التحليل الدالي المحاضرة الثالثة قسم الرياضيات الصف الرابع

Definition(1.20)

Let X be normed space

- 1. The open ball with center $x_0 \in X$ and radius r > 0 denoted by $\beta_r(x_0)$ and define as $\beta_r(x_0) = \{x \in X: ||x-x_0|| \le r\}$ and the closed ball is $\overline{\beta_r}(x_0) = \{x \in X: ||x-x_0|| \le r\}$.
- 2. A subset A of X is said to be bounded if there exists k > 0 such that $||x|| \le k$ for all $x \in A$.

Remarks

1. Every open ball and closed ball are nonempty sets because $x_0 \in \beta_r(x_0)$ and $x_0 \in \overline{\beta_r}(x_0)$.

$$2.\beta_r(x_0) = x_0 + \beta_r(0) = x_0 + r\beta_1(0)$$

Indeed

$$\beta_r(x_0) = \{x \in X: ||x - x_0|| < r\} = \{x_0 + y: ||y|| < r\} = x_0 + \{y: ||y|| < r\} = x_0 + \beta_r(0)$$

Also,
$$\beta_r(0) = \{x \in X: ||x|| < r\} = \{x \in X: \frac{||x||}{r} < 1\} = \{r y: ||y|| < 1\} = r\{y: ||y|| < 1\} = r\beta_l(0)$$
.

Definition(1.21)

Let X be normed space. A subset A is said to be open set if given any point $x \in A$, there exists r > 0 such that $\beta_r(x) \subseteq A$ and we say that A is called a closed set if A^c is open set.

<u>Remark</u>

Since every normed space is metric space and every metric space is a topological space, then every normed space is topological space. $\beta_r(x_0)$ is a neighbourhood of x_0 . This topology is called a norm topology on X, and the space X is called the normed topological space.

Definition(1.22)

A metric linear space X is said to be normable if the metric function is induced by a norm.

Theorem (1.23)

Let X be normed space.

- 1. Every open ball in X is open set.
- 2. Every closed ball in X is closed set.
- 3. A subset of X is open iff it is union of a family of open balls.
- *4. Any finite subset of X is closed.*

Proof: **H.W**

Definition (1.24)

Let X be normed space and let A $\subseteq X$:

- 1. The union of all open sets in X contained in A is called the interior of A, denoted by int(A).
- i.e. $int(A) = \bigcup \{B \subseteq X : B \in T, B \subseteq A\}$. Thus int(A) is the largest open set contained in A, and $int(A) \subseteq A$.

Hence $int(A) = \{x \in A : \exists r > 0, \beta_r(x) \subseteq A\}$,

$$int(A) = \{x \in A : \exists r > 0, x + rB_1(0) \subset A\}$$

- 2. The intersection of all the closed sets containing A is called the closure of A, denoted by A.
- i.e. $\bar{A} = \cap \{B \subseteq X : B^c \in T, A \subseteq B\}$. Thus \bar{A} is the smallest closed set containing A, and $A \subseteq \bar{A}$.

Hence $\bar{A} = \{x \in X: \forall r > 0, \exists y \in A \ni ||x-y|| < r\}, \ \bar{A} = \bigcap_{r>0} (A + r\overline{B_1}(0)).$

3. A point $x \in X$ is called a limit point of A if each open set G in X such that $x \in G$ and $A \cap (G \mid \{x\}) \neq \emptyset$. The set of all limit points of A is denoted by A' and is called the derived set of A.

Hence
$$A' = \{x \in X : \forall r > 0, \exists y \in A \ni y \neq x, ||x - y|| < r\}$$

4. The boundary of a subset A is defined as the difference between the closure and the interior of the subset A, i.e. $\partial(A) = \overline{A} \cap (int(A))^c$.

Hence $\partial(A) = \{x \in X: \forall r > 0, \exists y \in A, z \in A^c \ni ||x-y|| < r, ||x-z|| < r\}$

5. The exterior of A is the complement of \bar{A} and denoted by ext(A), i.e. $ext(A) = (\bar{A})^c$.

Theorem(1.25)

Let X be normed space. If M is a subspace of X, then \overline{M} is subspace of X.

