Database

Normalization

» s a step-by-step operation to replace the relationships between data into two dimensional tabular for
reduce the redundancy of data, increase the integrity and to free the relations from undesirable insertion,
deletion dependency.

» Normalization Objectives:
1. To make it possible to tabulate any relation in D.B.

2. To free relation from undesirable insertion, update, and deletion dependence.

3. To obtain a powerful retrieved capability by means of simple collection of relational operators to manip
relations.

4. To reduce the redundancy of data, achieve data independence, increase the integrity of data.
5. To make the relation more informative to the user.

6. To reduce the need for restructuring the relations as a new type of data are introduced when further applic
users view requires them.

FUNCTIONAL DEPENDENCY
Given a relation R, we say that attribute Y of R is functionally dependent on attribute X of
value in R has associated with it precisely one Y-value in R.

A functional dependency is a relationship between two sets of attributes in a database table. It desc
how the value of one attribute determines the value of another attribute.

Basically, a functional dependency is represented as X = Y, where X and Y are sets of attributes.
notation implies that any two rows in the table with the same value for X will also have the same value
for Y. In other words, the value of Y is functionally dependent on the value of X.

Let’s consider an example to illustrate functional dependencies. Suppose we have a table called
“Employees” with attributes such as employee ID, name, department, and salary. If we define a
functional dependency as “department - salary,” it means that for any two employees who belong to
the same department, their salaries will be the same. This allows us to infer the salary of an employee
based on their department alone.

First normal form (FNF)
A relation R is in first normal form if all underlying domains contains atom

(no repeated group).

Second normal form (SNF)

A relation R i1s in second normal form iff:

- Itisin INF.

- Every non-key attribute is depend on all parts off primary key.

Third Normal form (TNF)
A relation R 1s In third normal form iff:

- Itisin 2NF.
- Every non-key attribute is depending on the primary key directly (Not tra

Structured Query Language (SQL)

» SQL known as SQL or simply “sequel,” is a programming language that communicates throug
databases. It is the easiest way to store, update, remove, search, or retrieve information on a database.
» The SQL language has several parts:-
1. The Data Manipulation Language (DML): This subset of SQL allows users to pose queries and to

delete, and modify rows.
2. The Data Definition Language (DDL): This subset of SQL supports the creation, deletion, and modificat

of definitions for tables and views.

3. Triggers and Advanced Integrity Constraints: The new SQL:1999 standard includes support for trig

4. Embedded SQL: Embedded SQL features allow SQL code to be called from a host la
such as C or COBOL.

5. Dynamic SQL.: Features allow SQL statement to constructed and executed at runtime b
on input parameters.

6. Client-Server Execution and Remote Database Access: These commands control how
client application program can connect to an SQL database server, or access data from a
database over a network.

7. Transaction Management (TCL): Various commands allow a user to explicitly control
aspects of how a transaction is to be executed.

8. Security (DCL): SQL provides mechanisms to control users' access to data objects such a

tables and views.

five main categories of SQL each with its own commands as shown in the table (1) below

Commands categories Command Command descriptions

CREATE Create table or object

(DML) Data Manipulation
language

Alter Edit table or object

DROP Delete table or object

RENAME Rename table or object

TRUNCATE Delete a part of table or object

Data Retrieval (SELECT):

All columns SELECT * FROM table; SELECT * FROM Students;
“ SELECT column1,column2,... FROM table; SELECT LastName, FirstName FROM Students;

Some rows/columns SELECT column1,column2,... SELECT LastName,FirstName
FROM table FROM Students
[WHERE condition(s)]; WHERE StudentID LIKE '%123%

o Repeats SELECT [DISTINCT] column(s) SELECT DISTINCT LastName
FROM table; FROM Students;
Ordering SELECT column1,column2,... SELECT LastName,FirstName
FROM table FROM Students
[ORDER BY column(s) [DESC]]; ORDER BY LastName, FirstName DESC;

SELECT column1 [AS alias1], SELECT LastName,FirstName AS First
column2 [AS alias2], ... FROM Students;
FROM table1;

We can use the four Arithmetic Operators (+, -, *, /) with select command and Some oper
WHERE condition

BETWEEN AND NOT (BETWEENAN)

o
LIKE NOT LIKE()
IS NULL Is Not NULL

Advanced Database Structures/ view

» Aview is tables whose rows are not explicitly stored in the database but are compute
from a view definition. A database view is a searchable object in a database that is de
query. Though a view doesn’t store data, some refer to a views as “virtual tables,” you ca
view like you can a table. A view can combine data from two or more table, and also |
subset of information. We create view using SQL commands.

