thus, we see that the derivative of  𝑎𝑥 is a constant multiple L of  𝑎𝑥. 

The constant L is a limit we have not encountered before. Note, however, 

that it equals the derivative of 𝑓(𝑥)  =  𝑎𝑥 at 𝑥 = 0: 

                         𝑓′(0) = lim
ℎ→0

 𝑎0+ℎ− 𝑎0

ℎ
= lim
ℎ→0

 𝑎ℎ−1
ℎ
= 𝐿.  

      The limit L is therefore the slope of the graph of 𝑓(𝑥) =  𝑎𝑥 where it 

crosses the y-axis. Now we investigate values of L by graphing the 

function 𝑦 = ( 𝑎ℎ − 1)/ℎ and studying its behavior as h approaches 0. 

      The Figure shows the graphs of 𝑦 = (𝑎ℎ − 1)/ℎ 

for four different values of a. The limit L is 

approximately 0.69 if 𝑎 =  2, about 0.92 if 𝑎 =  2.5, 

and about 1.1 if 𝑎 =  3. It appears that the value of L 

is 1 at some number a chosen between 2.5 and 3. That 

number is given by 𝑎 =  𝑒 ≈  2.718281828. With 

this choice of base, we obtain the natural exponential 

function 𝑓(𝑥) =  𝑒𝑥, and see that it satisfies the 

property 𝑓′(0) = lim
ℎ→0

 𝑒ℎ−1
ℎ
= 1, because it is the 

exponential function whose graph has slope 1 when it crosses the y-axis. 

That the limit is 1 implies an important relationship between the natural 

exponential function  𝑒𝑥 and its derivative: 
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𝑑

𝑑𝑥
( 𝑒𝑥) = lim

ℎ→0

 𝑒ℎ−1
ℎ
∙  𝑒𝑥  Since 

𝒅

𝒅𝒙
( 𝒂𝒙) = 𝐥𝐢𝐦

𝒉→𝟎

 𝒂𝒉−𝟏
𝒉
∙  𝒂𝒙 with 𝒂 = 𝒆. 

                    = 1 ∙  𝑒𝑥 =  𝑒𝑥. Since 𝐥𝐢𝐦
𝒉→𝟎

 𝒆𝒉−𝟏
𝒉
= 𝟏. 

   Therefore, the natural exponential function is its own derivative. Also, 

if 𝑓(𝑥) = 𝑐 ∙  𝑒𝑥 , 𝑐 any constant then 
𝑑

𝑑𝑥
(𝑐 ∙  𝑒𝑥) = 𝑐 ∙

𝑑

𝑑𝑥
( 𝑒𝑥) = 𝑐 ∙  𝑒𝑥. 

Example: 

      Find an equation for a line that is tangent to the graph of  𝑦 =  𝑒𝑥 and 

goes through the origin. 

Solution: 

     Since the line passes through the origin, its equation 

is of the form 𝑦 =  𝑚𝑥, where m is the slope. If it is 

tangent to the graph at the point (𝑎,  𝑒𝑎 ), the slope is 

𝑚 = ( 𝑒𝑎 − 0)/(𝑎 − 0). The slope of the natural 

exponential at 𝑥 = 𝑎 is  𝑒𝑎. Because these slopes are 

the same, we then have that  𝑒𝑎 =  𝑒𝑎/ 𝑎. It follows that 

 𝑎 = 1 and 𝑚 = 𝑒. So, the equation of the tangent line is 𝑦 = 𝑥𝑒.  

Theorem (Derivative Product Rule): 

        If u and v are differentiable at x, then so is their product 𝒖 ∙ 𝒗, and 

                                 
𝒅

𝒅𝒙
(𝒖 ∙ 𝒗) = 𝒖 ∙

𝒅𝒗

𝒅𝒙
+
𝒅𝒖

𝒅𝒙
∙ 𝒗.  

Proof: 

                               
𝑑

𝑑𝑥
(𝑢 ∙ 𝑣) = lim

ℎ→0

[𝑢(𝑥+ℎ)∙𝑣(𝑥+ℎ)]−[𝑢(𝑥)∙𝑣(𝑥)]
ℎ

   

To change this fraction into an equivalent one that contains difference 

quotients for the derivatives of u and v, we subtract and add 𝑢(𝑥 + ℎ) ∙ 𝑣(𝑥) 

in the numerator: 

  
𝑑

𝑑𝑥
(𝑢 ∙ 𝑣) = lim

ℎ→0

[𝑢(𝑥+ℎ)∙𝑣(𝑥+ℎ)]−𝑢(𝑥+ℎ)∙𝑣(𝑥)+𝑢(𝑥+ℎ)∙𝑣(𝑥)−[𝑢(𝑥)∙𝑣(𝑥)]
ℎ

  

                  = lim
ℎ→0

𝑢(𝑥+ℎ)
𝑣(𝑥+ℎ)−𝑣(𝑥)

ℎ
+𝑣(𝑥)

𝑢(𝑥+ℎ)−𝑢(𝑥)
ℎ
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                   = lim
ℎ→0

𝑢(𝑥 + ℎ) ∙ lim
ℎ→0

𝑣(𝑥+ℎ)−𝑣(𝑥)

ℎ
+ lim
ℎ→0

𝑣(𝑥) + lim
ℎ→0

𝑢(𝑥+ℎ)−𝑢(𝑥)

ℎ
 

      As h approaches zero, 𝑢(𝑥 + ℎ) approaches 𝑢(𝑥) because u, being 

differentiable at x, is continuous at x. The two fractions approach the values 

of 𝑑𝑣/𝑑𝑥 at x and 𝑑𝑢/𝑑𝑥 at x. Therefore, 
𝑑

𝑑𝑥
(𝑢 ∙ 𝑣) = 𝑢 ∙

𝑑𝑣

𝑑𝑥
+
𝑑𝑢

𝑑𝑥
∙ 𝑣. ■ 

Example: 

      Find the derivative of  

Solution: 

a) We apply the Product Rule with 𝑢 =  1/ 𝑥 and  𝑣 = 𝑥2 +  𝑒𝑥  : 

𝑑

𝑑𝑥
[1
𝑥
(𝑥2 +  𝑒𝑥)] = 1

𝑥
(2𝑥 +  𝑒𝑥) + (−

1

𝑥2
)(𝑥2 +  𝑒𝑥)  

𝒅

𝒅𝒙
(𝒖 ∙ 𝒗) = 𝒖 ∙

𝒅𝒗

𝒅𝒙
+
𝒅𝒖

𝒅𝒙
∙ 𝒗 

                               = 2 +  𝑒𝑥

𝑥
− 1 −

 𝑒𝑥

𝑥2
 

𝒅

𝒅𝒙
(
𝟏
𝒙
) = −

𝟏

𝒙𝟐
  

                               = 1 + (𝑥 − 1)
 𝑒𝑥

𝑥2
 .  

b) 
𝑑

𝑑𝑥
( 𝑒2𝑥) =

𝑑

𝑑𝑥
( 𝑒𝑥 ∙  𝑒𝑥) =  𝑒𝑥 ∙

𝑑

𝑑𝑥
( 𝑒𝑥) +

𝑑

𝑑𝑥
( 𝑒𝑥) ∙  𝑒𝑥 = 2 𝑒𝑥 ∙  𝑒𝑥 = 2 𝑒2𝑥 . 

 Example: 

      Find the derivative of 𝑦 = (𝑥2 + 1)(𝑥3 + 3). 

Solution: 

      From the Product Rule with 𝑢 = 𝑥2 + 1  and 𝑣 = 𝑥3 + 3, we find   

   
𝑑

𝑑𝑥
(𝑥2 + 1)(𝑥3 + 3) = (𝑥2 + 1)(3𝑥2) + (2𝑥)(𝑥3 + 3)      

                                      = 3𝑥4 + 3𝑥2 + 2𝑥4 + 6𝑥 = 5𝑥4 + 3𝑥2 + 6𝑥.  

