

جامعة بغداد كلية العلوم للبنات قسم الرياضيات

نظرية التقريب

Chapter 3

Trigonometric Polynomials

Introduction

A (real) trigonometric polynomial, or trig polynomial for short, is a function of the form

$$a_0 + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx),$$
 (3.1)

where a_0, \ldots, a_n and b_1, \ldots, b_n are real numbers. The degree of a trig polynomial is the highest frequency occurring in any representation of the form (3.1); thus, (3.1) has degree n provided that one of a_n or b_n is nonzero. We will use \mathcal{T}_n to denote the collection of trig polynomials of degree at most n, and \mathcal{T} to denote the collection of all trig polynomials (i.e., the union of the \mathcal{T}_n over all n).

Theorem 3.1. (Weierstrass's Second Theorem, 1885) Let $f \in C^{2\pi}$. Then, for every $\varepsilon > 0$, there exists a trig polynomial T such that $||f - T|| < \varepsilon$.

Lemma 3.2. $\cos nx$ and $\sin(n+1)x/\sin x$ can be written as polynomials of degree exactly n in $\cos x$ for any integer $n \ge 0$.

Corollary 3.3. Any real trig polynomial (3.1) may be written as $P(\cos x) + Q(\cos x) \sin x$, where P and Q are algebraic polynomials of degree at most n and n-1, respectively. If the sum (3.1) represents an even function, then it can be written using only cosines.

Corollary 3.4. The collection T, consisting of all trig polynomials, is both a subspace and a subring of $C^{2\pi}$ (that is, T is closed under both linear combinations and products). In other words, T is a subalgebra of $C^{2\pi}$.

Corollary 3.5. Each $f \in C^{2\pi}$ has a best approximation (on all of \mathbb{R}) out of \mathcal{T}_n . If f is an even function, then it has a best approximation which is also even.

Proof. We only need to prove the second claim, so suppose that $f \in C^{2\pi}$ is even and that $T^* \in \mathcal{T}_n$ satisfies

$$||f - T^*|| = \min_{T \in T_n} ||f - T||.$$

Then, because f is even, $\widetilde{T}(x) = T^*(-x)$ is also a best approximation to f out of \mathcal{T}_n ; indeed,

$$\begin{split} \|f - \widetilde{T}\,\| &= \max_{x \in \mathbb{R}} |f(x) - T^*(-x)| \\ &= \max_{x \in \mathbb{R}} |f(-x) - T^*(x)| \\ &= \max_{x \in \mathbb{R}} |f(x) - T^*(x)| = \|f - T^*\|. \end{split}$$

But now, the even trig polynomial

$$\widehat{T}(x) = \frac{\widetilde{T}(x) + T^*(x)}{2} = \frac{T^*(-x) + T^*(x)}{2}$$

is also a best approximation out of \mathcal{T}_n because

$$\|f - \widehat{T}\| = \left\| \frac{(f - \widetilde{T}) + (f - T^*)}{2} \right\| \le \frac{\|f - \widetilde{T}\| + \|f - T^*\|}{2} = \min_{T \in \mathcal{T}_n} \|f - T\|. \quad \Box$$

Weierstrass's Second Theorem

We next give (de La Vallée Poussin's version of) Lebesgue's proof of Weierstrass's second theorem; specifically, we will deduce the second theorem from the first.

Theorem 3.6. Let $f \in C^{2\pi}$ and let $\varepsilon > 0$. Then, there is a trig polynomial T such that $||f - T|| = \max_{x \in \mathbb{R}} |f(x) - T(x)| < \varepsilon$.

Proof. We will prove that Weierstrass's first theorem for C[-1,1] implies his second theorem for $C^{2\pi}$.

Step 1. If $f \in C^{2\pi}$ is even, then f may be uniformly approximated by even trig polynomials.

If f is even, then it's enough to approximate f on the interval $[0, \pi]$. In this case, we may consider the function $g(y) = f(\arccos y)$, $-1 \le y \le 1$, in C[-1, 1]. By Weierstrass's first theorem, there is an algebraic polynomial p(y) such that

$$\max_{-1 \le y \le 1} |f(\arccos y) - p(y)| = \max_{0 \le x \le \pi} |f(x) - p(\cos x)| < \varepsilon.$$

But $T(x) = p(\cos x)$ is an even trig polynomial! Hence,

$$||f - T|| = \max_{x \in \mathbb{R}} |f(x) - T(x)| < \varepsilon.$$

Let's agree to abbreviate $||f - T|| < \varepsilon$ as $f \approx T + \varepsilon$.

