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Introduction

In 1853, the great Russian mathematician, P. L. Chebyshev (Cebysev), while working on a
problem of linkages, devices which translate the linear motion of a steam engine into the
circular motion of a wheel, considered the following problem:

Given a continuous function f defined on a closed interval [a,b]| and a posi-
tive integer n, can we “represent” f by a polynomial p(z) = Y., _,axz®, of
degree at most n, in such a way that the maximum error at any point z in
[a,b] is controlled? In particular, is it possible to construct p so that the error
> max ,<z<p | f(z) — p(z)| is minimized? ¢

This problem raises several questions, the first of which Chebyshev himself ignored:

— Why should such a polynomial even ezist?
— If it does, can we hope to construct it?

— If it exists, is it also unique?
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" Def. 1.1.: If there is a*€ A such that d(a®, ) <d(a, ),V acA, then we say that

—

a’ is a best approximation from A to f.

'

Theorem 1.2.: If A is a compact set in a metric space X, then for every fe X, there exists an
element a* € A such that d(a”, /) <d(a, f) , V acA, a” is a best approximation from A to f.

Proof:
Let d*=inf {d(a, /) : ac A}, if there exists a*c A s.t. d’=d(a", /) then there is nothing to prove.
Otherwise, there 1s a sequence {a,, 1=1,2,..} of points in A which gives the limit :

limd(a,, f)=d"

By completeness, the sequence {a.} has at least one limit point in A ( say a”) such
thatt Ve >0,Jk e N s.t. d(a,, f)<d" + %g
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And d(a,a") < 5¢ (a —a’)

Then d(a’, f) <d(a’, a,) + d(a,, f)
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We have a mefric space X' and we want to approximate a given element z € X~
by an element a of some subset A of X. The elements of A are “nice” or ‘tractable”
and we want to make the distance between 2 and a as small as possible; we call thls
“to make a good approximation of z by elements of A

—
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To any element = of X and any subset A of X we associate the distance d(z, A)
from x to A, which by definition is

(8

(1.4) d(r,A) = 11515 d(x,a), re X, AcCX.

Obviously we have 0 < d(x, A) < +o0 with equality at the second place if and only
if A is empty and equality at the first place if and only if a belongs to A, the closure
of A. So the elements = such that d(x, A) = 0 are those which can be approximated
arbitrarily well by nice elements. If d(x, A) > 0 there is a certain unavoidable error.

A very common situation is that we have an increasing sequence (A,,) of sets
whose union is dense in X, so that d(x, A,,) — 0 as m — o for every r € X. Then
an interesting guestion is how fast the convergence is and how the rate of convergence
depends on properties of the element .

It may or may not happen that the infimum in (1.4) is a minimum. In other
words, 1t may happen that there exists an element a, called a best approrimant, such
that

d(r,a) =d(z, A),

but it may also be the case that

d(r,a) > d(r,A) for all a € A.




In the latter case we are interested in constructing a sequence (a;) of elements of A >)
_ such that d(r,a;) — d(z,A) as j — oo. We call such a sequence an approrimating
sequence. In the first case we may ask 1if there 1s a unique best approximant: the set ]
0T i ..

{ac A d(r,a)=d(z,A)},

may be empty, have exactly one element, or may have more than one element.




\.lel'érem 1.2.: If A 1s a compact set in a metric space X, then for every teX,
Lhére exists an element a* € A such that d(a”, /) <d(a, /), V acA, a” is a best
approximation from A to f.

Proof:
Let d"=inf {d(a, /) : ac A}, if there exists a*e A s.t. "= d(a", /) then there is nothing to

prove.
Otherwise, there 1s a sequence {a,, 1=1,2,..} of points in A which gives the limit :

limd(a,, f)=d"
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By completeness, the sequence {a;} has at least one limit point in A ( say
a") such that:
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Then d(a”, /) <d(a’, a,) + d(a,, )
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Since ¢is an arbitrary real valued —» d(a’, /) <d(a, f)

Then a” is a best approximation element from A to f.



Best Approximations in Normed Spaces

Chebyshev's problem 15 perhaps best understood by rephrasing it 1n modern terms. What
we have here 15 a problem of best appronimation 1n & normed hnear space. Recall that a
liaﬂrm on & (real) vector space X is a nonnegative function on X satisfying

@

r|| = 0, and ||z| = 0 if and only if = =0,
az| = |a||z| for any £ £ X and o € R,
4yl < ||| + [|¥|| for any =, y € X.

» n
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Any norm on X induces a metric or distance function by setting dist(x, ¥) = ||z — y||. The
abstract version of our problem(s) can now be restated:

Lemma 1.3. Let V be a finite-dimensional vector space. Then, all norms on V are eguiv-
alent. That is, if || - | and |||-||| are norms on V', then there erist constants 0 << A, B < oo

such that
Allz|| <|l|x|l| < B ||=||

for all vectors x € V.
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seqenence converges). In particular, if Y is a finite-dimensional subspace of a normed linear

Corollary 1.4. Every finite-dimensional normed space is complete (that is, every Cauchy
space X, then Y is a elosed subset of X .

("\

Corollary 1.5. Let Y be a finite-dimensional normed space, let x € Y, and let M = 0.
Then, any closed ball {y €Y :||lr —y|| < M } is compact.

Theorem 1.6. Let Y be a finite-dimensional subspace of a normed linear space X, and let
x e X. Then, there erists a (not necessarily unigque) vector y* € Y such that

[l — *|| = min ||z — y||
ueY

for all w € Y. That is, there is a best approrimation to x by elements from Y .