Theorem (Derivative Quotient Rule): 

        If u and v are differentiable at x and if 𝒗(𝒙) ≠ 𝟎, then the quotient 

𝒖/𝒗 is differentiable at x, and, and 

                                          
𝒅

𝒅𝒙
(𝒖
𝒗
) =

𝒗
𝒅𝒖
𝒅𝒙
−𝒖
𝒅𝒗
𝒅𝒙

𝒗𝟐
   .  

Proof: 

a) 𝑦 = 1

𝑥
(𝑥2 +  𝑒𝑥), b) 𝑦 =  𝑒2𝑥. 
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𝑑

𝑑𝑥
(𝑢
𝑣
) = lim

ℎ→0
 

𝑢(𝑥+ℎ)
𝑣(𝑥+ℎ)

−
𝑢(𝑥)
𝑣(𝑥)

ℎ
= lim
ℎ→0

 
𝑣(𝑥)𝑢(𝑥+ℎ)−𝑢(𝑥)𝑣(𝑥+ℎ)

ℎ𝑣(𝑥+ℎ)𝑣(𝑥)
 .   

      To change the last fraction into an equivalent one that contains the 

difference quotients for the derivatives of u and 𝑣, we subtract and add  
𝑢(𝑥)𝑣(𝑥) in the numerator. We then get 

            
𝑑

𝑑𝑥
(𝑢
𝑣
) = lim

ℎ→0
 
𝑣(𝑥)𝑢(𝑥+ℎ)−𝑢(𝑥)𝑣(𝑥)+𝑢(𝑥)𝑣(𝑥)−𝑢(𝑥)𝑣(𝑥+ℎ)

ℎ𝑣(𝑥+ℎ)𝑣(𝑥)
  

                      = lim
ℎ→0

 
𝑣(𝑥)

𝑢(𝑥+ℎ)−𝑢(𝑥)
ℎ

−𝑢(𝑥)
𝑣(𝑥+ℎ)−𝑣(𝑥)

ℎ
𝑣(𝑥+ℎ)𝑣(𝑥)

 . 

      Taking the limits in the numerator and denominator now gives the 

Quotient Rule. 

Example: 

      Find the derivative of 𝑦 = (𝑡2−1)

(𝑡3+3)
. 

Solution: 

      We apply the Quotient Rule with 𝑢 = 𝑡2 − 1 and  𝑣 = 𝑡3 + 3: 

             
𝑑𝑦

𝑑𝑥
=
(𝑡3+1)∙2𝑡−(𝑡2−1)∙3𝑡2

(𝑡3+3)2
= 2𝑡4+2𝑡−3𝑡4+3𝑡2

(𝑡3+3)2
= −𝑡4+3𝑡2+2𝑡

(𝑡3+3)2
 .  

Remark: 

        The choice of which rules to use in solving a differentiation problem 

can make a difference in how much work you have to do. Here is an 

example. 

Example: 

      Find the derivative of 𝑦 = (𝑥−1)(𝑥2−2𝑥)

𝑥4
. 

Solution: 

      Using the Quotient Rule here will result in a complicated expression 

with many terms. Instead, use some algebra to simplify the expression.  

First expand the numerator and divide by 𝑥4: 

           𝑦 = (𝑥−1)(𝑥2−2𝑥)

𝑥4
=
𝑥3−3𝑥2+2𝑥

𝑥4
= 𝑥−1 − 3𝑥−2 + 2𝑥−3.   

Then use the Sum, Constant Multiple, and Power Rules: 

         
𝑑𝑦

𝑑𝑥
= −𝑥−2 − 3(−2)𝑥−3 + 2(−3)𝑥−4 = − 1

𝑥2
+ 6

𝑥3
− 6

𝑥4
 .  
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3.3.1 Second- and Higher-Order Derivatives 

      If 𝑦 = 𝑓(𝑥) is a differentiable function, then its derivative 𝑓′(𝑥) is also 

a function. If 𝑓′  is also differentiable, then we can differentiate 𝑓′  to get 

a new function of x denoted by 𝑓′′. So 𝑓′′ = (𝑓′)′. The function 𝑓′′  is 

called the second derivative of f because it is the derivative of the first 

derivative. It is written in several ways: 

         𝑓′′(𝑥) = 𝑑2𝑦

𝑑𝑥2
= 𝑑

𝑑𝑥
(𝑑𝑦
𝑑𝑥
) = 𝑑𝑦′

𝑑𝑥
= 𝑦′′ = 𝐷2(𝑓)(𝑥) = 𝐷𝑥

2𝑓(𝑥).   

The symbol 𝐷2 means that the operation of differentiation is performed 

twice. 

      If 𝑦′′ is differentiable, its derivative, 𝑦′′ = 𝑑𝑦′′

𝑑𝑥
= 𝑑3𝑦

𝑑𝑥3
, is the third 

derivative of y with respect to x. The names continue as you imagine, with  

                                  𝑦(𝑛) = 𝑑

𝑑𝑥
𝑦(𝑛−1) = 𝑑𝑛𝑦

𝑑𝑥𝑛
= 𝐷𝑛𝑦, 

denoting the nth derivative of y with respect to x for any positive integer n. 

Example: 

      Find the fourth derivative of 𝑦 = 𝑥3 − 3𝑥2 + 2. 

Solution: 

     The first four derivatives of 𝑦 = 𝑥3 − 3𝑥2 + 2 are 

First derivative: 𝑦′ = 3𝑥2 − 6𝑥  

Second derivative: 𝑦′′ = 6𝑥 − 6  

Third derivative: 𝑦′′′ = 6  

Fourth derivative: 𝑦(4) = 0.  

     All polynomial functions have derivatives of all orders. In this example, 

the fifth and later derivatives are all zero. 

Exercises: 

1. In following, find the first and second derivatives. 

a) 𝑦 = 4𝑥3

3
− 𝑥 b) 𝑦 = 𝑥3

3
+ 𝑥2

2
+ 𝑥

2
 

c) 𝑤 = 3𝑧−2 − 1

𝑧
 d) 𝑠 = −2𝑡−1 + 4

𝑡2
 

e) 𝑦 = 6𝑥2 − 10𝑥 − 5𝑥−2 f) 𝑦 = 4− 2𝑥 − 𝑥−3 
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g) 𝑟 = 1

3𝑠2
− 5

2𝑠
 h) 𝑟 = 12

𝜃
−
4

𝜃3
+ 1

𝜃4
 

2. In following, find 𝑦′  
a) by applying the Product Rule and 

b) by multiplying the factors to produce a sum of simpler terms to 

differentiate. 

I. 𝑦 = (3 − 𝑥2)(𝑥3 − 𝑥 + 1) II. 𝑦 = (2𝑥 + 3)(5𝑥2 − 4𝑥) 
III. 𝑦 = (𝑥2 + 1)(𝑥 + 5 + 1

𝑥
) IV. 𝑦 = (1 + 𝑥2)(𝑥3 4⁄ − 𝑥−3) 

3. Find the derivatives of all orders of the functions in following 

a) 𝑦 = 𝑥4

2
− 3

2
𝑥2 − 𝑥 b) 𝑦 = 𝑥5

120
 

c) 𝑦 = (𝑥 − 1)(𝑥 + 2)(𝑥 + 3) d) 𝑦 = (4𝑥2 + 3)(2 − 𝑥)𝑥 

e) 𝑦 = 2𝑒−𝑥 + 𝑒3𝑥 f) 𝑦 = 𝑥2+3𝑒𝑥

2𝑒𝑥−𝑥
 

g) 𝑦 = 𝑥3𝑒𝑥 h) 𝑤 = 𝑟𝑒−𝑟 

4. Suppose u and v are functions of x that are differentiable at 𝑥 = 0 and 

that 𝑢(0) = 5, 𝑢′(0) = −3, 𝑣(0) = −1, 𝑣′(0) = 2. Find the values of 

the following derivatives at 𝑥 = 0. 

