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APPROXIMATION THEORY




The Weilerstrass Theorem

Let’s begin with some notation. Throughout this chapter, we'll be concerned with the
problem of best (uniform) approximation of a given function f € Cla,b] by elements from
P, the subspace of algebraic polynomials of degree at most n in C[a,b]. We know that the
problem has a solution (possibly more than one), which we've chosen to write as p¥. We set

En(f) = min ||f —pl = |If — .
PEFPn

Because P, C P,,.1 for each n, it's clear that E,(f) = E,1(f) for each n. Our goal in this
chapter is to prove that E, (f) — 0. We'll accomplish this by proving:

|
Theorem 2.1. (The Weierstrass Approximation Theorem, 1885) Let f € Cla,b]. Then,

for every £ = 0, there is a polynomial p such that || f — p| < =.

B
Lemma 2.2. If the Weierstrass theorem holds for C'[0,1], then it also holds for Cla,b],

and conversely. In fact, C0,1] and Cla,b]| are, for all practical purposes, identical: They
are linearly isometric as normed spaces, order isomorphic as lattices, and isomorphic as
algebras (rings).



The point to our first result is that it suffices to prove the Weilerstrass theorem for any
interval we like; [0,1] and [—1,1] are popular choices, but it hardly matters which interval
we 1use.

Bernstein’s Proof

The proof of the Weilerstrass theorem we present here is due to the great Russian math-
ematician S. N. Bernstein in 1912. Bernstein's proof is of interest to us for a varietyv of
reasons; perhaps most important is that Bernstein actually displays a sequence of polyno-
mials that approximate a given f € C[0.1]. Moreover, as we’'ll see later, Bernstein's proof
generalizes to vield a powerful, unifying theorem, called the Bohman-Korovkin theorem (see
Theorem 2.9).

If f is any bounded function on [0,1], we define the sequence of Bernstein polynomials

for f bv
(BuD)@) =3 flk/m)- () a1 2>, 0<a<i
k=0

Please note that B, (f) is a polynomial of degree at most n. Also, it's easy to see that

(Bn(f))(0) = f(0), and (B.(f))(1) = f(1). In general, (Bn(f))(z) is an average of the
numbers f(k/n), k = 0,....n. Bernstein's theorem states that B,(f) = f for each f
C'10,1]. Surprisingly, the proof actually only requires that we check three easy cases:

fﬂ{ﬂ:} =1, fl[:l'} = I, and fgfﬂ_‘.] — :112,



Lemma 2.3. (i) B,(fo)=fo and B,(f1) = fi.

(i) Bu(f2) = (1-24)fa+1f1, and hence B,(f2) = fo.

T 9 -
(iii) Z(% - -.1') (k):rk(l — )"k = I{]” z) < jﬂ. if 0<z<1.

k=0
(iv) Given 6 = 0 and 0 < z < 1, let F denote the set of k in {0,....n} for which
k " 1
”—1‘}5 TthZ() (1—x) 5411;52'
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Proof. That B, (fy) = fy follows from the binomial formula:

> (D"""tl — )

k=0

r+(1—x)" =1

since fy(x) =1, then

Bu(fo) = ) o) () ¥kt — 0"k = 1=,
k=0

ow, since f1 (x) =x

.P. Bn(fi)=f1,

or k >1, then:

(o) =2 Gom) = Gatoom) =(@hm) = (2 0)




Consequently,

R yn—k = (n—1 — e
DL () FRCIUU IS Y (i (O

Next , to compute B, (/)
K\ k\ [k km —
5 O-E)E®] -6 D

=20 2D=5G D)6 DD=-maG D056 D)

_n-1k-1_ (m-1)! 1/mn —1\_n-1k-1 ®n-1)(n-2)! 1m -1
 n n—1(k—1)!(n—k)!+n(k —1) n n—1(k—1)(k—2)!(n—k)!+n(k _1) for k=1
_4 Ly(n —2),1m -1

=(1--) (k _2)+ n(k _1) for k >2




which establishes (ii) because || Ba(fa) — fal = 2 f1 — fa| — 0 as n — oc.