Proof. First notice that because 0 € ¥, we know that any nearest point y* will satisfy
|z — w*|| < ||z|| = ||& — 0]|]. Thus, it suffices to look for ¥* in the compact set

K={yeY:|z—y| <=z}

To finish the proof, we need only note that the function f(y) = ||z — y|| is8 continuous:

[ fly) — f(2) = |llz =yl = llz — =[] = llv — =]

and hence attains a minimum value at some point = € K. []




Corollary 1.7. For each f € Cla,b] and each positive integer n, there is a (not necessarily
\ unique) polynomial pl, € P, such that

— o || = min — .
|f = #3ll = min |If — pl
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Lemma 1.8 Let Y be a finite-dimensional subspace of a normed linear space X, and
suppose that each r € X has a unigque nearest point y, € Y. Then the nearest point map
€T Yy 18 cOnbinuous.

Proof. Let’s write P(x) = y, for the nearest point map. and let’s suppose that x,, — x in
X. We want to show that P(x,,) — P(zx)., and for this it’s enough to show that there is a
subsequence of (P(x,)) that converges to P(x). (Why?)

Because the sequence (x,) is bounded in X, say ||z,|| < M for all n, we have
b | Pzn)|| < [|P(2n) — za|| + [[za]] = 2||za|| < 2M.

Thus, (P(xy,)) is a bounded sequence in Y. a finite-dimensional space. As such. by passing
to a subsequence, we may suppose that (P(x,)) converges to some element Fy € Y. (How?)

Now we need to show that Fy = P(x). But
| P(zn) — zn|| < [|[P(x) — x|
for any n. (Why?) Hence, letting n — oo, we get
| Fo — z|| < || P(z) — ||

Because nearest points in ¥ are unique, we must have Fy = P(x). []




Theorem 1 9 Let Y be a subspace of a normed linear space X, and let + € X. The set
| Y .. consisting of all best approrimations to x out of ¥, is a bounded convex set.

Proof. As we've seen, the set Y, is a subset of the ball { y € X : ||z —y|| < ||z|| } and, as such,
is bounded. (More generally, the set Y, is a subset of the sphere {y € X : ||z —y|| =d}.
where d = dist(z.Y) = inf ,=v ||z — v]|[.)

Next recall that a subset K of a vector space V is said to be conver if K contains the
line segment joining any pair of its points. Specifically, K is convex if

9

rye K, 0<A<1 — Ar+(1— Ay e K.

Thus, given y1, yo € Yo and 0 < A < 1, we want to show that the vector y* = Ay +(1—A)ya £
Y.. But y1, y2 € ¥, means that

r — = || — — min || — )
| yi|| = | yal| min I y||
Hence,

lz —v*|l = llz— (Ay1 + (1 — A)ua)l|

[[Alx —y1) + (1 — A)(z — y2)|
Al —yl| + (1 — A)||z — ya|

min ||xr — ]
min ||+ — v

|

Consequently, ||z — v*|| = min yev ||z — w||; that is, y* € ¥5. ]
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A norm || - || on a vector space X is said to be strictly conver if, for any pair Df/ points

\_ r#y € X with ||z|| = r = ||y||. we always have ||[Az+ (1 —A)y|| < rforall0 < A < 1. That

15, the open line segment between any pair of points on the sphere of radius r lies entirely
within the open ball of radius r: in other words, only the endpoints of the line segment can
hit the sphere. For simplicity, we often say that the space X 1s strictly convex, with the
understanding that we're actually referring to a property of the norm in X. In anv such
space, we get an immediate corollary to our last result:

Corollary 1 .10 If X has a strictly conver norm, then. for any subspace Y of X and any
point * € X, there can be at most one best approrimation to x out of Y. That is, Y, is
either empty or consists of a single point.

Lemma 1..11 4 normed space X has a strictly conver norm if and only if the triangle
}iﬂequah;ty is strict on nonparallel vectors; that is, if and only if

r#F oy, yFar, alacR — ||z +y|| < [z + |[v]]

Proof. First suppose that X is strictly convex, and let x and v be nonparallel vectors in X .
Then, in particular, the vectors x/||z|| and v/||v|| must be different. (Why?) Hence,

“ =l ) @ +( [H] ) v H""”'
=l =+ ol /) Tl Il =+ il /) Tl

That is, ||z + »|| < [|=|| + [lv]].
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Next suppose that the triangle inequality is strict on nonparallel vectors, and let » #
\ y € X with ||z|| =r = ||ly||. If x and y are parallel, then we must have y = —z. (Why?) In
this case,

Az + (1 =A)yl = 2A = 1] [[z]| <~

9

because —1 < 2A — 1 < 1 whenever 0 < A < 1. Otherwise, r and y are nonparallel. Thus,
for any 0 < A < 1, the vectors Ax and (1 — A) y are likewise nonparallel and we have

[Az + (1 = A)yl| < Allz]l + (1 = A)y] = H

Examples 1 12

1. The usual norm on Cla.b] is not strictly convex (and so the problem of uniqueness
of best approximations is all the more interesting to tackle). For example, if f(z) ==

and g(x) = 2” in C[0,1], then f # g and || f|| =1 = ||g||, while || f + g|| = 2. (Why?)

2. The usual norm on B" is strictly convex, as is any one of the norms ||-||; for 1 < p < oc.
(See Problem 10.) The norms || - |l and || - ||-. on the other hand. are not strictly
convex. (Why?)
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