a) 𝑑
𝑑𝑥
(𝑢𝑣) b) 

𝑑

𝑑𝑥
(𝑢
𝑣
) c) 

𝑑

𝑑𝑥
(𝑣
𝑢
) d) 

𝑑

𝑑𝑥
(7𝑣 − 2𝑢) 

5. Suppose u and v are differentiable functions of x and that 𝑢(1) = 2, 
𝑢′(1) = 0, 𝑣(1) = 5, 𝑣′(1) = −1.  Find the values of the following derivatives at 

𝑥 = 1. 

a) 𝑑
𝑑𝑥
(𝑢𝑣)  b) 

𝑑

𝑑𝑥
(𝑢
𝑣
) c) 

𝑑

𝑑𝑥
(𝑣
𝑢
) d) 

𝑑

𝑑𝑥
(7𝑣 − 2𝑢) 

6. a) Normal line to a curve Find an equation for the line perpendicular  

    to the tangent line to the curve 𝑦 = 𝑥3 −  4𝑥 +  1 at the point (2, 1). 

b) Smallest slope What is the smallest slope on the curve? At what point 

on the curve does the curve have this slope? 

c) Tangent lines having specified slope Find equations for the tangent  

lines to the curve at the points where the slope of the curve is 8. 

7.  a) Horizontal tangent lines: Find  equations for the  horizontal  tangent  

    lines to the curve 𝑦 = 𝑥3 −  3𝑥 − 2. Also find equations for the lines   

    that are perpendicular to these tangent lines at the points of tangency. 

    b) Smallest slope:What is the smallest slope on the curve? At what point 
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point on the curve does the curve have this slope? Find an equation for 

the line that is perpendicular to the curve’s tangent line at this point. 

8. Find the tangent lines to 

Newton’s serpentine (graphed 

here) at the origin and the 

point (1, 2). 

 9. Find the tangent line to the 

Witch of Agnesi (graphed here) 

at the point (2, 1). 

 

 

 

10. Quadratic tangent to identity function: The curve 𝑦 = 𝑎𝑥2 + 𝑏𝑥 +
 𝑐 passes through the point (1, 2) and is tangent to the line 𝑦 =  𝑥 at the 

origin. Find a, b, and c. 

11. Quadratics having a common tangent: The curves 𝑦 = 𝑥2 + 𝑎𝑥 + 𝑏 

and 𝑦 = 𝑐𝑥 − 𝑥2 have a common tangent line at the point (1, 0). Find 

a, b, and c. 

12. Find all points (x, y) on the graph of 𝑓(𝑥)  =  3𝑥2 −  4𝑥 with tangent 

lines parallel to the line 𝑦 =  8𝑥 +  5. 

13. Find all points (x, y) on the graph of 𝑔(𝑥) = 1

3
𝑥3 − 3

2
𝑥2 +  1 with tangent 

lines parallel to the line 8𝑥 −  2𝑦 =  1. 

14. Find all points (x, y) on the graph of 𝑦 =  𝑥/(𝑥 −  2) with  tangent  

lines perpendicular to the line 𝑦 =  2𝑥 +  3. 

15. Find all points (x, y) on the graph of 𝑓(𝑥)  =  𝑥2 with tangent lines 

passing through the point (3, 8). 

16. Assume that functions ƒ and 𝑔 are differentiable with ƒ(1) = 2, 𝑓′(1) =
−3, 𝑔(1) = 4, and 𝑔′(1)  =  −2. Find the equation of the line tangent to 

the graph of 𝐹(𝑥) = 𝑓(𝑥)𝑔(𝑥) at 𝑥 =  1. 

17. Assume that functions ƒ and 𝑔 are differentiable with ƒ(2) = 3, 𝑓′(2) =
−1, 𝑔(2) = −4, and 𝑔′(2)  =  1. Find an equation of the line 

perpendicular to the graph of 𝐹(𝑥) = 𝑓(𝑥)+3

𝑥−𝑔(𝑥)
 at 𝑥 =  2. 

18. Find the value of a that makes the following function differentiable for 

all x-values. 
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                                𝑔(𝑥) = {
𝑎𝑥 𝑖𝑓 𝑥 < 0

𝑥2 − 3𝑥, 𝑖𝑓 𝑥 ≥ 0
.  

19. Find the values of a and b that make the following function 

differentiable for all x-values. 

                                𝑓(𝑥) = {
𝑎𝑥 + 𝑏 𝑖𝑓 𝑥 > −1

𝑏𝑥2 − 3, 𝑖𝑓 𝑥 ≤ −1
. 

 

 

 

𝑦 = 𝑥3𝑒𝑥  

𝑦′ = 𝑥3𝑒𝑥 + 𝑒𝑥3𝑥2 = (𝑥3 + 3𝑥2)𝑒𝑥  

𝑦′′ = (𝑥3 + 3𝑥2)𝑒𝑥 + 𝑒𝑥(3𝑥2 + 6𝑥) = (𝑥3 + 6𝑥2 + 6𝑥)𝑒𝑥  

𝑦′′′ = (𝑥3 + 6𝑥2 + 6𝑥)𝑒𝑥 + 𝑒𝑥(3𝑥2 + 12𝑥 + 6) 

       = (𝑥3 + 9𝑥2 + 18𝑥 + 6)𝑒𝑥  

𝑦(4) = (𝑥3 + 9𝑥2 + 18𝑥 + 6)𝑒𝑥 + 𝑒𝑥(3𝑥2 + 18𝑥 + 18) 

        = (𝑥3 + 12𝑥2 + 32𝑥 + 18)𝑒𝑥  

𝑦(𝑛) = 𝑃(𝑥)𝑒𝑥 , 𝑃(𝑥) is a polynomial of degree 3 

 

𝑤 = 𝑟𝑒−𝑟  

𝑤′ = −𝑟𝑒−𝑟 + 𝑒−𝑟 = (1 − 𝑟)𝑒−𝑟  

𝑤′′ = −(1 − 𝑟)𝑒−𝑟 + 𝑒−𝑟(−1) = −(2 − 𝑟)𝑒−𝑟  

𝑤′′′ = (2 − 𝑟)𝑒−𝑟 + 𝑒−𝑟 = (3 − 𝑟)𝑒−𝑟  

𝑤′′′′ = −(3 − 𝑟)𝑒−𝑟 + 𝑒−𝑟(−1) = −(4 − 𝑟)𝑒−𝑟  

𝑤(𝑛) = (−1)𝑛+1(𝑛 − 𝑟)𝑒𝑥  
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3.4 Derivatives of Trigonometric Functions 

       This section shows how to differentiate the six basic trigonometric 

functions. 

Theorem (Derivative of the Sine Function): 

                                       𝑑
𝑑𝑥
(sin 𝑥) = cos 𝑥. 