Proof:

Since $0 \in M \Rightarrow M \subset \overline{M} \Rightarrow 0 \in \overline{M}$, so $\overline{M} \neq \phi$

Let $x, y \in \overline{M}$ and $\alpha, \beta \in F$. To prove $\alpha x + \beta y \in \overline{M}$

Let r > 0

1. If $\alpha \neq 0$ and $\beta \neq 0$, then $\frac{r}{2|\alpha|} > 0$ and $\frac{r}{2|\beta|} > 0$, there exist $a, b \in M$ such that

$$\left| |x - a| \right| < \frac{r}{2|\alpha|}$$
 and $\left| |x - b| \right| < \frac{r}{2|\beta|}$

Since M is subspace and $a,b \in M$, then. $\alpha a + \beta b \in M$

$$(\alpha x + \beta y) - (\alpha a + \beta b) = \alpha (x - a) + \beta (y - b)$$

$$||(\alpha x + \beta y) - (\alpha a + \beta b)|| \le |\alpha| ||x - a|| + |\beta| ||y - b|| \le |\alpha| \frac{r}{2|\alpha|} + |\beta| \frac{r}{2|\beta|} = r$$

Hence $\alpha x + \beta y \in \overline{M}$

Equivalent Norms

<u>Definition(1.26)</u> Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on a vector space X.We say that $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent (or $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$), written $\|\cdot\|_1 \sim \|\cdot\|_2$, if there exists positive real numbers a and b such that $a \| x \|_1 \le \| x \|_2 \le b \| x \|_1$ for all $x \in X$.

Example(1.27)

Let $\|x\|_1 = \sum_{i=1}^n |x_i|$ and $\|x\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$ for all $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. Show that $\|\cdot\|_1 \sim \|\cdot\|_2$.

Solution:

From Cauchy's inequality, we have

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} y_i^2\right)^{\frac{1}{2}} \text{ for all } x_i, y_i \in \mathbb{R}$$

$$Put \ y_i = 1 \text{ for all } i = 1, 2, \cdots, n;$$

we have $\sum_{i=1}^{n} |x_i| \le \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} 1\right)^{\frac{1}{2}}$

$$\parallel x \parallel_1 \leq \parallel x \parallel_2 \cdot \sqrt{n} \Rightarrow \frac{1}{\sqrt{n}} \parallel x \parallel_1 \leq \parallel x \parallel_2$$

$$\Rightarrow a = \frac{1}{\sqrt{n}}, \ but \ \parallel x \parallel_2 \leq \parallel x \parallel_1 \Rightarrow b = 1.$$

Hence $\|\cdot\|_1 \sim \|\cdot\|_2$.

Theorem(1.28)

On a finite dimensional vector space all norms are equivalent.

Proof:

Let X be finite dimensional vector space with dim X = n > 0, and $\|\cdot\|_1$, $\|\cdot\|_2$ be two norms on X. To prove $\|\cdot\|_1 \sim \|\cdot\|_2$

Let $\{x_1, \dots, x_n\}$ be a basis for $X \Rightarrow every \ x \in X$ has a unique representation

$$x = \sum_{i=1}^{n} \lambda_i x_i, \ \lambda_i \in F. \qquad \cdots (1)$$

and

$$\| x \|_{1} = \| \sum_{i=1}^{n} \lambda_{i} x_{i} \|_{1} \le \sum_{i=1}^{n} \| \lambda_{i} \| x_{i} \|_{1} \dots (2)$$

 $Put \; k = max\{\mid x_1 \parallel_1, \dots, \parallel x_n \parallel_1\} \Rightarrow k \; for \; all \; i = 1, \dots, n$

$$\Rightarrow \sum_{i=1}^{n} |\lambda_{i}| |x_{i}| |_{1} \le k \sum_{i=1}^{n} |\lambda_{i}| . \dots (3)$$

From (2) and (3), we have $||x||_1 \le k \sum_{i=1}^n |\lambda_i|$ (4)

Since the set $\{x_1, \dots, x_n\}$ is linear independent, by lemma of linear independent, there is c > 0 such that $\|\sum_{i=1}^n \lambda_i x_i\|_2 \ge c \sum_{i=1}^n |\lambda_i| \dots (5)$

From (1) and (5), we have
$$\|x\|_2 \ge c \sum_{i=1}^n |\lambda_i|$$
(6)

From (4) and (6), we have $||x||_1 \le \frac{k}{c} ||x||_2$

Put
$$a = \frac{c}{k}$$
, we have $a \parallel x \parallel_1 \le \parallel x \parallel_2$ (7)