Step 2. Given $f \in C^{2\pi}$, there is a trig polynomial T such that $2f(x)\sin^2 x \approx T(x) + 2\varepsilon$.

Each of the functions f(x) + f(-x) and $[f(x) - f(-x)] \sin x$ is even. Thus, we may choose even trig polynomials T_1 and T_2 such that

$$f(x) + f(-x) \approx T_1(x)$$
 and $[f(x) - f(-x)] \sin x \approx T_2(x)$.

Multiplying the first expression by $\sin^2 x$, the second by $\sin x$, and adding, we get

$$2f(x)\sin^2 x \approx T_1(x)\sin^2 x + T_2(x)\sin x \equiv T_3(x),$$

where $T_3(x)$ is still a trig polynomial, and where $f \approx T_3 + 2\varepsilon$ because $|\sin x| \leq 1$.

Step 3. Given $f \in C^{2\pi}$, there is a trig polynomial T such that $2f(x)\cos^2 x \approx T(x) + 2\varepsilon$.

Repeat Step 2 for $f(x-\pi/2)$ and translate: We first choose a trig polynomial $T_4(x)$ such that

$$2f\left(x-\frac{\pi}{2}\right)\sin^2 x \approx T_4(x).$$

That is,

$$2f(x)\cos^2 x \approx T_5(x),$$

where $T_5(x)$ is a trig polynomial.

Finally, by combining the conclusions of Steps 2 and 3, we find that there is a trig polynomial $T_6(x)$ such that $f \approx T_6(x) + 2\varepsilon$.

Theorem 3.7. Given $f \in C[-1,1]$ and $\varepsilon > 0$, there exists an algebraic polynomial p such that $||f - p|| < \varepsilon$.

Proof. Given $f \in C[-1,1]$, the function $f(\cos x)$ is an even function in $C^{2\pi}$. By our proof of Weierstrass's second theorem (Step 1 of the proof), we may approximate $f(\cos x)$ by an even trig polynomial:

$$f(\cos x) \approx a_0 + a_1 \cos x + a_2 \cos 2x + \dots + a_n \cos nx$$
.

But, as we've seen, $\cos kx$ can be written as an algebraic polynomial in $\cos x$. Hence, there is some algebraic polynomial p such that $f(\cos x) \approx p(\cos x)$. That is,

$$\max_{0 \le x \le \pi} |f(\cos x) - p(\cos x)| = \max_{-1 \le t \le 1} |f(t) - p(t)| < \varepsilon.$$

Chebyshev Polynomials

The algebraic polynomials $T_n(x)$ satisfying

$$T_n(\cos x) = \cos nx$$
, for $n = 0, 1, 2, ...$,

are called the Chebyshev polynomials of the first kind. Please note that this formula uniquely defines T_n as a polynomial of degree exactly n (with leading coefficient 2^{n-1}), and hence uniquely determines the values of $T_n(x)$ for |x| > 1, too. The algebraic polynomials $U_n(x)$ satisfying

$$U_n(\cos x) = \frac{\sin(n+1)x}{\sin x}$$
, for $n = 0, 1, 2, ...,$

are called the Chebyshev polynomials of the second kind. Likewise, note that this formula uniquely defines U_n as a polynomial of degree exactly n (with leading coefficient 2^n).

We will discover many intriguing properties of the Chebyshev polynomials in the next chapter. For now, let's settle for just one: The recurrence formula we gave earlier

$$\cos nx = 2\cos x \cos(n-1)x - \cos(n-2)x$$

now becomes

$$T_n(x) = 2x T_{n-1}(x) - T_{n-2}(x), \quad n \ge 2,$$

where $T_0(x) = 1$ and $T_1(x) = x$. This recurrence relation (along with the initial cases T_0 and T_1) may be taken as a definition for the Chebyshev polynomials of the first kind. At any rate, it's now easy to list any number of the Chebyshev polynomials T_n ; for example, the next few are $T_2(x) = 2x^2 - 1$, $T_3(x) = 4x^3 - 3x$, $T_4(x) = 8x^4 - 8x^2 + 1$, and $T_5(x) = 16x^5 - 20x^3 + 5x$.

Properties of the Chebyshev Polynomials

As we've seen, the Chebyshev polynomial $T_n(x)$ is the (unique, real) polynomial of degree n (having leading coefficient 1 if n = 0, and 2^{n-1} if $n \ge 1$) such that $T_n(\cos \theta) = \cos n\theta$ for all θ . The Chebyshev polynomials have dozens of interesting properties and satisfy all sorts of curious equations. We'll catalogue just a few.