Proof:  

       Let 𝑓(𝑥) = sin 𝑥 then  

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)
ℎ

= lim
ℎ→0

sin(𝑥+ℎ)−sin𝑥
ℎ

                       Derivative definition 

          = lim
ℎ→0

(sin 𝑥cosℎ+cos𝑥sinℎ)−sin𝑥
ℎ

        {𝐬𝐢𝐧(𝒙 + 𝒉) = 𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒉 + 𝐜𝐨𝐬 𝒙 𝐬𝐢𝐧 𝒉}  

          = lim
ℎ→0

sin𝑥(cosℎ−1)+cos𝑥sinℎ
ℎ

  

          = lim
ℎ→0

(sin 𝑥 ∙ (cosℎ−1)
ℎ

) + lim
ℎ→0

(cos 𝑥 .sinℎ
ℎ
)  

          = sin 𝑥 ∙ lim
ℎ→0

cosℎ−1

ℎ⏟      
𝐥𝐢𝐦𝐢𝐭 𝟎

+ cos 𝑥  . lim
ℎ→0

( sinℎ
ℎ
)

⏟      
𝐥𝐢𝐦𝐢𝐭 𝟏

  

          = sin 𝑥 ∙ 0 + cos 𝑥  .1 = cos 𝑥.  
Example: 

       Differentiate the following. 

a) 𝑦 = 𝑥2 − sin 𝑥 b) 𝑦 = 𝑥2 sin 𝑥 c) 𝑦 = sin𝑥

𝑥
 

Solution: 

a) 𝑦 = 𝑥2 − sin 𝑥 ⇒ 𝑑𝑦

𝑑𝑥
= 2𝑥 − cos 𝑥. 

b) 𝑦 = 𝑥2 sin 𝑥     ⇒ 𝑑𝑦

𝑑𝑥
= 𝑥2 cos 𝑥 + 2𝑥 sin 𝑥. 

c) 𝑦 = sin𝑥

𝑥
            ⇒ 𝑑𝑦

𝑑𝑥
= 𝑥cos𝑥−sin𝑥∙1

𝑥2
. 

Theorem (Derivative of the Cosine Function): 

                                       𝑑
𝑑𝑥
(cos 𝑥) = −sin 𝑥. 

Proof:  

       Let 𝑓(𝑥) = cos 𝑥 then  

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)
ℎ

= lim
ℎ→0

cos(𝑥+ℎ)−cos𝑥
ℎ

                       Derivative definition 
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          = lim
ℎ→0

(cos𝑥cos ℎ−sin𝑥sinℎ)−cos 𝑥
ℎ

     {𝐜𝐨𝐬(𝒙 + 𝒉) = 𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 𝒉 + 𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 𝒉}   

          = lim
ℎ→0

cos𝑥(cos ℎ−1)−sin𝑥sinℎ
ℎ

  

          = lim
ℎ→0

(cos 𝑥 ∙ (cosℎ−1)
ℎ

) − lim
ℎ→0

(sin𝑥 .sinℎ
ℎ
)  

          = cos 𝑥 ∙ lim
ℎ→0

cosℎ−1

ℎ⏟      
𝐥𝐢𝐦𝐢𝐭 𝟎

− sin 𝑥  . lim
ℎ→0

( sinℎ
ℎ
)

⏟      
𝐥𝐢𝐦𝐢𝐭 𝟏

  

          = cos 𝑥 ∙ 0 − sin 𝑥  .1 = − sin 𝑥.  
Example: 

       Differentiate the following. 

a)  𝑦 = 5𝑥 + cos 𝑥 𝐛) 𝑦 = sin 𝑥 cos 𝑥 c) 𝑦 = cos𝑥

1−𝑠𝑖𝑛 𝑥
 

Solution: 

a) 𝑦 = 5𝑥 + cos 𝑥 ⇒ 𝑑𝑦

𝑑𝑥
= 5 − sin 𝑥.  

b) 𝑦 = sin 𝑥 cos 𝑥  ⇒ 𝑑𝑦

𝑑𝑥
= sin 𝑥 (− sin 𝑥) + cos 𝑥 cos 𝑥. 

                               ⇒       = − sin2 𝑥 + cos2 𝑥 = cos2 𝑥 − sin2 𝑥. 

c) 𝑦 = cos𝑥

1−𝑠𝑖𝑛 𝑥
          ⇒ 𝑑𝑦

𝑑𝑥
= (1−𝑠𝑖𝑛 𝑥) (−sin𝑥)−cos 𝑥∙(−cos 𝑥)

(1−𝑠𝑖𝑛 𝑥)2
. 

                               ⇒       = −sin𝑥+𝑠𝑖𝑛2 𝑥+cos2 𝑥

(1−𝑠𝑖𝑛 𝑥)2
. 

                               ⇒       = 1−sin𝑥

(1−𝑠𝑖𝑛 𝑥)2
                          {𝒔𝒊𝒏𝟐 𝒙 + 𝐜𝐨𝐬𝟐 𝒙 = 𝟏}  

                               ⇒       = 1

1−sin𝑥
 

Remark (The derivatives of the other trigonometric functions): 

 

Proof: 

𝒅

𝒅𝒙
(𝐭𝐚𝐧 𝒙) =

𝑑

𝑑𝑥

sin𝑥

cos𝑥
=

cos𝑥∙
𝑑
𝑑𝑥
𝑠𝑖𝑛𝑥−𝑠𝑖𝑛𝑥.

𝑑
𝑑𝑥

cos𝑥

cos2 𝑥
=
cos 𝑥∙cos𝑥−𝑠𝑖𝑛𝑥.(− sin𝑥)

cos2 𝑥
  

                  =
cos2 𝑥+𝑠𝑖𝑛2𝑥

cos2 𝑥
=

1

cos2 𝑥
= 𝐬𝐞𝐜𝟐 𝒙.  

 

𝒅

𝒅𝒙
(𝐜𝐨𝐭 𝒙) =

𝑑

𝑑𝑥

cos 𝑥

sin𝑥
=

sin𝑥∙
𝑑
𝑑𝑥
𝑐𝑜𝑠 𝑥−𝑐𝑜𝑠 𝑥.

𝑑
𝑑𝑥

sin𝑥

sin2 𝑥
=
sin𝑥∙(−sin 𝑥)−cos𝑥∙cos 𝑥

sin2 𝑥
  

                  =
−(cos2 𝑥+𝑠𝑖𝑛2𝑥)

sin2 𝑥
=

−1

sin2 𝑥
= −𝐜𝐬𝐜𝟐 𝒙. 

𝑑

𝑑𝑥
(tan 𝑥) = sec2 𝑥   𝑑

𝑑𝑥
(cot 𝑥) = − csc2 𝑥  

𝑑

𝑑𝑥
(sec 𝑥) = 𝑠𝑒𝑐 𝑥 tan 𝑥   𝑑

𝑑𝑥
(csc 𝑥) = − 𝑐𝑠𝑐 𝑥 cot 𝑥  
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𝒅

𝒅𝒙
(𝐬𝐞𝐜 𝒙) =

𝑑

𝑑𝑥

1

cos𝑥
=

cos𝑥∙
𝑑
𝑑𝑥
1−1.

𝑑
𝑑𝑥

cos𝑥

cos2 𝑥
=
cos 𝑥∙0−(−sin𝑥)

cos2 𝑥
  

                  =
sin𝑥

cos2 𝑥
= sin𝑥

cos𝑥
∙

1

cos 𝑥
= 𝐬𝐞𝐜𝒙 ∙ 𝒕𝒂𝒏 𝒙.  

𝒅

𝒅𝒙
(𝐜𝐬𝐜 𝒙) =

𝑑

𝑑𝑥

1

sin𝑥
=

cos𝑥∙
𝑑
𝑑𝑥
1−1.

𝑑
𝑑𝑥

sin𝑥

sin2 𝑥
=
0−cos𝑥

sin2 𝑥
  

                  =
−cos 𝑥

sin2 𝑥
=

−1

sin 𝑥
∙ cos𝑥
sin𝑥

= −𝐜𝐬𝐜 𝒙 ∙ 𝒄𝒐𝒕 𝒙. 

