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Chapter 3

Trigonometric Polynomaials

Introduction

A (real) trigonometriec polynomial, or trig polynomial for short, is a function of the form

T
ap + E (ar coskx + brsinkz ), (3.1)
k=1
where ag.....a, and by,....b,, are real numbers. The degree of a trig polynomial is the

highest frequency occurring in any representation of the form (3.1); thus, (3.1) has degree
n provided that one of a,, or b,, is nonzero. We will use 7,, to denote the collection of trig
polynomials of degree at most n, and 7 to denote the collection of all trig polynomials (i.e..
the union of the 7, over all n).




Theorem 3.1. (Weierstrass's Second Theorem, 1885) Let f € C?*. Then, for every
e > 0, there exists a trig polynomial T such that ||f —T|| < ¢.

Lemma 3.2. cosnz and sin(n + 1)xz/sinx can be written as polynomials of degree exactly
n in cosx for any integer n > 0.

Corollary 3.3. Any real trig polynomial (3.1) may be written as P(cosx) + (Q(cosx) sin x,
where P and () are algebraic polynomials of degree at most n and n — 1, respectively. If the
sum (3.1) represents an even function, then it can be written using only cosines.

Corollary 3.4. The collection T . consisting of all trig polynomials, is both a subspace and

. 9 . . . . .
a subring of C<" (that is, T is closed under both linear combinations and products). In
. dor
other words, T is a subalgebra of C-".



" p = T _ _ . a . \ a
Corollary 3.5. Each f € C°" has a best approrimation (on all of R) out of T,,. If f is an
even function, then it has a best approximation which is also even.

Proof. We only need to prove the second claim, so suppose that f € C*7 is even and that
T € T, satisfies
|f=T"|| = min ||f =T
TeT,

E

Then, because f is even, T'(z) = T*(—=x) is also a best approximation to f out of 7, indeed,

|f-T| = max|f(z)—T*(—x)
reR
= max|f(—z)—T" ()|
TeR
= max|f(z) —T"(z)| = ||f =T7||.
reR



But now, the even trig polynomial

T(;z') o T(z)+T"(x) = T (—x)+T"(z)

o) 2

-

is also a best approximation out of 7,, because
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Weilerstrass’s Second Theorem

We next give (de La Vallée Poussin’s version of) Lebesgue’s proof of Weierstrass’s second
theorem: specifically., we will deduce the second theorem from the first.

Theorem 3.6. Let f € C3>™ and let ¢ > 0. Then, there is a trig polynomial T such that
|f —T|| = maxzer | f(z) — T(x)] < =.

Proof. We will prove that Weierstrass’s first theorem for C'[—1, 1 | implies his second theorem
for C2%.

Step 1. If f € C37 is even. then f may be uniformly approximated by even trig polynomials.

If f is even, then it’s enough to approximate f on the interval [0, 7]. In this case, we

-

may consider the function g(y) = f(arccosy), —1 <y < 1. in C[—1,1]. By Weierstrass’s
first theorem, there is an algebraic polynomial p(y) such that

max |f(arccosy) — p(y)| = max |f(x) — p(cosz)| < =.

—1<y<1 0<zr<w
But 7' (x) = p(cosx) is an even trig polynomial! Hence,

|f —T|| = max |f(z) — T (x)| < e.

reR

Let’s agree to abbreviate ||f —T|| <cas f=T + =.
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Step 2. Given f € C?7, there is a trig polynomial T such that 2f(z)sin“ z = T(z) + 2=.

Each of the functions f(z) + f(—=z) and [f(z) — f(—=z)]sinx is even. Thus, we may
choose even trig polynomials 77 and 75 such that
f(z)+ f(—=x) = Ti(x) and [f(z) — f(—=z)]sinz = Ta(x).
Multiplying the first expression by sin” z. the second by sin z. and adding, we get
2f(z)sin z = Ti(z)sin® z + Ta(z) sinz = Ta(x),
where T5(x) is still a trig polynomial, and where f = T3 + 2= because |sinz | < 1.

Step 3. Given f € C?7™, there is a trig polynomial 7T such that 2f(x)cos® x = T(x) + 2=.
Repeat Step 2 for f(x — 7 /2) and translate: We first choose a trig polynomial 74 (x) such
that

m

2f (.-1: — 3) sin? z =~ T} (z).

That is,
2 f(z) cos® z = Ts(z).

where T5(z) is a trig polynomial.
Finally. by combining the conclusions of Steps 2 and 3. we find that there is a trig
polynomial Tg(x) such that f = Ts(x) + 2=. ]



Theorem 3.7. Given f € C[-1,1] and & > 0, there exists an algebraic polynomial p such
that || f —p| < ¢.