C1.
$$T_n(x) = 2x T_{n-1}(x) - T_{n-2}(x)$$
 for $n \ge 2$.

Proof. It follows from the trig identity $\cos n\theta = 2\cos\theta \cos(n-1)\theta - \cos(n-2)\theta$ that $T_n(\cos\theta) = 2\cos\theta T_{n-1}(\cos\theta) - T_{n-2}(\cos\theta)$ for all θ ; that is, the equation $T_n(x) = 2x T_{n-1}(x) - T_{n-2}(x)$ holds for all $-1 \le x \le 1$. But because both sides are polynomials, equality must hold for all x.

The next two properties are proved in essentially the same way:

C2.
$$T_m(x) + T_n(x) = \frac{1}{2} [T_{m+n}(x) + T_{m-n}(x)]$$
 for $m > n$.

C3.
$$T_m(T_n(x)) = T_{mn}(x)$$
.

C4.
$$T_n(x) = \frac{1}{2} \left[\left(x + \sqrt{x^2 - 1} \right)^n + \left(x - \sqrt{x^2 - 1} \right)^n \right].$$

Proof. First notice that the expression on the right-hand side is actually a polynomial because, on combining the binomial expansions of $(x+\sqrt{x^2-1})^n$ and $(x-\sqrt{x^2-1})^n$,

the odd powers of $\sqrt{x^2-1}$ cancel. Next, for $x=\cos\theta$,

$$T_n(x) = T_n(\cos \theta) = \cos n\theta = \frac{1}{2} (e^{in\theta} + e^{-in\theta})$$

$$= \frac{1}{2} \Big[(\cos \theta + i \sin \theta)^n + (\cos \theta - i \sin \theta)^n \Big]$$

$$= \frac{1}{2} \Big[(x + i\sqrt{1 - x^2})^n + (x - i\sqrt{1 - x^2})^n \Big]$$

$$= \frac{1}{2} \Big[(x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n \Big].$$

We've shown that these two polynomials agree for $|x| \leq 1$, hence they must agree for all x (real or complex, for that matter).

For real x with $|x| \ge 1$, the expression $\frac{1}{2}[(x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n]$ equals $\cosh(n\cosh^{-1}x)$. In other words, we have

C5. $T_n(\cosh x) = \cosh nx$ for all real x.

The next property also follows from property C4.

C6.
$$T_n(x) \le (|x| + \sqrt{x^2 - 1})^n$$
 for $|x| \ge 1$.

An approach similar to the proof of property C4 allows us to write x^n in terms of the Chebyshev polynomials T_0, T_1, \ldots, T_n .

C7. For
$$n$$
 odd, $2^n x^n = \sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose k} 2 T_{n-2k}(x)$; for n even, $2 T_0$ should be replaced by T_0 .

Proof. For $-1 \le x \le 1$,

$$2^{n}x^{n} = 2^{n}(\cos\theta)^{n} = (e^{i\theta} + e^{-i\theta})^{n}$$

$$= e^{in\theta} + \binom{n}{1}e^{i(n-2)\theta} + \binom{n}{2}e^{i(n-4)\theta} + \cdots$$

$$\cdots + \binom{n}{n-2}e^{-i(n-4)\theta} + \binom{n}{n-1}e^{-i(n-2)\theta} + e^{-in\theta}$$

$$= 2\cos n\theta + \binom{n}{1}2\cos(n-2)\theta + \binom{n}{2}2\cos(n-4)\theta + \cdots$$

$$= 2T_{n}(x) + \binom{n}{1}2T_{n-2}(x) + \binom{n}{2}2T_{n-4}(x) + \cdots,$$

where, if n is even, the last term in this last sum is $\binom{n}{\lfloor n/2 \rfloor}T_0$ (because the central term in the binomial expansion, namely $\binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lfloor n/2 \rfloor}T_0$, isn't doubled in this case). \square

C8. The zeros of T_n are $x_k^{(n)} = \cos((2k-1)\pi/2n)$, k = 1, ..., n. They're real, simple, and lie in the open interval (-1, 1).

Proof. Just check! But notice, please, that the zeros are listed here in decreasing order (because cosine decreases).

C9. Between two consecutive zeros of T_n , there is precisely one root of T_{n-1} .

Proof. It's not hard to check that

$$\frac{2k-1}{2n} < \frac{2k-1}{2(n-1)} < \frac{2k+1}{2n},$$

for k = 1, ..., n - 1, which means that $x_k^{(n)} > x_k^{(n-1)} > x_{k+1}^{(n)}$.