Exercises: 

1. In following, find 
𝑑𝑦

𝑑𝑥
 

a) 𝑦 = 3

𝑥
+ 5 sin 𝑥 b) 𝑦 = 𝑥2 cos 𝑥 

c) 𝑦 = √𝑥 sec 𝑥 + 3 d) 𝑦 = 𝑥2 cot 𝑥 − 1

𝑥2
 

e) 𝑦 = sin 𝑥 tan 𝑥 f) 𝑦 = cos𝑥

𝑥
+ 𝑥

cos𝑥
 

g) 𝑦 = cot𝑥

1+cot𝑥
 h) 𝑦 = 𝑥2 cos 𝑥 − 2𝑥 sin 𝑥 − 2 cos 𝑥 

i) 𝑦 = (sec 𝑥 + tan 𝑥)(sec 𝑥 − tan 𝑥) j) 𝑦 = 𝑥3 cos 𝑥 sin 𝑥 

2. In following, find 
𝑑𝑠

𝑑𝑡
 

a) 𝑠 = tan 𝑡 − 𝑡 b) 𝑠 = 𝑡2 − sec 𝑡 + 1 

c) 𝑠 = 1+csc 𝑡

1−csc 𝑡
 d) 𝑠 = sin 𝑡

1−cos 𝑡
 

3. In following, find 
𝑑𝑟

𝑑𝜃
 

a) 𝑟 = 4 − 𝜃2 sin 𝜃 b) 𝑟 = 𝜃 sin 𝜃 + cos 𝜃 

c) 𝑟 = sec 𝜃 csc 𝜃 d) 𝑟 = (1 + sec 𝜃) sin 𝜃 

4. In following, find 
𝑑𝑝

𝑑𝑞
 

a) 𝑝 = 5 + 1

cot 𝑞
 b) 𝑝 = (1 + csc 𝑞) cos 𝑞 

c) 𝑝 = sin𝑞+cos𝑞

cos𝑞
 d) 𝑝 = tan𝑞

1+tan𝑞
 

e) 𝑝 = 𝑞sin𝑞

𝑞2−1
 f) 𝑝 = 3𝑞+tan𝑞

𝑞sec𝑞
 

5. Find 𝑦′′ if  

 

6. Find 𝑦(4) = 𝑑4𝑦 𝑑𝑥4⁄  if 

 

a) 𝑦 = csc 𝑥. b) 𝑦 = sec 𝑥. 

a) 𝑦 = −2 sin 𝑥. b) 𝑦 = 9 cos 𝑥. 
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3.5 The Chain Rule 

     The derivative of the composite function 𝑓(𝑔(𝑥)) at x is the 

derivative of ƒ at 𝑔(𝑥) times the derivative of 𝑔 at x. This is known as 

the Chain Rule. 

Theorem(The Chain Rule): 

      If 𝒇(𝒖) is differentiable at the point 𝒖 = 𝒈(𝒙) and 𝒈(𝒙) is 

differentiable at x, then the composite function (𝒇 ∘  𝒈) (𝒙)  =  𝒇(𝒈(𝒙)) 
is differentiable at x, and 

                            (𝒇 ∘  𝒈)′ (𝒙)  = 𝒇′(𝒈(𝒙) ∙ 𝒈′(𝒙). 

In Leibniz’s notation, if 𝒚 = 𝒇(𝒖) and 𝒖 = 𝒈(𝒙), then 
𝒅𝒚

𝒅𝒙
= 𝒅𝒚

𝒅𝒖
⋅ 𝒅𝒖
𝒅𝒙

, 

where 𝒅𝒚
𝒅𝒖

 is evaluated at 𝒖 =  𝒈(𝒙). 

 

 

 

 

Example: 

      An object moves along the x-axis so that its position at any time 𝑡 ≥ 0 

is given by 𝑥(𝑡) = 𝑐𝑜𝑠(𝑡2 + 1). Find the velocity of the object as a 

function of t. 

Solution: 

      We know that the velocity is 𝑑𝑥/𝑑𝑡. In this instance, x is a composition 

of two functions: 𝑥 =  𝑐𝑜𝑠(𝑢) and 𝑢 = 𝑡2 + 1. We have 

                 𝑑𝑥
𝑑𝑢
= −𝑠𝑖𝑛(𝑢)       𝒙 =  𝒄𝒐𝒔(𝒖) 

                 𝑑𝑢
𝑑𝑡
= 2𝑡                 𝒖 = 𝒕𝟐 + 𝟏 

By the Chain Rule, 

 𝑑𝑥
𝑑𝑡
= 𝑑𝑥

𝑑𝑢
⋅
𝑑𝑢

𝑑𝑡
= −sin(𝑢) ⋅ 2𝑡 = −sin(𝑡2 + 1) ⋅ 2𝑡 = −2𝑡 ⋅ sin(𝑡2 + 1).             
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Remark: 

    A difficulty with the Leibniz notation is that it doesn’t state specifically 

where the derivatives in the Chain Rule are supposed to be evaluated. So, 

it sometimes helps to write the Chain Rule using functional notation. If 

𝑦 = 𝑓(𝑔(𝑥)), then 𝑑𝑦
𝑑𝑥
= 𝑓′(𝑔(𝑥) ∙ 𝑔′(𝑥). 

     In words, differentiate the “outside” function ƒ and evaluate it at the 

“inside” function 𝑔(𝑥) left alone; then multiply by the derivative of the 

“inside function”. 

Example: 

      Differentiate 𝑠𝑖𝑛 (𝑥2 +  𝑥) with respect to x. 

Solution: 

     We apply the Chain Rule directly and find 

    𝑑
𝑑𝑥
𝑠𝑖𝑛 (𝑥2 +  𝑥)⏟      

𝐢𝐧𝐬𝐢𝐝𝐞

= cos(𝑥2 +  𝑥⏟    
𝐢𝐧𝐬𝐢𝐝𝐞

𝐥𝐞𝐟𝐭 𝐚𝐥𝐨𝐧𝐞

) ⋅ (2𝑥 + 1)⏟      
𝐝𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 𝐨𝐟
𝐭𝐡𝐞 𝐢𝐧𝐬𝐢𝐝𝐞

.  

Remark: 

     We sometimes have to use the Chain Rule two or more times to find a 

derivative. 

Example: 

     Find the derivative of 𝑔(𝑡) = 𝑡𝑎𝑛 (5 − 𝑠𝑖𝑛 2𝑡). 
Solution: 

     Notice here that the tangent is a function of 5 − 𝑠𝑖𝑛 2𝑡, whereas the 

sine is a function of 2t, which is itself a function of t. Therefore, by the 

Chain Rule, 

 𝑔′(𝑡) = 𝑑

𝑑𝑡
𝑡𝑎𝑛 (5 − 𝑠𝑖𝑛 2𝑡) 

          = 𝑠𝑒𝑐2 (5 − 𝑠𝑖𝑛 2𝑡) ∙
𝑑

𝑑𝑡
(5 − sin 2𝑡)            Derivative of tan u with 

                                                                                                𝒖 =  𝟓 −  𝒔𝒊𝒏 𝟐𝒕  

         = 𝑠𝑒𝑐2 (5 − 𝑠𝑖𝑛 2𝑡) ∙ (0 − cos 2𝑡 ∙
𝑑

𝑑𝑡
(2𝑡))   Derivative of 𝟓 −  𝒔𝒊𝒏 𝒖 

                                                                                     with 𝒖 =  𝟐𝒕 

          = 𝑠𝑒𝑐2 (5 − 𝑠𝑖𝑛 2𝑡) ∙ ((− cos 2𝑡) ∙ 2)  

          = −2(− cos 2𝑡)𝑠𝑒𝑐2 (5 − 𝑠𝑖𝑛 2𝑡) ∙  
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Remark: 

        If n is any real number and ƒ is a power function, 𝑓(𝑢)  =  𝑢𝑛, the 

Power Rule tells us that 𝑓′(𝑢)  =  𝑛𝑢𝑛−1. If u is a differentiable function 

of x, then we can use the Chain Rule to extend this to the Power Chain 

Rule: 

                           
𝑑

𝑑𝑥
(𝑢𝑛) = 𝑛𝑢𝑛−1

𝑑𝑢

𝑑𝑥
 .                