[

To prove (iii) we combine the results in [1] and _[ii} a;_m:l”simplif}f. Because ((k/n) —z)% =
(k/n)? — 2z(k/n) + 22, we get

~ [k AW n—k 1Y o 1 3 | 9
Z — — (1 —x) = |1l——|z"+—x—-22"+=x
] k T mn

k=0

for 0 < o> < 1.
Finally, to prove (iv), note that 1 < ((k/n) — 2)?/4? for k € F, and hence

> ()t < m X (h-) ()0
F3(E-) (1) o

kel
from (iii). ]
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Theorem 2.1. (The Weierstrass Approximation Theorem, 1885) Let f = Cla,b]. Then,
for every £ = 0, there is a polynomial p suech that || f — p|| << =.
Proof. Let f € C[0,1] and let £ = 0. Then. because f is uniformly continuous, there is
a & = 0 such that |f(x) — f(y)| = £/2 whenever |z — y| < 4. Now we use the previous

lemma to estimate || f — B, (f)||. First notice that because the numbers (})z*(1 —x)" % are

nonnegative and sum to 1, we have

fla) - kzﬂ::u (5)7 (5) == =
= X (@ -1 (5) (7)=*a -

=0
fla) — f (E)‘ (f) k(1 — )k,

n
= 2
MNow fix n (to be specified in a moment) and let F' denote the set of & in {0, ..
(/1) — x| = &. Then | f(x) — f(k/n)| << /2 for k£ & F'. while |f(x) — Ff(k/n)| < 2||Ff|| for

=0
ke F. Thus,

| f(x) — Bn(f)(x)]

- .7} for which

| F(=) — (Bn(f))(=)]

= % > (:)Ikil — )" 2 F D> (E)m"“fl N

ket ke F
& 1
< 5- 1 + 2||FI - A52 " from (iv) of the Lemma,
= =, provided that n = ||f||/=62. ]



Landaun’s Proof

Just because it’s good for us, let’s give a second proof of Weierstrass’s theorem. This one
is due to Landau in 1908. First, given f  C[0,1], notice that it suffices to approximate
f — p, where p is any polynomial. (Why?) In particular, by subtracting the linear function
F(O)+x(f(1) — f(0)), we may suppose that f(0) = f(1) = 0 and, hence, that f = 0 outside
'0,1]. That is, we may suppose that f is defined and uniformly continuous on all of I.

Again we will display a sequence of polyvnomials that converge uniformly to f; this time
we define

1
L.(x) = e, f Flx + ) (1 — £2)™ dt,
1

where ¢, is chosen so that
1
.:nf (1 — 2y dt = 1.
—1

Note that by our assumptions on f, we may rewrite L, (x) as

1—x 1
Ln(z) = en ] fle+8)(1 — )" dt = en f F(t) (1 — (¢t — 2))™ dt.
Q

— .

Written this way, it’s clear that L, 1s a polvnomial in r of degree at most n.
We first need to estimate ¢,. An easy induction argument will convinee you that (1 —
t2)" > 1 — nt?, and so we get

T

]_ E l.".‘.-" E ‘1 1
1—t )" dt = 2 1 — nts) dt = = .
f_1[ ) - /.:. ( nt’) 3vn T

from which it follows that ¢, =< +/n. In particular, for any 0 < & =< 1,

1
r"/ (1—£2)"dt < /m(l—6" =0  (n— oo),
&

which is the inequality we'll need.




Next, let £ > 0 be given, and choose (0 < é < 1 such that
|f(z) — f(y)| < &/2 whenever |z — y| < 4.

Then, because ¢, (1 — %)™ > 0 and integrates to 1, we get

1
co [ [fa+0) - J@]0 -2t

—1

&
Y

1
< ] fa+t)— f@)|(1—2)"d

f{l “cﬂt+-1||f||rﬂf{1
E L Af] VAl - )" <,

provided that n is sufficiently large. H

]
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To begin, we will need a bit more notation. The modulus of continuity of a bounded funetion
f on the interval [a,b] is defined by

wi(0) = wy([a,b]:6) = sup{ |f(z) — f()| : 2.y € [a.b], |z —y| <6}

for any & > 0. Note that wg(d) is a measure of the “c” that goes along with 4 (in the
definition of uniform continuity); literally, we have written ¢ = w¢(4) as a function of 4.