C10. T_n and T_{n-1} have no common zeros.

Proof. Although this is immediate from property C9, there's another way to see it: $T_n(x_0) = 0 = T_{n-1}(x_0)$ implies that $T_{n-2}(x_0) = 0$ by property C1. Repeating this observation, we would have $T_k(x_0) = 0$ for every k < n, including k = 0. No good! $T_0(x) = 1$ has no zeros.

C11. The set $\{x_k^{(n)}: 1 \le k \le n, \ n = 1, 2, ...\}$ is dense in [-1, 1].

Proof. Because $\cos x$ is (strictly) monotone on $[0, \pi]$, it's enough to know that the set $\{(2k-1)\pi/2n\}_{k,n}$ is dense in $[0,\pi]$, and for this it's enough to know that $\{(2k-1)/2n\}_{k,n}$ is dense in [0,1]. (Why?) But

$$\frac{2k-1}{2n} = \frac{k}{n} - \frac{1}{2n} \approx \frac{k}{n}$$

for n large; that is, the set $\{(2k-1)/2n\}_{k,n}$ is dense among the rationals in [0,1]. \square

C12. The Chebyshev polynomials are mutually orthogonal relative to the weight $w(x) = (1-x^2)^{-1/2}$ on [-1,1].

Proof. For $m \neq n$ the substitution $x = \cos \theta$ yields

$$\int_{-1}^{1} T_n(x) T_m(x) \frac{dx}{\sqrt{1-x^2}} = \int_{0}^{\pi} \cos m\theta \, \cos n\theta \, d\theta = 0,$$

while for m = n we get

$$\int_{-1}^{1} T_n^2(x) \frac{dx}{\sqrt{1-x^2}} = \int_{0}^{\pi} \cos^2 n\theta \, d\theta = \begin{cases} \pi & \text{if } n=0\\ \pi/2 & \text{if } n>0. \end{cases}$$

C13. $|T'_n(x)| \le n^2$ for $-1 \le x \le 1$, and $|T'_n(\pm 1)| = n^2$.

Proof. For -1 < x < 1 we have

$$\frac{d}{dx}T_n(x) = \frac{\frac{d}{d\theta}T_n(\cos\theta)}{\frac{d}{d\theta}\cos\theta} = \frac{n\sin n\theta}{\sin\theta}.$$

Thus, $|T'_n(x)| \leq n^2$ because $|\sin n\theta| \leq n|\sin \theta|$ (which can be easily checked by induction, for example). At $x = \pm 1$, we interpret this derivative formula as a limit (as $\theta \to 0$ and $\theta \to \pi$) and find that $|T'_n(\pm 1)| = n^2$.

Example 4.14. As we've seen, the Chebyshev polynomals can be generated by a recurrence relation. By reversing the procedure, we could solve for x^n in terms of T_0, T_1, \ldots, T_n . Here are the first few terms in each of these relations:

$$T_0(x) = 1$$
 $1 = T_0(x)$
 $T_1(x) = x$ $x = T_1(x)$
 $T_2(x) = 2x^2 - 1$ $x^2 = (T_0(x) + T_2(x))/2$
 $T_3(x) = 4x^3 - 3x$ $x^3 = (3T_1(x) + T_3(x))/4$
 $T_4(x) = 8x^4 - 8x^2 + 1$ $x^4 = (3T_0(x) + 4T_2(x) + T_4(x))/8$
 $T_5(x) = 16x^5 - 20x^3 + 5x$ $x^5 = (10T_1(x) + 5T_3(x) + T_5(x))/16$

Note the separation of even and odd terms in each case. Writing ordinary garden variety polynomials in their equivalent Chebyshev form has some distinct advantages for numerical computations. Here's why:

$$1 - x + x^2 - x^3 + x^4 = \frac{15}{6}T_0(x) - \frac{7}{4}T_1(x) + T_2(x) - \frac{1}{4}T_3(x) + \frac{1}{8}T_4(x)$$

(after some simplification). Now we see at once that we can get a cubic approximation to $1-x+x^2-x^3+x^4$ on [-1,1] with error at most 1/8 by simply dropping the T_4 term on the right-hand side (because $|T_4(x)| \le 1$), whereas simply using $1-x+x^2-x^3$ as our cubic approximation could cause an error as big as 1. Pretty slick! This gimmick of truncating the equivalent Chebyshev form is called *economization*.