نظرية التقريب

جامعة بغداد كلية العلوم للبنات قسم الرياضيات

A Brief Introduction to Fourier Series

The Fourier series of a 2π -periodic (bounded, integrable) function f is

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right),$$

where the coefficients are defined by

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt \, dt$$
 and $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt \, dt$.

Please note that if f is Riemann integrable on $[-\pi, \pi]$, then each of these integrals is well-defined and finite; indeed,

$$|a_k| \le \frac{1}{\pi} \int_{-\pi}^{\pi} |f(t)| \, dt$$

and so, for example, we would have $|a_k| \leq 2||f||$ for $f \in C^{2\pi}$. We write the partial sums of the series as

$$s_n(f)(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx).$$

Remarks

1. The collection of functions $1, \cos x, \cos 2x, \ldots$, and $\sin x, \sin 2x, \ldots$, are *orthogonal* on $[-\pi, \pi]$. That is,

$$\int_{-\pi}^{\pi} \cos mx \, \cos nx \, dx = \int_{-\pi}^{\pi} \sin mx \, \sin nx \, dx = \int_{-\pi}^{\pi} \cos mx \, \sin nx \, dx = 0$$

for any $m \neq n$ (and the last equation even holds for m = n),

$$\int_{-\pi}^{\pi} \cos^2 mx \, dx = \int_{-\pi}^{\pi} \sin^2 mx \, dx = \pi$$

for any $m \neq 0$, and, of course, $\int_{-\pi}^{\pi} 1 dx = 2\pi$.

2. What this means is that if $T(x) = \frac{\alpha_0}{2} + \sum_{k=1}^n (\alpha_k \cos kx + \beta_k \sin kx)$, then

$$\frac{1}{\pi} \int_{-\pi}^{\pi} T(x) \cos mx \, dx = \frac{\alpha_m}{\pi} \int_{-\pi}^{\pi} \cos^2 mx \, dx = \alpha_m$$

for $m \neq 0$, while

$$\frac{1}{\pi} \int_{-\pi}^{\pi} T(x) \, dx = \frac{\alpha_0}{2\pi} \int_{-\pi}^{\pi} dx = \alpha_0.$$

That is, if $T \in \mathcal{T}_n$, then T is actually equal to its own Fourier series.

- 3. The partial sum operator $s_n(f)$ is a linear projection from $C^{2\pi}$ onto \mathcal{T}_n .
- 4. If $T(x) = \frac{\alpha_0}{2} + \sum_{k=1}^{n} (\alpha_k \cos kx + \beta_k \sin kx)$ is a trig polynomial, then

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) T(x) dx = \frac{\alpha_0}{2\pi} \int_{-\pi}^{\pi} f(x) dx + \sum_{k=1}^{n} \frac{\alpha_k}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx
+ \sum_{k=1}^{n} \frac{\beta_k}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx
= \frac{\alpha_0 a_0}{2} + \sum_{k=1}^{n} (\alpha_k a_k + \beta_k b_k),$$

where (a_k) and (b_k) are the Fourier coefficients for f. [This should remind you of the dot product of the coefficients.]

5. Motivated by Remarks 1, 2, and 4, we define the inner product of two elements f, $g \in C^{2\pi}$ by

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) dx.$$

(Be forewarned: Some authors prefer the normalizing factor $1/2\pi$ in place of $1/\pi$ here.) Note that from Remark 4 we have $\langle f, s_n(f) \rangle = \langle s_n(f), s_n(f) \rangle$ for any n. (Why?)

6. If some $f \in C^{2\pi}$ has $a_k = b_k = 0$ for all k, then $f \equiv 0$.

Proof. Indeed, by Remark 4 (or linearity of the integral), this means that

$$\int_{-\pi}^{\pi} f(x) T(x) dx = 0$$

for any trig polynomial T. But from Weierstrass's second theorem we know that f is the uniform limit of some sequence of trig polynomials (T_n) . Thus,

$$\int_{-\pi}^{\pi} f(x)^2 dx = \lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) T_n(x) dx = 0.$$

Because f is continuous, this easily implies that $f \equiv 0$.