Lemma 2.5. Let f be a bounded function on [a,b] and let 6 > 0. Then, ws(nd) < nwy(4)
forn=1,2,.... Consequently, ws(Ad) < (1+ A)wp(d) for any A > 0.

Proof. Given x < y with |z — y| < nd, split the interval [z, y ]| into n pieces, each of length
at most 4. Specifically, if weset 2y =z +k(y—2z)/n,fork=0.1,...,n, then |z —2p—1| <9
for any £ > 1, and so

f@)— fw) = D f(z)—flzx-1)
k=1
< Zlf(/.k)—f(,ok_l)l
k=1
< nwg(d).

Thus, wp(nd) < nwe(d).
The second assertion follows from the first (and one of our exercises). Given A > 0,
choose an integer n so that n — 1 < A < n. Then.

wr(Ad) S wp(nd) <nwye(d) < (1+ A)wr(d). O



Theorem 2.6. For any bounded function f on [0,1] we have

3 1
1 = Buh)ll < 51 (=)
In particular, if f € C[0.1], then E,(f) < %.uf(%) — 0 as n — oco.

Proof. We first do some term juggling:

an - (s@-1(2)) ()= -
f( )|() 1yt

1f(x) —

B, (f)(z)|

IA

1A

IA

k

a:_—
=0 TL-
i k
) [1 b \/akzz;) z— %




where the third inequality follows from Lemma 2.5 (by taking A = /n |:v -~ %I and § =
71_5 ). All that remains is to estimate the sum, and for this we’ll use Cauchy-Schwarz

(and our earlier observations about Bernstein polynomials). Because each of the terms
(7)z*(1 — z)"~* is nonnegative, we have

n

k (n) k n—k
Z r— — z (1 — x)
k=0 X k
! 2 Qi 1/2 1/2
b AG o] [0
[ n k 2 n 1/2 n o 1/2
< P — ; (L)IL(I - _,L.)n-k Z (k) k(l - T)n —k
bk=0 : | k=
_ .
= 4n]| — 2V

Finally,

@)~ B @] <wr(92) [t + v o] = 3 (S5 o



The Bohman-Korovkin Theorem

The real value to us in Bernstein’s approach is that the map f +— B, (f). while providing a
simple formula for an approximating polyvnomial. is also linear and positive. In other words.

Bn(f +g) = Bn(f) + Bn(g).
Brn(af) = aBn(f). ac R,
and

B, (f) = 0 whenever f = 0.

Lemma 2.8. IfT : Cla,b] — Cla.b] is both positive and linear, then T is continuous.

Proof. First note that a positive, linear map is also monotone. That is, T satisfies T(f) <
T'(g) whenever f < g. (Why?) Thus, for any f € C[a,b], we have

—f f = || = —T(f), T(f) =T(|F])

that is, |T(f)| < T(|f]). But now |f| < ||f]| - 1. where 1 denotes the constant 1 function,

and so we get
(N <T(f) < [FIIT(2).

Thus,
WL (O < £ IT()]

for any f € Cla.b]. Finally, because T is linear, it follows that T is Lipschitz with constant
17°(1) ]}
WT(f) =Tl =T —a)ll = T (V)| IIL.f — gll-

Consequently, T is continuous. ]




Theorem 2.9. Let T, : C[0,1] — C[0,1] be a sequence of positive, linear maps, and
suppose that T, (f) — f uniformly in each of the three cases

folz)=1, fi(z)=2, and f?(m):m?.
Then, Tu(f) — f uniformly for every f € C[0,1].

The proof of the Bohman-Korovkin theorem is essentially identical to the proof of Bern-
stein’s theorem except, of course, we write Ty( f) in place of By (f). For full details, see [12].
Rather than proving the theorem, let’s settle for a quick application.
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