] - /11 1 ' \ ¢ . . °)'T\' -
Proof. Given f € C[-1,1], the function f(cosx) is an even function in C=". By our proof
of Weierstrass's second theorem (Step 1 of the proof), we may approximate f(cosx) by an
even trig polynomial:

fleosz) =~ ag + ay cosx + agcos2x + « -+ + a, cosna.

But, as we've seen, cos kx can be written as an algebraic polynomial in cosz. Hence, there
is some algebraic polynomial p such that f(cosz) = p(cosz). That is,

max |f(cosz)—p(cosz)| = max |f(t)—p(t) <e. [

0<z<n ~1<1<1



Chebyshev Polynomials

The algebraic polynomials 77, (x) satisfying
Th(cosx) —cosnzx, forn =0;1,2,...;

are called the Chebyshev polynomials of the first kind. Please note that this formula uniquely
defines 7T, as a polynomial of degree exactly n (with leading coefficient 2" —1), and hence
uniquely determines the values of Th,(x) for |z| = 1. too. The algebraic polynomials U, (x)
satisfying

sin(n + 1)x

- : forn—=—0.1.2. _._..
sin x

U,(cosx) =

are called the Chebyshev polynomials of the second kind. Likewise, note that this formula
uniquely defines U,, as a polynomial of degree exactly n (with leading coefficient 27).

We will discover many intriguing properties of the Chebyshev polynomials in the next
chapter. For now. let’s settle for just one: The recurrence formula we gave earlier

cosnr = 2cosx cos(n — 1)xr — cos(n — 2)x

now becomes

Tatx) =22 T4 3(x) — Thi—o(Z); =2,

where Th(x) = 1 and 77 (x) = . This recurrence relation (along with the initial cases ThH and
71 ) may be taken as a definition for the Chebyshev polynomials of the first kind. At any rate,
it’s now easy to list any number of the Chebyvshev polynomials 75, ; for example. the next few
are To(x) = 222 — 1, Ta(x) = 422 — 3z, Tu(z) = 8x* —8x2 + 1, and Ts(x) = 16z° — 202> + 5.




Properties of the Chebyshev Polynomials

As we've seen, the Chebyshev polynomial 75, () is the (unique, real) polynomial of degree
n (having leading coefficient 1 if n = 0, and 271! if n = 1) such that 7T}, (cosf) = cosnf for
all #. The Chebyshev polynomials have dozens of interesting properties and satisfy all sorts
of curious equations. We’ll catalogue just a few.

Cl. TI(x) =2F%TF, i{x) — T -a(z) forn=>2.

Proof. 1t follows from the trig identity cosnfl = 2cos# cos(n — 1) — cos(n — 2)6 that
T, (cosO) = 2cos8T,,_1(cosO) — T, _o(cosf) for all €; that is, the equation 7, (x) =
2T, _1(x)—T% _o(x) holds for all —1 < x < 1. But because both sides are polynomials,

equality must hold for all =. ]

The next two properties are proved in essentially the same way:
C2. Thh(x) +T5(x) = % [Tn?+,,(a_f) — Tm_,,(:zr)] for m > n.
Cj3. Tf?l (Tn ( Il‘) ) - Tn}n (;l').

4. T (x)— —}5 [ (z + vz —1 )n 4= (.'r —VzZ —1 )n].

Proof. First notice that the expression on the right-hand side is actually a polvnomaial

because, on combining the binomial expansions of (z+vV22 — 1 )" and (z— V22 — 1 )",




the odd powers of /22 — 1 cancel. Next, for r = cos#.

Th(x) =Th(cosf) = cosnb = :12( ind 4 o—ind)
= % —(COSQ + isin @)™ 4 (cos @ — isin 9)"]
= 2[@+ivVI—22)" 4+ (2 —ivi—22)"]
— H@E+vVEm-I1) + (@—va=—1)"].

We've shown that these two polynomials agree for || < 1, hence they must agree for
all = (real or complex, for that matter). ]

For real = with || = 1, the expression
cosh(n cosh™! 2). In other words, we have

(]

[(z + V22 —1)" + (z — V22 —1)"] equals

C5. T, (coshx) = cosh nz for all real =.

The next property also follows from property C4.

C6. T,,(x) < ( lz] + V22 — 1 )" for || > 1.

