


Lemma 6.3. (a) D, is even,
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() If An=— D, (t)| dt., then —logn < A, <3+ logn.

Proof. (a), (b), and (¢) are relatively clear from the fact that

D,(t) = 5 +cost +cos2t + -- - + cosnt.



(Notice, too, that (b) follows from the fact that s,(1) = 1.) For (d) we use a more delicate
estimate: Because 20/m < sinfl < # for 0 < 0 < «/2, it follows that 2t/7 < 2sin(t/2) < ¢
for 0 < t < w. Hence,

T _ |sin (n+3)t] N |sin (n + 4) t]
2t 2sin 5t t
for 0 <t < w. Next, the upper estimate in (e) is easy:
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The lower estimate takes some work:
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Corollary 6.4. If f € C3™, then
| I L | |
18 (f)(x)] 5;/ |f(x+t)| |Dn(t)|dt < Ay fIl- (6.1)

In particular, ||sn(f)|| < Axl|lfll < (3 + logn)|| f]l.

Theorem 6.5. (Kharshiladze, Lozinski) For each n. let Ly, be a continuous, linear projec-

tion from C*™ onto T.. Then, there is some f € C*™ for which ||Ln(f) — f|| is unbounded.

then

Theorem 6.6. If f € C*™ and if we set EL(f) =

) < If=sa(H)l € (4+logn) EL(f).

Proof. Let T be the best uniform approximation to f out of 7,,. Then, because s,,(T*) =
T, we get

Hf ‘“n mn

. .

!
|
l




Because the sequence of partial sums (s, ) need not converge to f, we might try looking
at their arithmetic means (or Cesaro sums):

8o+ 81+ -+ Sp—1

O =
nn.
(These averages typically have better convergence properties than the partial sums them-
selves. Comnsider o,, in the (scalar) case s, — (—1)™, for example.) Specifically, we set
1
on(f)(@) = —[so(f)(@)+ -+ sn1(f)(2)]

== n—1 ™
%/_w flx+t) [%;Dk(t)] dt = %/_ﬂ f(z + t) K, (¢) dt.

where K,, = (Dg+ D1 +---+D,,_1)/n is called Fejér’s kernel. The same techniques we used
earlier can be applied to find a closed form for o, ( f) which. of course, reduces to simplifying
(Do +D1 +---+D,,_41)/n. As before. we begin with a trig identity:

n—1 n—1
2sin d E sin(2k + 1)8 = E | cos 2k6 — cos (2k + 2)0 |
k=0 k—0
— 1 — cos2nf — 2sin> né.
Thus.
o 1 = sin (2k + 1) t/2 sin2(nt/2)
Kn(t) = — E 2 s > = =335 5
n £— sin (£ /2) 2nsin” (¢ /2)
Please note that K, is even. nonnegative, and é ffﬂ_ Kn(t)dt = 1. Thus, o, (f) is a positive,

linear map from C?27 onto 7,, (but it’s not a projection—why?). satisfying ||lo,.(f)]|l2 < || fll=




Now the arithmetic mean operator o,(f) is still a good approximation f in Ls norm.

Indeed.

If —on(Dll2 = —

n—1
> (f — sk(f))
k=0

n—1
< SIS — skl — O
2 k=0

as n — oo (because ||f — si(f)|[2 — 0). But, more to the point, o, (f) is actually a good
uniform approximation to f, a fact that we’ll call Fejér’s theorem:

Theorem 6.8. If f € C°7, then on(f) converges uniformly to f as n — oc.

Note that, because a,(f) € 7,,. Fejér's theorem implies Weierstrass’s second theorem.
Curiously, Fejér was only 19 years old when he proved this result (about 1900) while Weier-
strass was 75 at the time he proved his approximation theorems.

Theorem 6.9. Suppose that k, € C>™ satisfies
(a‘) kﬂ 2 03

(b) %/ kn(t)dt = 1. and

(c) krn(t)dt — O for every 6 = 0.
s<|t|<m

Then, %/W f(x +t) kn(t)dt = f(x) for each f € C>™.



Proof. Let £ = 0. Because [ is uniformly continuous, we may choose 8 > 0 so that |f(xz) —
f(x+t)| < =, for any ., whenever || < 6. Next, we use the fact that k,, is nonnegative and
integrates to 1 to write

@) — 2 [ s 0 ko) 2| ) @ — e+ 0] ke at |

1 ris
< = [ 5@ — f@+ 0| ka(e) at
w — T
= = kn(t)dt + 201 ko (t) dt
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< &£+ & =2&,
for n sufficiently large. 1

To see that Fejér’s kernel satisfies the conditions of the Theorem is easy: In particular.
(c) follows from the fact that K, () — O on the set 6 < |{|] < w. Indeed, because sin(f/2)
increases on 0 < t < w we have
sin?(nt/2) 1

o) = < > 0
n(?) 2nsin?(t/2) — 2nsin?(4/2)

Our second proof, or sketch, really, is based on a variant of the Bohman-Korovkin theo-
rem for C27 due to Korovkin. In this setting, the three “test cases” are

fo(x) = 1, fi(x) = cos =z, and fo(z) = sin .

Theorem 6.10. Let (L) be a sequence of positive. linear maps on C>™. If L.(f) = f for
each of the three functions fo(x) = 1. fi(x) = cosz, and fo(x) = sinz, then L,(f) = f for
. every f € C3™.
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