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FUNCTIONAL ANALYSIS 

 
Definition(1.20)  

Let X be normed space 
1.The open ball with center x0 Î X and radius r > 0 denoted by br(x0) and define    
  as br(x0)= {xÎX: ||x-x0||< r } and the closed ball is b!!!!(x0)={xÎX : ||x-x0|| £ r}. 
2. A subset A of X is said to be bounded if there exists k > 0 such that ||x|| £ k for 
all x Î A .  

Remarks  

1.Every open ball and closed ball are nonempty sets because x0Îbr (x0 )  

and x0 Î b!!!!(x0). 

 2.br (x0)= x0 +br (0)= x0 + rb1(0)  

Indeed 
br(x0)={xÎX: ||x-x0 ||< r}= {x0+y: ||y||< r}= x0 + {y: ||y||< r}= x0+br(0)  

Also, br(0)={xÎX: ||x||< r}={xÎX: ||#||
!
< 1}= {r y:||y||< 1}= r{y: ||y||<1}= rb1(0).  

Definition(1.21)  

Let X be normed space. A subset A is said to be open set if given any point x Î A 
, there exists r > 0 such that br (x ) Í A . and we say that A is called a closed set 
if Ac is open set.   

Remark  
Since every normed space is metric space and every metric space is a topological 
space, then every normed space is topological space. br(x0) is a neighbourhood of 
x0 . This topology is called a norm topology on X , and the space X is called the 
normed topological space. 

Definition(1.22)  
A metric linear space X is said to be normable if the metric function is induced 
by a norm.  



 ةثلاثلا ةرضاحملا

 3 

FUNCTIONAL ANALYSIS 

Theorem (1.23)  
Let X be normed space. 
1. Every open ball in X is open set. 
2. Every closed ball in X is closed set. 
3. A subset of X is open iff it is union of a family of open balls.  
4. Any finite subset of X is closed. 

Proof: H.W 

Definition (1.24)  
Let X be normed space and let A Í X: 
1. The union of all open sets in X contained in A is called the interior of A,    
    denoted by int(A).  
i.e. int(A)= È {BÍ X :BÎT, BÍ A}.Thus int(A) is the largest open set contained 
in A, and int(A ) Í A .  
Hence int(A ) = {x Î A : $ r > 0, br(x ) Í A} , 

           int(A)= {x Î A : $ r > 0, x + rB1(0)Ì A}  

2.The intersection of all the closed sets containing A is called the closure of A,  
   denoted by A .  
i.e. 𝐴̅ =Ç {B Í X :BcÎT ,A Í B}.Thus 𝐴̅ is the smallest closed set containing A 
,and A Í 𝐴̅ .  

Hence 𝐴̅= {xÎX:" r>0,$ yÎA ' ||x-y||< r},  𝐴̅= ⋂ (𝐴+	𝑟𝐵$!!!(0))!%& .  

3. A point x ÎX is called a limit point of A if each open set G in X such that x ÎG  
   and A Ç (G | {x }) ¹ f .The set of all limit points of A is denoted by A¢  and is   
   called the derived set of A .  
   Hence A¢ = {x Î X : " r> 0, $ yÎ A ' y ¹ x, ||x - y||< r}  
4. The boundary of a subset A is defined as the difference between the closure  
    and the interior of the subset A , i.e. ¶ (A ) = 𝐴̅ Ç (int(A ))c .  
    Hence ¶ (A)={xÎX:" r> 0,$ yÎA , zÎAc ' ||x-y||< r, ||x- z||< r} 
5. The exterior of A is the complement of 𝐴̅ and denoted by ext(A) , 
    i.e. ext (A ) = (𝐴̅ )c .  
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Theorem(1.25)  
Let X be normed space. If M is a subspace of X , then 𝑀*  is subspace of X .  

Proof : 
Since 0ÎM Þ MÌ 𝑀*  Þ 0Î𝑀*, so 𝑀*¹f 
Let x, y Î 𝑀*  and a , b Î F . To prove a x + b y Î 𝑀* 

Let r> 0 
1. If a ¹ 0 and b ¹ 0 , then !

'|(|
 > 0 and !

