
Database

Normalization

 Is a step-by-step operation to replace the relationships between data into two dimensional tabular form, in order to

reduce the redundancy of data, increase the integrity and to free the relations from undesirable insertion, update, and
deletion dependency.

 Normalization Objectives:
1. To make it possible to tabulate any relation in D.B.

2. To free relation from undesirable insertion, update, and deletion dependence.

3. To obtain a powerful retrieved capability by means of simple collection of relational operators to manipulate the

relations.

4. To reduce the redundancy of data, achieve data independence, increase the integrity of data.

5. To make the relation more informative to the user.

6. To reduce the need for restructuring the relations as a new type of data are introduced when further applications or

users view requires them.

FUNCTIONAL DEPENDENCY

Given a relation R, we say that attribute Y of R is functionally dependent on attribute X of R if each X

value in R has associated with it precisely one Y-value in R.

A functional dependency is a relationship between two sets of attributes in a database table. It describes
how the value of one attribute determines the value of another attribute.
Basically, a functional dependency is represented as X → Y, where X and Y are sets of attributes. This
notation implies that any two rows in the table with the same value for X will also have the same value
for Y. In other words, the value of Y is functionally dependent on the value of X.
Let’s consider an example to illustrate functional dependencies. Suppose we have a table called
“Employees” with attributes such as employee ID, name, department, and salary. If we define a
functional dependency as “department → salary,” it means that for any two employees who belong to
the same department, their salaries will be the same. This allows us to infer the salary of an employee
based on their department alone.

First normal form (FNF)

A relation R is in first normal form if all underlying domains contains atomic value only

(no repeated group).

Second normal form (SNF)

A relation R is in second normal form iff:

- It is in 1NF.

- Every non-key attribute is depend on all parts off primary key.

Third Normal form (TNF)

A relation R is in third normal form iff:

 - It is in 2NF.

 - Every non-key attribute is depending on the primary key directly (Not transitively).

Structured Query Language (SQL)

 SQL known as SQL or simply “sequel,” is a programming language that communicates through relational

databases. It is the easiest way to store, update, remove, search, or retrieve information on a database.

 The SQL language has several parts:-

1. The Data Manipulation Language (DML): This subset of SQL allows users to pose queries and to insert,

delete, and modify rows.

2. The Data Definition Language (DDL): This subset of SQL supports the creation, deletion, and modification

of definitions for tables and views.

3. Triggers and Advanced Integrity Constraints: The new SQL:1999 standard includes support for triggers.

4. Embedded SQL: Embedded SQL features allow SQL code to be called from a host language

such as C or COBOL.

5. Dynamic SQL: Features allow SQL statement to constructed and executed at runtime based

on input parameters.

6. Client-Server Execution and Remote Database Access: These commands control how a

client application program can connect to an SQL database server, or access data from a

database over a network.

7. Transaction Management (TCL): Various commands allow a user to explicitly control

aspects of how a transaction is to be executed.

8. Security (DCL): SQL provides mechanisms to control users' access to data objects such as

tables and views.

five main categories of SQL each with its own commands as shown in the table (1) below

Command descriptionsCommand Commands categories

Retrieve information from tableSELECTData Retrieval

Insert information to table or objectINSERT

(DML) Data Manipulation language

Edit information on table or objectUPDATE

delete information on table or objectDELETE

Create table or objectCREATE

(DDL) Data Definition language

Edit table or objectAlter

Delete table or objectDROP

Rename table or objectRENAME

Delete a part of table or objectTRUNCATE

Transaction Control

Commit the inf. On tableCOMMIT

Rollback on the new info.ROLLBACK

Go back to the point where the

system Is consistence

SAVEPOINT

Give users access to the info.GRANT

(DCL) Data Control Language

Blocking the user's access of info.REVOKE

(DML) Data Manipulation
language

(DML) Data Manipulation
language

Transaction Control

Transaction Control

Data Retrieval (SELECT):

What Who Example

All columns SELECT * FROM table; SELECT * FROM Students;

Some columns SELECT column1,column2,... FROM table; SELECT LastName, FirstName FROM Students;

Some rows/columns SELECT column1,column2,...