An approach similar to the proof of property C4 allows us to write 2™ in terms of the
Chebyshev polynomials Th.7T5.. ... T
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C7. For n odd, 2"2™ = _S_ ( )‘2 T, _—oi(x); for n even, 2T, should be replaced by Tj.

k=0
Proof. For —1 <2 <1,

QM .1 = '2”((‘0849)“ = ((}_;il? g (J—'i())n

: N orooa N e
— (:‘”10 g et(n 2)0 & (j.t(n 4)0 T
1 2
n Lidgess AN T - Gepes ey _—
sucfs e iin—4)0 e e—i(n 2)0 +e inf
n— 2 n—1

n n
= 2cosnf + (I)QCOS(_N — 2)0 + (‘))QCOS(H —4)0 + - --

= 27’72(1') . (711)2 T,,-Q(‘l’) + (Z)Q']’n__;(;l‘) + e

where, if n is even, the last term in this last sum is ([,1711.)-.') Th (because the central term

n
[n/2]

in the binomial expansion, namely (. ") = ( )Ty, isn’t doubled in this case). O

[n/2]



C8. The zeros of T}, are ;1,'(‘,") =cos((2k — 1)7/2n), k =1,....n. They're real, simple, and
lie in the open interval (—1.1).

Proof. Just check! But notice, please, that the zeros are listed here in decreasing order
(because cosine decreases). L]
C9. Between two consecutive zeros of 7,. there is precisely one root of 7', 1.

Proof. It’s not hard to check that

2k — 1 _ 2k — 1 2k +1
—— - Q _—
2n 2(n—1) 21
forde = ¥iuass nn — 1, which means that :1?}\." 3 z;f = S :L‘i.r_';_)l. ]

C10. 7, and T,,_1; have no common zeros.

Proof. Although this is immediate from property C9, there’s another way to see it:
Th(xo) = 0 = Th—1(xo) implies that 75, _o(xp) = 0 by property C1. Repeating this
observation, we would have Ti(xg) = 0 for every k£ < n, including £ = 0. No good!
To(x) = 1 has no zeros. ]

—



C11. Theset {1 =k <=n. n=1.,2,...} is dense in [—1.1].
Proof. Because cosx is (strictly) monotone on [O.7w ], it’'s enough to know that the
set {(2k — 1 )7 /271 }s 5 is dense in [0, 7 ]|, and for this it’s enough to know that {(2k —
1)/21n}p . is dense in [0.1]. (Why?) But

2k —31 Kk 1k
27 o TR
for n large: that is. the set {(2k — 1) /2n } . n is dense among the rationals in [0, 1 ]. —

C12. The Chebyshev polynomials are mutually orthogonal relative to the weight w(x) —
(1 —=2)"12 on [—1,1].

Proof. For m = n the substitution = — cos @ yields
1 dx ™
f Tn(x) Tin(=x) — = / cos mf cosnf df — 0,
{3 v1 — x2 o
while for m — n we get
1 T <
> da - 2 - T if 2 =—'0
Ll o) M i cos™ nf df — iy T e ] -
C13. |Ti(2)]| < n? for —1 <z < 1, and |T4(£1)] = n2.
Proof. For —1 =< x << 1 we have
d 345 1, (cos ) 72 sin 7126
Tr‘(ﬂf) p— a8 — o oA
da 45 cos 0 sin &

Thus, |77 (x)] =< n? because |sinnf| < n|sin@| (which can be easily checked by in-
duction. for example). At = — +1. we interpret this derivative formula as a limit (as
€@ — 0 and @ — ) and find that |T/.(=%1)| = n>3. 1




Example 4.14. As we've seen, the Chebyshev polynomals can be generated by a recurrence

relation. By reversing the procedure, we could solve for ™ in terms of T5.75. . ... T,,. Here
are the first few terms in each of these relations:

To(z) = 1 1 = To(z)

11{e) = = == ‘Tytr)

To(z) = 222 -1 2 = (To(z)+Ta(z))/2

Ta(z) = 42° —3x 2 = (83Ti(z)+ Ta(z))/4

Ta(z) = 8z — 822 +1 14 = (3To(z) +4Ta(x) +Ta(x))/8

Ts(x) = 16z2° — 202> + 5z x° = (1071 (x)+5T3(x) +T5(x)) /16

Note the separation of even and odd terms in each case. Writing ordinary garden variety
polynomials in their equivalent Chebyshev form has some distinet advantages for numerical
computations. Here’s why:

. . | 15 7 ; S 1
1—z4z2—2> 42 = —J To(x) — éTl(;r) + To(x) — 3 I5(x) + 3 Ty(x)

(after some simplification). Now we see at once that we can get a cubic approximation to
l—z+ 22— 22 + 2% on [—1,1] with error at most 1/8 by simply clroppinfr the T4 term on
the right- hand side (because [T4(z)| < 1). whereas simply using 1 —z + 22 — 2® as our cubic
approximation could cause an error as big as 1. Pretty slick! This gimmick of truncating

the equivalent Chebyshev form is called economization.



	Slide 1: جامعة بغداد كلية العلوم للبنات قسم الرياضيات
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