'|)|
 > 0 , there exist a, b Î M such that 

!|𝑥 − 𝑎|! <
𝑟

2|𝛼|
			𝑎𝑛𝑑.		!|𝑥 − 𝑏|! < 	

𝑟
2|𝛽|

 

Since M is subspace and a,bÎ M , then. a a + b b Î M 

 (a x + b y ) - (a a + b b ) = a ( x - a ) + b ( y - b )  

||(a x + b y) - (a a + b b)||£ |a| || x - a||+| b | || y - b|| < |𝛼| !
"|$|

+ |𝛽| !
"|%|

=r 

Hence a x + b y Î 𝑀*  

Equivalent Norms 

 Definition(1.26) Let ∥⋅∥$ and ∥⋅∥' be two norms on a vector space 𝑋.We say 
that ∥⋅∥$ and ∥⋅∥' are equivalent (or ∥⋅∥$ is equivalent to ∥⋅∥' ), written ∥⋅∥$∼∥⋅
∥', if there exists positive real numbers 𝑎 and 𝑏 such that 𝑎 ∥ 𝑥 ∥$≤∥ 𝑥 ∥'≤ 𝑏 ∥
𝑥 ∥$ for all 𝑥 ∈ 𝑋. 
Example(1.27) 

Let ∥ 𝑥 ∥$= ∑*+$,  |𝑥*| and ∥ 𝑥 ∥'= 8∑*+$,  𝑥*'9
!
" for all 𝑥 = (𝑥$, ⋯ , 𝑥,) ∈ ℝ,. 

Show that ∥⋅∥$∼∥⋅∥'. 
Solution : 
From Cauchy's inequality, we have 

 ∑*+$,  |𝑥*𝑦*| ≤ 8∑*+$,  𝑥*'9
!
"8∑*+$,  𝑦*'9

!
" for all 𝑥* , 𝑦* ∈ ℝ 

Put 𝑦* = 1 for all 𝑖 = 1,2,⋯ , 𝑛;  
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we have ∑*+$,  |𝑥*| ≤ 8∑*+$,  𝑥*'9
!
"(∑*+$,  1)

!
" 

∥ 𝑥 ∥$≤∥ 𝑥 ∥'⋅ √𝑛 ⇒
1
√𝑛

∥ 𝑥 ∥$≤∥ 𝑥 ∥' 

⇒ 𝑎 =
1
√𝑛

, but ∥ 𝑥 ∥'≤∥ 𝑥 ∥$⇒ 𝑏 = 1. 

 Hence ∥⋅∥$∼∥⋅∥'. 

Theorem(1.28) 
On a finite dimensional vector space all norms are equivalent. 
Proof: 

Let 𝑋 be finite dimensional vector space with 𝑑𝑖𝑚	 𝑋 = 𝑛 > 0, and ∥⋅∥$, ∥⋅∥' be 
two norms on 𝑋. To prove ∥⋅∥$∼∥⋅∥' 
Let {𝑥$, ⋯ , 𝑥,} be a basis for 𝑋 ⇒ every 𝑥 ∈ 𝑋 has a unique representation 

𝑥 =K  
,

*+$

𝜆*𝑥* , 	𝜆* ∈ 𝐹.											 ⋯ (1) 

and 

∥ 𝑥 ∥$= ∥∥∑  ,
*+$  𝜆*𝑥*∥∥$ ≤ ∑  ,

*+$ ∣ 𝜆*∥∥𝑥*∥∥$ …..(2) 
Put 𝑘 = 𝑚𝑎𝑥{∣ 𝑥$∥∥	$, … , ∥∥𝑥, ∥$} ⇒ 𝑘 for all 𝑖 = 1,… , 𝑛 

⇒ ∑*+$,  R𝜆*∥∥𝑥*∥∥$ ≤ 𝑘∑*+$,  R𝜆* ∣ .			….		(3) 
From (2) and (3), we have ∥ 𝑥 ∥$≤ 𝑘∑*+$,  |𝜆*|    ….(4) 
Since the set {𝑥$, ⋯ , 𝑥,} is linear independent, by lemma of linear independent, 
there is 𝑐 > 0 such that ∥∥∑*+$,  𝜆*𝑥*∥∥' ≥ 𝑐∑*+$,  |𝜆*|    ….(5) 
From (1) and (5), we have 	 ∥ 𝑥 ∥'≥ 𝑐∑*+$,  |𝜆*|        …..(6) 