FROM table

[WHERE condition(s)];

SELECT LastName,FirstName

FROM Students

WHERE StudentID LIKE '%123%

No Repeats SELECT [DISTINCT] column(s)

FROM table;

SELECT DISTINCT LastName

FROM Students;

Ordering

SELECT column1,column2,...

FROM table

[ORDER BY column(s) [DESC]];

SELECT LastName,FirstName

FROM Students

ORDER BY LastName, FirstName DESC;

Column

Aliases

SELECT column1 [AS alias1],

column2 [AS alias2], ...

FROM table1;

SELECT LastName,FirstName AS First

FROM Students;

We can use the four Arithmetic Operators (+ , -, * , /) with select command and Some operator used with

WHERE condition

BETWEEN AND NOT (BETWEENAN)

IN() NOT IN()

LIKE NOT LIKE()

IS NULL Is Not NULL

Advanced Database Structures/ view

 A view is tables whose rows are not explicitly stored in the database but are computed as needed

from a view definition. A database view is a searchable object in a database that is defined by a

query. Though a view doesn’t store data, some refer to a views as “virtual tables,” you can query a

view like you can a table. A view can combine data from two or more table, and also just contain a

subset of information. We create view using SQL commands.

 What is the difference between table and view?

A view is a virtual table. A view consists of rows and columns just like a table. The difference

between a view and a table is that views are definitions built on top of other tables (or views), and do

not hold data themselves. If data is changing in the underlying table, the same change is reflected in

the view. A view can be built on top of a single table or multiple tables. It can also be built on top of

another view.

 Views offer the following advantages:

1. Ease of use: A view hides the complexity of the database tables from end users.

Essentially we can think of views as a layer of abstraction on top of the database

tables.

2. Space savings: Views takes very little space to store, since they do not store

actual data.

3. Additional data security: Views can include only certain columns in the table so

that only the non-sensitive columns are included and exposed to the end user. In

addition, some databases allow views to have different security settings, thus

hiding sensitive data from prying eyes.

Trigger
 TRIGGERS AND ACTIVE DATABASES A trigger is a

procedure that is automatically invoked by the DBMS in response

to specified changes to the database, and is typically specified by

the DBA.

 A database that has a set of associated triggers is called an active

database.

 A trigger description contains three parts:

 - Event: A change to the database that activates the trigger.

 - Condition: A query or test that is run when the trigger is

activated.

 - Action: A procedure that is executed when the trigger is

activated and its condition is true.

Trigger Syntax and Examples in MySQL

 To create a trigger or drop a trigger, use the CREATE TRIGGER or

DROP TRIGGER statement.

 Syntax :

CREATE TRIGGER trigger_name trigger_time trigger_event ON tbl_name

FOR EACH ROW trigger_body trigger_time: { BEFORE | AFTER }

 trigger_event: { INSERT | UPDATE | DELETE }

 Trigger names exist in the schema namespace, meaning that all triggers

must have unique names within a schema. Triggers in different schemas

can have the same name.

 Trigger_time is the trigger action time. It can be BEFORE or AFTER to

indicate that the trigger activates before or after each row to be modified.

Trigger_event indicates the kind of operation that activates the trigger.

These trigger_event values are permitted:

 INSERT: The trigger activates whenever a new row is inserted into the table; for example, through INSERT

statements.

 UPDATE: The trigger activates whenever a row is modified; for example, through UPDATE statements.

 DELETE: The trigger activates whenever a row is deleted from the table; for example, through DELETE

statements. DROP TABLE and TRUNCATE TABLE statements on the table do not activate this trigger, because

they do not use DELETE.

Trigger_body is the statement to execute when the trigger activates. To execute multiple statements, use the

BEGIN ... END compound statement construct.

Within the trigger body, you can refer to columns in the subject table (the table associated with the trigger) by

using the aliases OLD and NEW. OLD.col_name refers to a column of an existing row before it is updated or

deleted. NEW.col_name refers to the column of a new row to be inserted or an existing row after it is updated.

Here is a simple example that associates a trigger with a table, to activate for INSERT

operations.