Similarly
$$\|x\|_2 \le k \sum_{i=1}^n |\lambda_i|$$
 ... (8),

and.
$$\|x\|_1 \ge c \sum_{i=1}^n |\lambda_i|$$
(9)

From (8) and (9), we have
$$||x||_2 \le \frac{k}{c} ||x||_1$$

Put
$$b = \frac{k}{c}$$
, we have $||x||_2 \le b ||x||_1 \dots (10)$

From (7) and (10), we have $a \parallel x \parallel_1 \le \parallel x \parallel_2 \le b \parallel x \parallel_1$.

Hence $\|\cdot\|_1 \sim \|\cdot\|_2$

Definition(1.29)

A semi norm on X is a function $p: X \to \mathbb{R}$ having the following:

1
$$p(\lambda x) = |\lambda| p(x)$$
 for all $x \in X$ and for all $\lambda \in F$

2
$$p(x + y) \le p(x) + p(y)$$
 for all $x, y \in X$

A family F of seminorms on X is said to be separating if to each $x \neq 0$ corresponds at least one $p \in F$ with $p(x) \neq 0$.

Theorem(1.30)

Suppose p is a seminorm on a vector space X. Then:

1.
$$p(0)=0$$

2.
$$p(-x)=p(x)$$
 for all $x \in X$

3.
$$p(y-x) = p(x-y)$$
 for all $x,y \in X$

4.
$$|p(x)-p(y)| \le p(x-y)$$
 for all $x,y \in X$

5.
$$p(x) \ge 0$$
 for all $x \in X$

6. The set
$$N(p) = \{x \in X : p(x) = 0\}$$
 is a subspace of X

7. p is a norm if it satisfies the condition $p(x) \neq 0$ if $x \neq 0$. H.W.

<u>Proof</u>:

(1),(2) and (3) direct from definition.

4.
$$x=(x-y)+y \implies p(x)=p((x-y)+y) \le p(x-y)+p(y)$$

$$p(x) - p(y) \le p(x - y) \dots (1)$$

Also,
$$-p(x-y) \le p(x) - p(y) \dots (2)$$

From(1) and (2), we have;

$$-p(x-y) \le p(x) - p(y) \le p(x-y)$$

$$\Rightarrow |p(x)-p(y)| \le p(x-y)$$

5. Since $p(x)-p(y) \le p(x-y)$ for all $x,y \in X$

Take
$$y=0 \Rightarrow p(x) \leq p(x)$$

Since $p(x) \ge 0 \Rightarrow p(x) \ge 0$ for all $x \in X$

6. Since
$$p(0)=0 \Rightarrow 0 \in N(p) \Rightarrow N(p) \neq \phi$$

Let
$$x,y \in N(p)$$
 and $\alpha,\beta \in F \Rightarrow p(x)=0$, $P(y)=0$

$$p(\alpha x + \beta y) \le p(\alpha x) + p(\beta y) \le \alpha p(x) + y p(y) = 0 \Rightarrow$$

 $p(\alpha x + \beta y) \le 0$ Since $x, y \in N(p), \alpha, \beta \in F$, and X is vector space, then

$$\alpha x + \beta y \in X \Rightarrow p(\alpha x + \beta y) \ge 0$$

 $p(\alpha x + \beta y) = 0 \Rightarrow \alpha x + \beta y \in N(p) \Rightarrow N(p)$ is a subspace.

Definition(1.31)

Let X be a linear space over F. A Δ - norm on X is a function $\|\cdot\|: X \to R$ having the following properties:

- 1.||x|| > 0 for all $x \in X$, $x \neq 0$.
- 2. $||\lambda x|| \le ||x||$ for all $x \in X$ and for all $0 < |\lambda| \le I$
- $3.\lim_{\lambda \to 0} ||\lambda x|| = 0 \text{ for all } x \in X$
- 4. $||x+y|| \le c \max \{||x||, ||y||\}$ for all $x,y \in X$ where c > 0 is independent of x, y.

Remark

- 1. $A \Delta$ norm || . || on X is called an F-norm if it satisfies $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.
- 2. $A \Delta$ norm || . || on X is called a quasi-norm if it satisfies $||\lambda x|| = |\lambda| || x ||$ for all $x \in X$ and $\lambda \in F$.