From (4) and (6), we have ∥ 𝑥 ∥$≤
-
.
∥ 𝑥 ∥' 

Put 𝑎 = .
-
, we have 	𝑎 ∥ 𝑥 ∥$≤∥ 𝑥 ∥'         ….(7) 

Similarly 	 ∥ 𝑥 ∥'≤ 𝑘∑*+$,  |𝜆*|                    ⋯(8), 
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 and.    ∥ 𝑥 ∥$≥ 𝑐∑*+$,  |𝜆*|             ….(9) 

From (8) and (9) , we have ∥ 𝑥 ∥'≤
-
.
∥ 𝑥 ∥$ 

Put 𝑏 = -
.
, we have ∥ 𝑥 ∥'≤ 𝑏 ∥ 𝑥 ∥$          …..(10) 

From (7) and (10), we have 𝑎 ∥ 𝑥 ∥$≤∥ 𝑥 ∥'≤ 𝑏 ∥ 𝑥 ∥$. 

 Hence ∥⋅∥$∼∥⋅∥' 
Definition(1.29) 
A semi norm on 𝑋 is a function 𝑝: 𝑋 → ℝ having the following: 

1 𝑝(𝜆𝑥) = |𝜆|𝑝(𝑥) for all 𝑥 ∈ 𝑋 and for all 𝜆 ∈ 𝐹 
2 𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦) for all 𝑥, 𝑦 ∈ 𝑋 

A family 𝐹 of seminorms on X is said to be separating if to each 𝑥 ≠ 0 
corresponds at least one 𝑝 ∈ 𝐹 with 𝑝(𝑥) ≠ 0. 

Theorem(1.30)  

Suppose p is a seminorm on a vector space X . Then: 

 1. p(0)=0 

2. p(-x)= p(x) for all xÎX 

3. p(y-x)= p(x-y) for all x,yÎX  

4. | p(x)-p(y)| £ p(x-y)  for all x,yÎX  

5. p(x)³ 0 for all xÎX  

6.The set N(p)={xÎX : p(x)=0} is a subspace of X 

7.  p is a norm if it satisfies the condition p(x)¹ 0 if x¹ 0.  H.W. 

Proof :  

(1),(2) and (3) direct from definition. 

4. x=(x-y)+y Þ p(x)= p((x-y)+y)£ p(x-y)+ p(y)  

p ( x ) - p ( y ) £ p ( x - y ) … (1)  

Also, - p ( x - y ) £ p ( x ) - p ( y ) …. ( 2 )  
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From(1) and (2) , we have; 

 - p(x - y) £  p(x) - p(y) £ p(x - y)  

Þ | p(x)-p(y)| £ p(x-y) 

5. Since p(x)-p(y)£ p(x-y) for all x,yÎX  

Take y=0 Þ p(x)£ p(x) 

Since p(x) ³ 0 Þ p(x) ³ 0 for all xÎX  

6. Since p(0)=0 Þ 0ÎN(p) Þ N(p)¹f  

Let x,yÎN(p) anda,bÎF Þ p(x)=0, P(y)=0 

 p(ax + by) £ p(a x) + p(b y) £ a p(x) + y p(y) = 0 Þ  

p(ax + by) £ 0  Since x, y Î N ( p),a , b Î F , and X is vector space, then  

ax+byÎ X Þ p(ax+by)³ 0 

p(ax+by)=0 Þ ax+byÎN(p) Þ N(p) is a subspace.  

Definition(1.31)  

     Let X be a linear space over F. A D - norm on X is a function || . ||: X ® R having 

the following properties:  

1.|| x ||> 0 for all xÎX, x¹ 0.  

2. || lx || £ || x ||  for all x Î X and for all 0 < |l| £ 1  

3.𝑙𝑖𝑚
/→&

||l𝑥	|| = 0  for all xÎX  

4. ||x+ y|| £ c max {||x|| ,||y||} for all x,yÎ X where c> 0 is independent of x, y.  

Remark  

1. A D - norm || . || on X is called an F-norm if it satisfies ||x + y|| £ ||x|| + ||y||  for 

all x, y Î X . 

 2. A D - norm || . || on X is called a quasi-norm if it satisfies ||lx|| = |l| || x || for 

all x Î X and lÎF.  
 