𝒅

𝒅𝒙
(𝒖𝒏) = 𝒏𝒖𝒏−𝟏      

Example: 

     The Power Chain Rule simplifies computing the derivative of a power 

of an expression. 

a) 
𝑑

𝑑𝑥
(5𝑥3 − 𝑥4)7 = 7(5𝑥3 − 𝑥4)6

𝑑

𝑑𝑥
(5𝑥3 − 𝑥4)    Power Chain Rule with 

                                                                            𝒖 = 𝟓𝒙𝟑 − 𝒙𝟒, 𝒏 =  𝟕  

                               = 7(5𝑥3 − 𝑥4)6(15𝑥2 − 4𝑥3). 

b) 
𝑑

𝑑𝑥
( 1

3𝑥−2
) =

𝑑

𝑑𝑥
(3𝑥 − 2)−1  

               = −1(3𝑥 − 2)−2
𝑑

𝑑𝑥
(3𝑥 − 2)                Power Chain Rule with 

                                                                                                𝒖 = 𝟑𝒙 − 𝟐, 𝒏 = −𝟏  

                    = −1(3𝑥 − 2)−2(3)  

                    =
3

(3𝑥−2)2
 . 

      In part (b) we could also find the derivative with the Quotient Rule. 

c) 
𝑑

𝑑𝑥
(sin5 𝑥) = 5 sin4 𝑥

𝑑

𝑑𝑥
sin 𝑥    Power Chain Rule with 𝒖 = 𝐬𝐢𝐧𝒙, 𝒏 = 𝟓, 

                                                         because 𝐬𝐢𝐧𝒏 𝒙 means (𝐬𝐢𝐧 𝒙)𝒏, 𝒏 ≠ −𝟏. 

                          = 5 sin4 𝑥 cos 𝑥.  

Example: 

     we saw that the derivative of absolute value function 

                               
𝑑

𝑑𝑥
(|𝑥|) = 𝑥

|𝑥|
, 𝑥 ≠ 0,  

                                            = {
1, 𝑥 > 0
−1, 𝑥 < 0

 . 

is not differentiable at 𝑥 = 0. However, the function is differentiable at all 

other real numbers, as we now show. Since |𝑥| = √𝑥2 , we can derive the 
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following formula, which gives an alternative to the more direct analysis 

seen before. 

        
𝑑

𝑑𝑥
|𝑥| =

𝑑

𝑑𝑥
√𝑥2 = 1

2√𝑥2
∙
𝑑

𝑑𝑥
(𝑥2)            Power Chain Rule with 

                                                                                  𝒖 = 𝒙𝟐, 𝒏 = 𝟏 𝟐⁄ , 𝒙 ≠ 𝟎   

                  = 1

2|𝑥|
∙ 2𝑥                                      √𝒙𝟐 = |𝒙| 

                  = 𝑥

|𝑥|
, 𝑥 ≠ 0.  

Example: 

      Show that the slope of every line tangent to the curve 𝑦 = 1 (1 − 2𝑥)3⁄  

is positive. 

Solution: 

     We find the derivative: 

  
𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
(1 − 2𝑥)−3  

       = −3(1 − 2𝑥)−4 ∙
𝑑

𝑑𝑥
(1 − 2𝑥)  Power Chain Rule with 𝒖 = (𝟏 − 𝟐𝒙), 𝒏 = −𝟑, 

       = −3(1 − 2𝑥)−4 ∙ (−2)  

       = 6

(1−2𝑥)4
 . 

      At any point (𝑥, 𝑦) on the curve, the denominator is nonzero, and the 

slope of the tangent line is 
𝑑𝑦

𝑑𝑥
= 6

(1−2𝑥)4
 , which is the quotient of two 

positive numbers. 

Exercises: 

1. In following, given 𝑦 = 𝑓(𝑢) and 𝑢 = 𝑔(𝑥), find 𝑑𝑦 𝑑𝑥⁄ =

𝑓′(𝑔(𝑥))𝑔′(𝑥). 

a) 𝑦 = 6𝑢 − 9 , 𝑢 = (1 2⁄ )𝑥4 b) 𝑦 = 2𝑢3 , 𝑢 = 8𝑥 − 1 

c) 𝑦 = sin 𝑢 , 𝑢 = 3𝑥 + 1 d) 𝑦 = cos 𝑢 , 𝑢 = −𝑥

3
 

e) 𝑦 = √𝑢 , 𝑢 = sin 𝑥 f) 𝑦 = sin 𝑢 , 𝑢 = 𝑥 − cos 𝑥 

g) 𝑦 = tan 𝑢 , 𝑢 = 𝜋𝑥 h) 𝑦 = − sec 𝑢 , 𝑢 = 1

𝑥
+ 7𝑥 
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2. In following, write the function in the form 𝑦 = 𝑓(𝑢) and 𝑢 = 𝑔(𝑥). 

Then find 𝑑𝑦 𝑑𝑥⁄  as a function of x. 

a) 𝑦 = (2𝑥 + 1)5 b) 𝑦 = (4 − 3𝑥)9 

c) 𝑦 = (1 − 𝑥

7
)
−7

 d) 𝑦 = (√𝑥
2
− 1)

−10
 

e) 𝑦 = (𝑥
2

8
+ 𝑥 − 1

𝑥
)
4
 f) 𝑦 = √3𝑥2 − 4𝑥 + 6 

g) 𝑦 = 𝑠𝑒𝑐 (𝑡𝑎𝑛 𝑥) h) 𝑦 = cot (𝜋 − 1

𝑥
) 

i) 𝑦 = tan3 𝑥 j) 𝑦 = 5 cos−4 𝑥 

3. In following, find 𝑑𝑦 𝑑𝑡⁄  

a) 𝑦 = (𝑡−3 4⁄ sin 𝑡)
4 3⁄

 b) 𝑦 = ( 𝑡2

𝑡3−4𝑡
)
3
 

c) 𝑦 = (3𝑡−4
5𝑡+2
)
−5

 d) 𝑦 = (1 + tan4( 𝑡
12
))
3
 

e) 𝑦 = √1 + cos (𝑡2) f) 𝑦 = 4 sin(√1 + √𝑡) 
g) 𝑦 = tan2 (sin3 𝑡) 

h) 𝑦 = √3𝑡 + √2 + √1 − 𝑡  

4. Find 𝑦′′ in following. 

a) 𝑦 = (1 + 1

𝑥
)
3
 b) 𝑦 = (1 − √𝑥)

−1
 

c) 𝑦 = 1

9
cot(3𝑥 − 1) d) 𝑦 = 9 tan(𝑥

3
) 

e) 𝑦 = 𝑥(2𝑥 + 1)4 f) 𝑦 = 𝑥2(𝑥3 − 1)5 

5. For each of the following functions, solve both 𝑓′(𝑥) = 0 and 𝑓′′(𝑥)  =  0 

for x. 

a) 𝑓(𝑥) = 𝑥(𝑥 − 4)3 b) 𝑓(𝑥) = sec2 𝑥 − 2 tan 𝑥  for 0 ≤ 𝑥 ≤ 2𝜋 

6. In following, find the value of (𝑓 ∘  𝑔)′ at the given value of x. 

a) 𝑓(𝑢) = 𝑢5 + 1, 𝑢 = 𝑔(𝑥) = √𝑥, 𝑥 = 1. 
b) 𝑓(𝑢) = 1 − 1

𝑢
, 𝑢 = 𝑔(𝑥) = 1

1−𝑥
, 𝑥 = −1. 

c) 𝑓(𝑢) = 𝑐𝑜𝑡𝜋𝑢
10
, 𝑢 = 𝑔(𝑥) = 5√𝑥, 𝑥 = 1. 

d) 𝑓(𝑢) = 𝑢 + 1

cos2 𝑢
, 𝑢 = 𝑔(𝑥) = 𝜋𝑥, 𝑥 = 1 4⁄ . 

e) 𝑓(𝑢) = 2𝑢

𝑢2+1
, 𝑢 = 𝑔(𝑥) = 10𝑥2 + 𝑥 + 1, 𝑥 = 0. 

f) 𝑓(𝑢) = (𝑢−1
𝑢+1
)
2
, 𝑢 = 𝑔(𝑥) = 1

𝑥2
− 1, 𝑥 = −1. 