The trigger acts as an accumulator, summing the values inserted into one of the columns

of the table.

 mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account FOR EACH ROW

SET @sum = @sum + NEW.amount;

In the example, the trigger body is a simple SET that accumulates into a user variable the

values inserted into the amount column. The statement refers to the column as

NEW.amount which means “the value of the amount column to be inserted into the new

row.”

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the account

table. It also includes clauses that specify the trigger action time, the triggering event, and what to do when

the trigger activates:

 The keyword BEFORE indicates the trigger action time. In this case, the trigger activates before each

row inserted into the table. The other permitted keyword here is AFTER.

 The keyword INSERT indicates the trigger event; that is, the type of operation that activates the trigger.

In the example, INSERT operations cause trigger activation. You can also create triggers for DELETE and

UPDATE operations.

 The statement following FOR EACH ROW defines the trigger body; that is, the statement to execute

each time the trigger activates, which occurs once for each row affected by the triggering event.

To use the trigger, set the accumulator variable to zero, execute an INSERTstatement, and

then see what value the variable has afterward:

 mysql> SET @sum = 0;

 mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);

mysql> SELECT @sum AS 'Total amount inserted’;

 +-----------------------+

 | Total amount inserted |

+-----------------------+

| 1852.48 |

 +-----------------------+

In this case, the value of @sum after the INSERT statement has executed is 14.98 +

1937.50 - 100, or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement.

You must specify the schema name if the trigger is not in the default schema:

 mysql> DROP TRIGGER test.ins_sum;

If you drop a table, any triggers for the table are also dropped.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names

within a schema.

 Triggers in different schemas can have the same name.

In an INSERT trigger, only NEW.col_name can be used; there is no old row.

In a DELETE trigger, only OLD.col_name can be used; there is no new row.

In an UPDATE trigger, you can use OLD.col_name to refer to the columns of a row before it is

updated and NEW.col_name to refer to the columns of the row after it is updated.

By using the BEGIN ... END construct, you can define a trigger that executes multiple

statements. Within the BEGIN block, you also can use other syntax that is permitted within

stored routines such as conditionals and loops. However, just as for stored routines, if you

use the mysql program to define a trigger that executes multiple

statements, it is necessary to redefine the mysql statement delimiter so that you can use the ;

statement delimiter within the trigger definition.

The DELIMITER statement changes the standard delimiter which is semicolon (;) to

another. The delimiter is changed from the semicolon (;) to double-slashes //. Why do we

have to change the delimiter? To pass the trigger, stored procedure to the server as a whole

rather than letting mysql tool to interpret each statement at a time.

The following example illustrates these points. It defines an UPDATE trigger that checks

the new value to be used for updating each row, and modifies the value to be within the

range from 0 to 100. This must be a BEFORE trigger because the value must be checked

before it is used to update the row:

mysql> delimiter //

 mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account

 -> FOR EACH ROW

-> BEGIN

-> IF NEW.amount < 0 THEN

-> SET NEW.amount = 0;

-> ELSEIF NEW.amount > 100 THEN

->SET NEW.amount = 100;

-> END IF;

 -> END;//

 mysql> delimiter ;

SQL :Join

 A JOIN clause is used to combine rows from two or more tables, based on a related

column between them.

 Let's look at a selection from the "person" table:

 Then, look at a selection from the "color" table:

 Notice that the "fk" column in the "person" table refers to the "id" in the "color"

table.

Then, we can create the following SQL statement (that contains an INNER JOIN), that selects records that have

matching values in both tables:

The MySQL INNER JOIN clause matches rows in one table with rows in other tables and allows you to query

rows that contain columns from both tables.

Here are the different types of the JOINs in SQL:

• (INNER) JOIN: Returns records that have matching values in both tables

• LEFT (OUTER) JOIN: Return all records from the left table, and the matched records from the right

table

• RIGHT (OUTER) JOIN: Return all records from the right table, and the matched records from the

left table

• Cross join : Return all records when there is a match in either left or right table

	Slide 1: Database
	Slide 2: Normalization
	Slide 3
	Slide 4
	Slide 5: Structured Query Language (SQL)
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Advanced Database Structures/ view
	Slide 11
	Slide 12: Trigger
	Slide 13: Trigger Syntax and Examples in MySQL
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: SQL :Join
	Slide 22
	Slide 23
	Slide 24

