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Definitionl.10 : (Metric Space) Suppose X is a set. A map d: XxX— IR is called a metric on

X if the following properties hold:

(i) d(x, y) >0 forall x, y €X;

(ii) d(x, y) = 0 if and only if x =y,

(iii) d(x, y) = d(y, x) for all x, y € X.

(iv) d(x, y) <d(x, z) + d(z, y) for all x, y, z € X (triangle inequality).

We call (X, d) a metric space. If it is clear what metric is being used, we simply say X is a
metric space.
Examples (HW. 2-6)

1) Real line IR: this is the set of all real numbers, taken with the usual metric defined by:
dix, y) =|x-y| V' x,y IR
2) Euclidean plane IR?: The metric space IR, with Euclidean metric:
if x=(x1, x2), y=(v1,y2) , then:
d(x,») =05 =)+ (5, = 1)’

3) Euclidean Space IR": If x=(x1, X2, ...,Xn), Y=(V1,Y2, ...,.¥n) , then:

d(x%,3) = (5 =9 + (X =)+ (x, = ,)"
4) Function space Cla, b]: As a set X we take the set of all real-valued functions x, y, ...
which are functions of an independent real variable t and are defined and continuous

on a given closed interval J = [a, b]. Choosing the metric defined by
d(x, y)=max|x(r) — ()|
5) Discrete metric space: We take any set X and on it the so-called discrete metric for X,
defined by:
d(x, x) =0, dix,y)=1 (xX£y).
This space (X, d) is called a discrete metric space.
6) Space B(A) of bounded functions: By definition, each element x « B(A) is a function
defined and bounded on a given set A, and the metric is defined by:

d(x, y)=sup | x(t) = y(?) |

teA



FUNCTIONAL ANALYSIS

Ll 5 puialaall

Sol.(1)

[1] 1- d is real, finite & d=| x-y | >0

2)dx,y)=0 <> | x-y | =0 <> x-y=0 > x=y V'x, yelR
3)dxy)=[xy|=|-0-x)] =|yx|=dy x) v'x, y€IR

4)dixy)=|xy|=|x—z+z-y|<|x—z|+|z—y| =d(x, z)+d(z y) V'x, y, zelR
Then (IR, d) is a metric space.

2. Normed Spaces

The first to introduce the concept for the standard was the Austrian scientist E. Helly (1844 -
1943), but he did not use the name of the standard nor its symbol, it was known as any function
that fulfills certain conditions (the same conditions of the standard)

* A norm on a vector space is a way of measuring distance between vectors.

Definition 1.11.: A norm on a linear space V over F is a function || . || - V — R with the

properties that :
(D) |Ix]|| =0 forallx
2) ||x||=0ex=0 (positive definite)
Q) llx+yl|<lIx|| +lyllforallx,y eV.  (triangle inequality)
(4) ||ax|| = |a| ||x|| for all x € V and acF.

In Definition 1.11(3) we are assuming that F'is R or C and | . | denotes the usual absolute

value. If || . || is a function with properties (2) and (3) only it is called a semi-norm.
Definition 1.12. A normed linear space is a linear space V with a norm || . || (sometimes we
write || . ||v).

Theorem 1.13. If V is a normed space, then:

D) || 0]=0
2) || x||=1|-x]|for every xeV.
3) [l x-y || = || y=x || for every x V.

D XA - 1y T =1 x-y || for every x V.
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Proof :
Properties (1), (2) and (3) conclude directly from the definition, to prove property (4):
x=(xy)ty
Ix 1= 1l Gyl <llxy [yl =2 - 1y =[xyl ....(D)
Similarly:
1= 1T =1 x-y ||
-1y D) sllxy Il =l -1y D) z-[Txy |l (2
From (1) & (2), we get:

ey I =lxll -y =lley [l = HIxI- 1y [T =1]x-y ]

Examples 1.14.:- [H.W 3,5,6,7]

[1] The vector space V is normed v.s. with the norm || x || = | x | for all xeV.

Proof:
1) Since |x |20 —=|| x| =0.
2 ||lx||=0«|x|=0x=0
3) LetxeV, ael, then
lox || =]eax|=]af [x]=]alllx]|
4) Letx,y eV, then:
I xtyll =lxtyl=lx|+|y[=Ilx|[+]ly]l
[2] Let V = R" with the usual Euclidean norm

n
lx [ =1lx]l2= O x, )"
=

proof:

1) Since x; >0forall j=12,..n —|[x || >0
9 llxll =06 Elx P2 =0 e ¥ =0
= =

> sz. =0forall j=1,2,..,n ¢<> x, =0forall j=1,2,..,n <>x=0
3) Let xelR", a € IR:

ox = a(xi, ..., xXxn) = (0xi, ..., 0Xy)
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lax || = Qlax, )= la|Qlx, )=l || x]].
= =