7. Assume that 𝑓′(3) = −1, 𝑔′(2)  =  5, 𝑔(2)  =  3, and 𝑦 = 𝑓(𝑔(𝑥)). 

What is y at 𝑥 = 2? 
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8. If 𝑟 = 𝑠𝑖𝑛 (𝑓(𝑡)), 𝑓(0)  = 𝜋 3⁄ , and 𝑓′(0) = 4, then what is 
𝑑𝑟

𝑑𝑡
 at 𝑡 =  0? 

9. Suppose that functions ƒ and 𝑔 and their derivatives with respect to x 

have the following values at 𝑥 =  2 and 𝑥 =  3. 

x 𝑓(𝑥) 𝑔(𝑥) 𝑓′(𝑥) 𝑔′(𝑥) 

2 8 2 1 3⁄  -3 

3 3 -4 2𝜋 5 

Find the derivatives with respect to x of the following combinations at 

the given value of x. 

a) 2𝑓(𝑥),    𝑥 = 2 b) 𝑓(𝑥) + 𝑔(𝑥),    𝑥 = 3 

c) 𝑓(𝑥) ∙ 𝑔(𝑥),    𝑥 = 3 d) 𝑓(𝑥) 𝑔(𝑥)⁄ ,    𝑥 = 2 

e) 𝑓(𝑔(𝑥)),    𝑥 = 2 f) √𝑓(𝑥),    𝑥 = 2 

g) 1 𝑔2(𝑥)⁄ ,    𝑥 = 3 h) √𝑓2(𝑥) + 𝑔2(𝑥),    𝑥 = 2 

10. Suppose that functions ƒ and g and their derivatives with respect to x 

have the following values at 𝑥 =  0 and 𝑥 = 1. 

x 𝑓(𝑥) 𝑔(𝑥) 𝑓′(𝑥) 𝑔′(𝑥) 

0 1 1     5     1 3⁄  

1 3 -4 −1 3⁄  −8 3⁄  

Find the derivatives with respect to x of the following combinations at 

the given value of x. 

a) 5𝑓(𝑥) − 𝑔(𝑥),    𝑥 = 1 b) 𝑓(𝑥)𝑔3(𝑥),    𝑥 = 0 

c) 
𝑓(𝑥)

𝑔(𝑥)+1
,    𝑥 = 1 d) 𝑓(𝑔(𝑥)),    𝑥 = 0 

e) 𝑔(𝑓(𝑥)),    𝑥 = 0 f) (𝑥11 + 𝑓(𝑥))−2,    𝑥 = 1 

g) 𝑓(𝑥 + 𝑔(𝑥)),    𝑥 = 0  

11. Find 𝑑𝑠/𝑑𝑡 when 𝜃 =  3𝜋/2 if 𝑠 =  𝑐𝑜𝑠 𝜃 and 𝑑𝜃/𝑑𝑡 = 5. 

12. Find 𝑑𝑦/𝑑𝑡 when 𝑥 =  1 if 𝑦 = 𝑥2 + 7𝑥 − 5 and 𝑑𝑥/𝑑𝑡 = 1 3⁄ . 

13. Find 𝑑𝑦/𝑑𝑡 if 𝑦 =  𝑥 using the Chain Rule with y as a composition of 

a) 𝑦 = (𝑢 5⁄ ) + 7 , 𝑢 = 5𝑥 − 35 b) 𝑦 = 1 + (1 𝑢⁄ ) , 𝑢 = 1 (𝑥 − 1)⁄  

14. Find 𝑑𝑦/𝑑𝑡 if 𝑦 =  𝑥3 2⁄  using the Chain Rule with y as a composition of 

a) 𝑦 = 𝑢3 + 7 , 𝑢 = √𝑥 b) 𝑦 = √𝑢 , 𝑢 = 𝑥3 
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3.6 Implicit Differentiation 

       To calculate the derivatives of implicitly defined functions, we      

1. Differentiate both sides of the equation with respect to x, treating y as a 

differentiable function of x. 

2. Collect the terms with 𝑑𝑦/𝑑𝑥 on one side of the equation and solve for 

𝑑𝑦/𝑑𝑥. 

Example: 

       Find 𝑑𝑦/𝑑𝑥 if 𝑦 2 =  𝑥2  +  𝑠𝑖𝑛 𝑥𝑦.  

Solution: 

      We differentiate the equation implicitly. 

            𝑦 2 =  𝑥2  +  𝑠𝑖𝑛 𝑥𝑦    

       
𝑑

𝑑𝑥
(𝑦 2) =

𝑑

𝑑𝑥
( 𝑥2) +

𝑑

𝑑𝑥
(𝑠𝑖𝑛 𝑥𝑦) Differentiate both sides with respect 

to 𝒙⋯ 

           2𝑦
𝑑𝑦

𝑑𝑥
= 2𝑥 + cos 𝑥𝑦

𝑑

𝑑𝑥
(𝑥𝑦) ⋯treating y as a function of x and 

using the Chain Rule 

           2𝑦
𝑑𝑦

𝑑𝑥
= 2𝑥 + cos 𝑥𝑦 (𝑦 + 𝑥

𝑑𝑦

𝑑𝑥
) Treat 𝒙𝒚 as a product. 

  2𝑦
𝑑𝑦

𝑑𝑥
− (cos 𝑥𝑦) (𝑥

𝑑𝑦

𝑑𝑥
) = 2𝑥 + (cos 𝑥𝑦)𝑦 Collect terms with 𝒅𝒚/𝒅𝒙. 

      (2𝑦 − 𝑥 cos 𝑥𝑦)
𝑑𝑦

𝑑𝑥
= 2𝑥 + 𝑦 cos 𝑥𝑦  

                
𝑑𝑦

𝑑𝑥
= 2𝑥+𝑦cos𝑥𝑦

2𝑦−𝑥cos𝑥𝑦
 Solve for 𝒅𝒚/𝒅𝒙. 

      Notice that the formula for 𝑑𝑦/𝑑𝑥 applies everywhere that the 

implicitly defined curve has a slope. Notice again that the derivative 

involves both variables x and y, not just the independent variable x. 

       Implicit differentiation can also be used to find higher derivatives. 

Example: 

      Find 𝑑2𝑦/𝑑𝑥2 if 2𝑥3 − 3𝑦2 = 8.  

Solution: 

      To start, we differentiate both sides of the equation with respect to x 

in order to find 𝑦′ =  𝑑𝑦/𝑑𝑥. 
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𝑑

𝑑𝑥
(2𝑥3 − 3𝑦2) =

𝑑

𝑑𝑥
(8)  

                   6𝑥2 − 6𝑦𝑦′ = 0                              Treat y as a function of x. 

                                   𝑦′ = 𝑥2

𝑦
   when 𝑦 ≠ 0       Solve for 𝒚′. 

     We now apply the Quotient Rule to find 𝑦′′.  

                    𝑦′′ = 𝑑

𝑑𝑥
(
𝑥2

𝑦 ) =
2𝑥𝑦−𝑥2𝑦′

𝑦2
= 2𝑥

𝑦
− 𝑥2

𝑦2
∙ 𝑦′  

      Finally, we substitute 𝑦′ = 𝑥2

𝑦
 to express 𝑦′′ in terms of x and y. 

             𝑦′′ = 2𝑥

𝑦
− 𝑥2

𝑦2
∙ 𝑥
2

𝑦
= 2𝑥

𝑦
− 𝑥4

𝑦3
     when 𝑦 ≠ 0. 

Remark:  

      In the law that describes how light changes 

direction as it enters a lens, the important angles 

are the angles the light makes with the line 

perpendicular to the surface of the lens at the 

point of entry (angles A and B). This line is called 

the normal line to the surface at the point of entry. 

In a profile view of a lens like the one in Figure, 

the normal line is the line perpendicular (also 

said to be orthogonal) to the tangent line of the 

profile curve at the point of entry.  