» What is the difference between table and view?

the view. A view can be built on top of a single table or multiple tables. It can also be buil
another view.

» Views offer the following advantages:
1.

Ease of use: A view hides the complexity of the database tables from e
Essentially we can think of views as a layer of abstraction on top of the d
tables.
Space savings: Views takes very little space to store, since they do not store
actual data.
Additional data security: Views can include only certain columns in the ta
that only the non-sensitive columns are included and exposed to the end user. In
addition, some databases allow views to have different security settings, thus
hiding sensitive data from prying eyes.

Trigger

» TRIGGERS AND ACTIVE DATABASES Atrigger is a
procedure that is automatically invoked by the DBMS in response
to specified changes to the database, and is typically specified by
the DBA.

» A database that has a set of associated triggers is called an active
database.

» Atrigger description contains three parts:
» - Event: A change to the database that activates the trigger.

» - Condition: A query or test that is run when the trigger is
activated.

» - Action: A procedure that is executed when the trigger Is
activated and its condition is true.

Trigger Syntax and Examples in MySQL

» To create a trigger or drop a trigger, use the CREATE TRIGGER or
DROP TRIGGER statement.

» Syntax :
CREATE TRIGGER trigger_name trigger_time trigger_event ON tbl_name

FOR EACH ROW trigger_body trigger_time: { BEFORE | AFTER }
» trigger_event: { INSERT | UPDATE | DELETE }

» Trigger names exist in the schema namespace, meaning that all triggers
must have unique names within a schema. Triggers in different schemas
can have the same name.

» Trigger_time is the trigger action time. It can be BEFORE or AFTER t
Indicate that the trigger activates before or after each row to be modif}

Trigger_event indicates the kind of operation that activates the trigger.

These trigger_event values are permitted:

(1 INSERT: The trigger activates whenever a new row is inserted into the table; for example,
statements.

1 UPDATE: The trigger activates whenever a row is modified; for example, through UPDATE s
1 DELETE: The trigger activates whenever a row is deleted from the table; for example, through
statements. DROP TABLE and TRUNCATE TABLE statements on the table do not activate this tri
they do not use DELETE.

Trigger_body is the statement to execute when the trigger activates. To execute multiple statements, us
BEGIN ... END compound statement construct.
Within the trigger body, you can refer to columns in the subject table (the table associated with the tri
using the aliases OLD and NEW. OLD.col _name refers to a column of an existing row before it i

deleted. NEW.col_name refers to the column of a new row to be inserted or an existing row

Here is a simple example that associates a trigger with a table, to activate for INSE
operations.

The trigger acts as an accumulator, summing the values inserted into one of the colum
of the table.

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account FOR EACH ROW
SET @sum = @sum + NEW.amount;

In the example, the trigger body is a simple SET that accumulates into a user variable th

values inserted into the amount column. The statement refers to the column as
NEW.amount which means “the value of the amount column to be inserted into the new

row.”

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated wi
table. It also includes clauses that specify the trigger action time, the triggering event, and
the trigger activates:

0 The keyword BEFORE indicates the trigger action time. In this case, the trigger activates b
row inserted into the table. The other permitted keyword here is AFTER.

1 The keyword INSERT indicates the trigger event; that is, the type of operation that activates th
In the example, INSERT operations cause trigger activation. You can also create triggers for DEL
UPDATE operations.

] The statement following FOR EACH ROW defines the trigger body; that is, the statement to exec

each time the trigger activates, which occurs once for each row affected by the triggering even

To use the trigger, set the accumulator variable to zero, execute an INSERTstatemen
then see what value the variable has afterward:

mysql> SET @sum = 0;

mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS "Total amount inserted’;

N +
| 1852.48 |
R +

In this case, the value of @sum after the INSERT statement has executed is 14.98 +
1937.50 - 100, or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement.
You must specify the schema name if the trigger is not in the default schema:
mysql> DROP TRIGGER test.ins_sum;

If you drop a table, any triggers for the table are also dropped.

Trigger names exist in the schema namespace, meaning that all triggers must have unigue na
within a schema.

Triggers in different schemas can have the same name.

Inan INSERT trigger, only NEW.col _name can be used; there is no old row.

Ina DELETE trigger, only OLD.col _name can be used; there is no new row.

Inan UPDATE trigger, you can use OLD.col_name to refer to the columns of a row before it |

updated and NEW.col _name to refer to the columns of the row after it is updated.