4) Let x,yelR":
X+ Y =Xt o, Xn) YL oo, Yn) FXIF YL, Xnt Yn)

[x+y [l = Qlx +y, )"
=1

By using MinKowski's inquality where p=2, we have:
Fx+ = Qolx +y, )" <Qolx )2+ v 2 =l x )+ v
i=1 i=1 i1

[3] There are many other norms on R", called the p-norms. For 1 <p < codefined by:

n
[x 1= Qlx; )"
=1

Then || . ||p is a norm on V ( to check the triangle inequality use MinKowski's Inequality)

Ol +2, 107 < Ul 107+ (YL, 1)
=1 =1 =1
[4] There is another norm corresponding to p = oo, defined by:
[ x []eo = max{]x, [}
<j<n
where || . ||: IR" - IR and x = (xi, ..., Xn).

proof:
1) Since | xi| >0 foralli=1, ..., n = || x|| > 0.
Xn [}=0 <> | xi| = 0foralli=1, ..., n

2) || x| =0 max{| x|, ...,
« xi =0foralli=I, ...,n < x=0
3) Letx € IR" and a € IR, then

ox =a X1, ..., Xp) = (0X1, ..., QXn)

| ox || = max { | axi |, ... ,| oxn |}
=max{|a||xi| ....,|a|l|x]|
=|a|max{|xi|, ..., |xn]}

=lalllx]|
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4) Letx,y € IR"

X+ = (X1, e, Xn) T (Y1, e V) = ( ..,)
Xntyn |/
Xn [+ yn |}
Xn |} max { |y

|| x +yl| = max { | xi+yi

y see

y see

<max { | x1| + |y

g eee 5 eee

<max { | x Y|}

=l x{l+ Iyl
[5] Let X = C[a; b], and put || f || = sup | f(¢)|. This is called the uniform or supremum norm.

tela,b]
[6] Let X = C[a; b], and choose 1 < p < co. Then (using the integral form of Minkowski's

inequality) we have the p-norm
b
1= [Irm"
[7] Let V be the set of Riemann-integrable functions f : (0; 1) — R which are square-

1
integrable. Let || f||2 = (Il fx) dx)% <. Then V is a normed linear space.
0

Definition 1.15. A set C in a linear space is convex if for any two points x, y € C,

tx+(1-t)y eCforallt €0, 1].

Definition 1.16. A norm || . || is strictly convex if || x || = 1, x+y || = 2 together

yil =1

imply that x = y.
Definition 1.17. : Let X and Y be two sets . The Cartesian product of X and Y is the set of all

ordered pairs (x, y) where xe X, y €Y and is denoted by X xY , i.e.
XxY ={(x,y):xeXyeY)

Theorem 1.18.

If(X,

Y)|I= maxi]| x |

proof:

DI p) [| =0 > max{]| x ||x,

2) let (x1,y1), (x2y2) € XxY, then

.|| )is normed space where ||(x,

lx) and (Y, || . ||y) are normed spaces, then (X x Y,

Yy,

X,

ylg=0 <[ x [lx=0,

v ||r=0 <>x=0, y=0 <> (x, y)=0

(x1,y1) + (x2,y2)=(x1+ x2, yit+ y2)
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|| (x17+ x2, yit+ y2)||= max {]| xi+ x> yillrH|| y2l[y)

yit y2||9f< max{|] x1|[x+]] x2|

X X,

< max{|| xi||x || yilly }+max{|| x2||x. || y2[lv} =[x, y)l[+]|( x2 y2)||
3) let (x, y) € XXY and a €F, then: || a(x, y)||= max{ ||ax||x, ||ay||v}= max {|a| ||x||x, ||
[yt =lal max {||x[|x |Iyllv/=]al [|(x. y)I|

H.W. If [|(x, Il = (Alxllx + [y][9"?, prove that (X x Y,

. ||) is normed space.

Theorem 1.19. Every normed linear space is metric space.

proof:
let (X,

||) is a normed space. We define the function d: XxX — IR as:
d(x,y)=||x-y|| for all x,y €X, since this function satisfies all the conditions of metric :
Dlet x,y eX — x-y €X (since X is vector space) — || x-y || >0 —>d(x, y) > 0.
2)dix,y) =0 x-y|| =0 <>x-y =0 <>x=y
3)dx,y) = xyll =I[lyx|l =dby x)
4) let x,y,zeX :

[x-y | =l -2)+Ey) || <[l xz ||+ ||z || =2 dx, y) <d(x, 2)+ d(z y)
Remark : The converse may be not true, for example:

If X beav.s., defined: Xx X — IR as:

0 -
wref) 7]

And define || . ||: X = IR as || x ||=d(x, 0)

(X, || . ||) fails to be normed space.

Since if x20 = || x || =d(x, 0) =2

| 2x || =d(2x, 0) = |2| || x || =2 - 2.2=2 - 4=2 (!