- 7. If $f, g \in C^{2\pi}$ have the same Fourier series, then $f \equiv g$. Hence, the Fourier series for an $f \in C^{2\pi}$ provides a unique representation for f (even if the series fails to converge to f).
- 8. The coefficients a_0, a_1, \ldots, a_n and b_1, b_2, \ldots, b_n minimize the expression

$$\varphi(a_0, a_1, \dots, b_n) = \int_{-\pi}^{\pi} [f(x) - s_n(f)(x)]^2 dx.$$

9. The partial sum $s_n(f)$ is the best approximation to f out of \mathcal{T}_n relative to the L_2 norm

$$||f||_2 = \sqrt{\langle f, f \rangle} = \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 dx\right)^{1/2}.$$

That is,

$$||f - s_n(f)||_2 = \min_{T \in \mathcal{T}_n} ||f - T||_2.$$

Moreover, using Remarks 4 and 5, we have

$$||f - s_n(f)||_2^2 = \langle f - s_n(f), f - s_n(f) \rangle$$

$$= \langle f, f \rangle - 2 \langle f, s_n(f) \rangle + \langle s_n(f), s_n(f) \rangle$$

$$= ||f||_2^2 - ||s_n(f)||_2^2$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 dx - \frac{a_0^2}{2} - \sum_{k=1}^{n} (a_k^2 + b_k^2).$$

[This should remind you of the *Pythagorean theorem*.]

10. It follows from Remark 9 that

$$\frac{1}{\pi} \int_{-\pi}^{\pi} s_n(f)(x)^2 dx = \frac{a_0^2}{2} + \sum_{k=1}^{n} (a_k^2 + b_k^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 dx.$$

In other symbols, $||s_n(f)||_2 \le ||f||_2$. In particular, the Fourier coefficients of any $f \in C^{2\pi}$ are square summable. (Why?)

- 11. If $f \in C^{2\pi}$, then its Fourier coefficients (a_n) and (b_n) tend to zero as $n \to \infty$.
 - 12. It follows from Remark 10 and Weierstrass's second theorem that $s_n(f) \to f$ in the L_2 norm whenever $f \in C^{2\pi}$. Indeed, given $\varepsilon > 0$, choose a trig polynomial T such that $||f T|| < \varepsilon$. Then, because $s_n(T) = T$ for large enough n, we have

$$||f - s_n(f)||_2 \le ||f - T||_2 + ||s_n(T - f)||_2$$

 $\le 2||f - T||_2$
 $\le 2\sqrt{2}||f - T|| < 2\sqrt{2}\varepsilon,$

where the penultimate inequality follows from the easily verifiable fact that $||f||_2 \le \sqrt{2} ||f||$ for any $f \in C^{2\pi}$. (Compare this calculation with Lebesgue's Theorem 5.9.)

By way of comparison, let's give a simple class of functions whose Fourier partial sums provide good uniform approximations. (because f' is 2π -periodic). Thus, $|a_k| \leq 2||f''||/k^2 \to 0$ as $k \to \infty$. More importantly, this inequality (along with the Weierstrass M-test) implies that the Fourier series for f is both uniformly and absolutely convergent:

$$\left| \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right| \le \left| \frac{a_0}{2} \right| + \sum_{k=1}^{\infty} \left(|a_k| + |b_k| \right) \le C \sum_{k=1}^{\infty} \frac{1}{k^2}.$$

But why should the series actually converge to f? Well, if we call the sum

$$g(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right),$$

then $g \in C^{2\pi}$ (why?) and g has the same Fourier coefficients as f (why?). Hence (by Remarks 6.1 (7), above, g = f.

Our next chore is to find a closed expression for $s_n(f)$. For this we'll need a couple of trig identities; the first two need no explanation.

$$\cos kt \cos kx + \sin kt \sin kx = \cos k(t - x)$$
$$2\cos \alpha \sin \beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)$$
$$\frac{1}{2} + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{\sin(n + \frac{1}{2})\theta}{2\sin\frac{1}{2}\theta}$$

Here's a short proof for the third:

$$\sin \frac{1}{2}\theta + \sum_{k=1}^{n} 2\cos k\theta \sin \frac{1}{2}\theta = \sin \frac{1}{2}\theta + \sum_{k=1}^{n} \left[\sin (k + \frac{1}{2})\theta - \sin (k - \frac{1}{2})\theta\right] \\
= \sin (n + \frac{1}{2})\theta.$$

The function

$$D_n(t) = \frac{\sin\left(n + \frac{1}{2}\right)t}{2\sin\frac{1}{2}t}$$

is called *Dirichlet's kernel*. It plays an important role in our next calculation. We're now ready to re-write our formula for $s_n(f)$.

$$s_{n}(f)(x) = \frac{1}{2}a_{0} + \sum_{k=1}^{n} \left(a_{k} \cos kx + b_{k} \sin kx\right)$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left[\frac{1}{2} + \sum_{k=1}^{n} \cos kt \cos kx + \sin kt \sin kx\right] dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left[\frac{1}{2} + \sum_{k=1}^{n} \cos k(t-x)\right] dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cdot \frac{\sin (n + \frac{1}{2}) (t-x)}{2 \sin \frac{1}{2} (t-x)} dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) D_{n}(t-x) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) D_{n}(t) dt.$$