By using the BEGIN ... END construct, you can define a trigger that executes multi
statements. Within the BEGIN block, you also can use other syntax that is permitted
stored routines such as conditionals and loops. However, just as for stored routines, if y
use the mysql program to define a trigger that executes multiple

statements, it is necessary to redefine the mysql statement delimiter so that you can use the
statement delimiter within the trigger definition.

The DELIMITER statement changes the standard delimiter which is semicolon (;) to

another. The delimiter is changed from the semicolon (;) to double-slashes //. Why do w

have to change the delimiter? To pass the trigger, stored procedure to the server as a whol

rather than letting mysql tool to interpret each statement at a time.

The following example illustrates these points. It defines an UPDATE trigger that ¢
the new value to be used for updating each row, and modifies the value to be within
range from 0 to 100. This must be a BEFORE trigger because the value must be chec
before it is used to update the row:

mysql> delimiter //

mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account
-> FOR EACH ROW

-> BEGIN

-> |[F NEW.amount < 0 THEN

-> SET NEW.amount = 0;

-> ELSEIF NEW.amount > 100 THEN

->SET NEW.amount = 100;

-> END IF;

-> END;//

mysql> delimiter ;

SQL :Join

» AJOIN clause is used to combine rows from two or more tables, based on a related
column between them.
Let's look at a selection from the "person™ table:
Then, look at a selection from the "color" table:

Notice that the "fk" column in the "person™ table refers to the "id" in the "color"

table.
mysgql> select *ftrom color; mysql> select = from person:
- oo - - — - — - - — - — — = -+ —-————— -+
| id | color | | id | mname | fk |
&= - —— - - - -+ s — — - — — — — — — 4+ ——— —— 4+
| 1 | read | | 1 | stewve | 1 |
| 2 | green | | 2 | aron | 3 |
| 3 | blue | | 3 | mary | muLL |
- — — — — — — +—————— = -+ - — — - —— — — — — +-—————— +

Then, we can create the following SQL statement (that contains an INNER JOIN), that selects r

matching values in both tables:

The MySQL INNER JOIN clause matches rows in one table with rows in other tables and allows yo
rows that contain columns from both tables.

Here are the different types of the JOINs in SQL.:

(INNER) JOIN: Returns records that have matching values in both tables

mysgl> select * from person inner join color on person.fk=color.id; INMNER JOIMN
R T R e $ommmmm- +

| id | name | fk | id | color |

R ST +ommme Fommme $ommmme- +

| 1| steve| 1| 1] read | table1

| 2|aon | 3| 3| blue |

R ST +ommme Fommme $ommmme- +

LEFT (OUTER) JOIN: Return all records from the left table, and the matched records from t

table

|my5q1> select * from person left join color on person.fk=color.id,;

R ERE— ERE— R +
| id | name | fk | id | color |
R ERE— ERE— R +
1	steve	1	1	read
2	aron	3	3	blue
3	mary	NULL	WULL	WULL
IR ERE—— ERE——— FRE——— +

LEFT JOIN

RIGHT (OUTER) JOIN: Return all records from the right table, and the matched records from the

left table

mysgql> select * from person right join color on person.fk=color.id;

R e - - e +
id name Tk id color
+------ $---m--- +------ +------ ---m--- +

1 | steve 1 1 | read
2 | aron 3 3 | blue
NULL | MULL NULL 2 | green

RIGHT JOIN

Cross join : Return all records when there is a match in either left or right table

mysgl> select & from person cross jJolin color \
- — ——4+—-——————— +-————-—- +-—————- +-——————- + \
| id | name | fk | id | color | FULL GUTER JG'”
- —————————— +——_——— +————— +—————— 4+ \
| 1 | stewve | 1 | 1 | read |

| 2 | aron | 3 | 1 | read |

| 3 | mary | NULL | 1 | read |

| 1 | steve | 1 | 2 | green |

| 2 | aron | 3 | 2 | green |

| 3 | mary | MNULL | 2 | green |

| 1 | stewve | 1 | 3 | blue |

| 2 | aron | 3 | 3 | blue |

| 3 | mary | NULL | 3 | blue |

- —————————— +——_——— +————— +—————— 4+

0 rows in set (0.00 sec)

	Slide 1: Database
	Slide 2: Normalization
	Slide 3
	Slide 4
	Slide 5: Structured Query Language (SQL)
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Advanced Database Structures/ view
	Slide 11
	Slide 12: Trigger
	Slide 13: Trigger Syntax and Examples in MySQL
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: SQL :Join
	Slide 22
	Slide 23
	Slide 24