Example: 

      Show that the point (2, 4) lies on the curve 

𝑥3 + 𝑦3 − 9𝑥𝑦 = 0. Then find the tangent and 

normal to the curve there. 

Solution: 

      The point (2, 4) lies on the curve because its 

coordinates satisfy the equation given for the 

curve: 23 + 43 − 9(2)(4) = 8 + 64 − 72 = 0. 

To find the slope of the curve at (2, 4), we first use implicit differentiation 

to find a formula for 𝑑𝑦/𝑑𝑥: 

                           𝑥3 + 𝑦3 − 9𝑥𝑦 = 0. 
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𝑑

𝑑𝑥
(𝑥3) +

𝑑

𝑑𝑥
(𝑦3) −

𝑑

𝑑𝑥
(9𝑥𝑦) =

𝑑

𝑑𝑥
(0) ⋯ 

 3𝑥2 + 3𝑦2
𝑑𝑦

𝑑𝑥
− 9(𝑥

𝑑𝑦

𝑑𝑥
+ 𝑦

𝑑𝑥

𝑑𝑥
) = 0 Differentiate both sides with respect to 𝒙. 

       (3𝑦2 − 9𝑥)
𝑑𝑦

𝑑𝑥
+ 3𝑥2 − 9𝑦 = 0 Treat 𝒙𝒚 as a product and y as a function 

of x. 

                            3(𝑦2 − 3𝑥)
𝑑𝑦

𝑑𝑥
= 9𝑦 − 3𝑥2  

                                                
𝑑𝑦

𝑑𝑥
= 3𝑦−𝑥2

𝑦2−3𝑥
 Solve for 𝒅𝒚/𝒅𝒙. 

We then evaluate the derivative at (x, y) = (2, 4): 

                 
𝑑𝑦

𝑑𝑥
|
(2,4)

= 3𝑦−𝑥2

𝑦2−3𝑥
|
(2,4)

= 3(4)−22

42−3(2)
= 8

10
= 4

5
. 

The tangent at (2, 4) is the line through (2, 4) with slope 4/5: 

            𝑦 = 4 + 4

5
(𝑥 − 2) ⇒ 𝑦 = 4

5
𝑥 + 12

2
. 

The normal to the curve at (2, 4) is the line perpendicular to the tangent 

there, the line through (2, 4) with slope -5/4: 

             𝑦 = 4 − 5

4
(𝑥 − 2) ⇒ 𝑦 = −5

4
𝑥 + 13

2
.  

Exercises: 

1. Use implicit differentiation to find 𝑑𝑦/𝑑𝑥 in following. 

a) 𝑥2𝑦 +  𝑥𝑦2 = 6 b) 𝑥3 +  𝑦3 = 18𝑥𝑦 

c) 𝑦2 = 𝑥−1

𝑥+1
 d) 𝑥3 = 2𝑥−𝑦

𝑥+𝑦
 

e) 𝑥 = sec 𝑦 f) 𝑥𝑦 = cot (𝑥𝑦) 
g) 𝑥 + tan(𝑥𝑦) = 0 h) 𝑥4 +  𝑠𝑖𝑛 𝑦 =  𝑥3𝑦2 

i) 𝑦 sin (1
𝑦
) = 1 − 𝑥𝑦 j) 𝑥 𝑐𝑜𝑠 (2𝑥 +  3𝑦)  =  𝑦 𝑠𝑖𝑛 𝑥 

2. Find 𝑑𝑟/𝑑𝜃 in following 

a) 𝜃1 2⁄ + 𝑟1 2⁄ = 1 b) 𝑟 − 2√𝜃 = 3

2
𝜃3 2⁄ + 4

3
𝜃3 4⁄  

c) sin(𝑟𝜃) = 1

2
 d) cos 𝑟 + cos 𝜃 = 𝑟 

3. In following, use implicit differentiation to find 𝑑𝑦/𝑑𝑥 and then 

𝑑2𝑦/𝑑𝑥2. Write the solutions in terms of x and y only. 

a) 𝑥2 + 𝑦2 = 1 b) 𝑥2 3⁄ + 𝑦2 3⁄ = 1 

c) 𝑦2 = 𝑥2 + 2𝑥 d) 𝑦2 − 2𝑥 = 1 − 2𝑦 

e) 2√𝑦 = 𝑥 − 𝑦 f) 𝑥𝑦 + 𝑦2 = 1 

g) 3 +  𝑠𝑖𝑛 𝑦 =  𝑦 −  𝑥3 h) 𝑠𝑖𝑛 𝑦 =  𝑥 𝑐𝑜𝑠 𝑦 −  2 
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4. If 𝑥3 +  𝑦3 = 16, find the value of 𝑑2𝑦/𝑑𝑥2 at the point (2, 2). 

5. If 𝑥𝑦 +  𝑦2 = 1, find the value of 𝑑2𝑦/𝑑𝑥2 at the point (0, -1). 

6. In following, find the slope of the curve at the given points. 

a) 𝑦2 + 𝑥2 = 𝑦4 − 2𝑥 at (-2, 1) and (-2, -1). 

b) (𝑥2 + 𝑦2)2 = (𝑥 − 𝑦)2 at (-2, 1) and (-2, -1). 

7. In following, verify that the given point is on the curve and find the lines 

that are I) tangent and II) normal to the curve at the given point. 

a) 𝑥2 + 𝑥𝑦 − 𝑦2 = 1, (2,3) b) 𝑥2 + 𝑦2 = 25, (3, −4) 

c) 𝑥2𝑦2 = 9, (−1,3) d) 𝑦2 − 2𝑥 − 4𝑦 − 1 = 0, (−2,1) 

e) 6𝑥2 + 3𝑥𝑦 + 2𝑦2 + 17𝑦 − 6 =
0, (−1,0) 

f) 𝑥2 − √3𝑥𝑦 + 2𝑦2 = 5, (√3, 2) 

g) 2𝑥𝑦 + 𝜋 sin 𝑦 = 2𝜋, (1, 𝜋 2⁄ ) h) 𝑥 sin 2𝑦 = 𝑦 cos 2𝑥, (𝜋 4⁄ , 𝜋 2⁄ ) 

i) 𝑦 = 2 sin(𝜋𝑥 − 𝑦), (1,0) j) 𝑥2𝑐𝑜𝑠2𝑦 − sin 𝑦 = 0, (0, 𝜋) 

8. Parallel tangents Find the two points where the curve 𝑥2 + 𝑥𝑦 + 𝑦2 =

7  crosses the x-axis, and show that the tangents to the curve at these 

points are parallel. What is the common slope of these tangents? 

9. Normal parallel to a line Find the normal to the curve 𝑥𝑦 + 2𝑥 − 𝑦 = 0 

that are parallel to the line 2𝑥 +  𝑦 =  0. 

10. The eight curve. Find the slopes 

of the curve 𝑦4 = 𝑦2 − 𝑥2 at the 

two points shown here. 

 11. Find equations for the tangent 

and normal to the cissoid of Diocles 

𝑦2(2 −  𝑥)  =  𝑥3 at (1, 1). 
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12. Find the slopes of the curve 

𝑦4  −  4𝑦2 = 𝑥4 − 9𝑥2 at the four 

indicated points. 

 13. Is there anything special about 

the tangents to the curves 𝑦2 =  𝑥3 

and 2𝑥2 + 3𝑦25 at the points 

(1, ±1)? Give reasons for your 

answer. 

 

 

 

14. For The folium of Descartes (See Figure) 

a)  Find the slope of the folium of Descartes 

𝑥3 + 𝑦3 − 9𝑥𝑦 = 0 at the points (4, 2) and 

(2, 4). 

b)  At what point other than the origin does 

the folium have a horizontal tangent? 

c)  Find the coordinates of the point A, where 

the folium has a vertical tangent. 

 

 

 

 

 

 

 


