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Chapter One: Methods of solving partial differential equations

Section(1.1): Origin of Partial Differential Equations
(1.1.1) Introduction:

Partial differential equations arise in geometry, physics and

applied mathematics when the number of independent variables in the
problem under consideration is two or more. Under such a situation,
any dependent variable will be a function of more than one variable
and hence it possesses not ordinary derivatives with respect to a single
variable but partial derivatives with respect to several independent

variables.

(1.1.2) Definition Partial Differential Equations(PDE)

An equation containing one or more partial derivatives of an

unknown function of two or more independent variables is known as a
(PDE).
For examples of partial differential equations we list the

following:

1.—+—-z+xy
2. 2 42 = 2x(=
G+ 55 =2

0z 0z
3. Z(&) + O_y =X

6-y{( 7+ (—)}— —)
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(1.1.3) Definition: Order of a Partial Differential Equation
(O.P.D.E))

The order of a partial differential equation is defined as the order

of the highest partial derivative occurring in the partial differential

equation.

The equations in examples (1),(3),(4) and (6) are of the first order
,(5) is of the second order and (2) is of the third order.

(1.1.4)Definition: Degree of a Partial Differential Equation
(DPDE)

The degree of a partial differential equation is the degree of the

highest order derivative which occurs in it after the equation has been
rationalized, i.e. made free from radicals and fractions so for as
derivatives are concerned. in (1.1.2), equations (1),(2),(3) and (4) are

of first degree while equations (5) and (6) are of second degree.

(1.1.5) Definition: Linear and Nonlinear Partial

Differential Equations

A partial differential equation is said to be (Linear) if the
dependent variable and its partial derivatives occur only in the first
degree and are not multiplied . A partial differential equation which is

not linear is called a (nonlinear) partial differential equation.
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In (1.1.2), equations (1) and (4) are linear while equation
(2),(3),(5) and (6) are non-linear.

(1.1.6) Notations:

When we consider the case of two independent variables we

usually assume them to be x and y and assume (z) to be the dependent
variable. We adopt the following notations throughout the study of
partial differential equations.

0z 0z 0°z 0%z it 0%z
p_ax’q_ay’r_aXZ'S_axay a  Jy?

In case there are n independent variables, we take them to be

X1y X9y vee een ven ,X, and z is than regarded as the dependent variable. In

this case we use the following notations:
_ 0z _ 0z _ 0z
0% Pz = X, X,

Sometimes the partial differentiations are also denoted by making

P1

use of suffixes. Thus we write :

du du d0%u d0%u

ax W T Gy e T g Yy T 502

2
y

and so on.
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(1.1.7) Classification of First Order PDEs into:

linear, semi-linear, quasi-linear and nonlinear equations

*|linear equation: A first order equation f(x,y,z p,q) = 0

Is known as linear if it is linear in p,q and z , that is ,if given
equation is of the form:
P(x,y)p + Qx,y)q = R(x,y)z + S(x,y)
for example:
1. yx?p + xy?q = xyz + x?%y3
2.p+q=z+Xxy
are both first order LPDEs.

*Semi-linear equation: A first order PDE f(x,y,z,p,q) =0

Is known as a semi-linear equation, if it is linear in p and q and the
coefficients of p and q are functions of x and y only. i.e if the given
equation is of the form:

P(x,y)p + Q(x,y)q = R(x,y,2)
for example:

1. xyp + x%yq = x%y?z?

Xzyz

72

2.yp +xq =
are both semi-linear equations.

*Quasi-linear equation: A first order PDE f(x,y,z,p,q) =0

Is known as quasi-linear equation, if it is linear in p and q. i.e if

the given equation is of the form:

P(x,y,2)p + Qx,y,2)9 = R(x,y,2)
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for example:
1. x%zp + y?zq = xy

2. (x* —yz)p + (y* —zx)q = 2% —xy
are both quasi-linear equation.

*Nonlinear_equation: A first order PDE f(x,y,z,p,q) = 0, if the

degree of the dependent variable or its partial derivatives is not equal

to one or if they are multiply by each other, the equation will be
nonlinear.

for example:
1.p2+qg¢=1
2.pq =12

3. x2p? + y2q? = 72

are all nonlinear PDEs.

Note: The two classifications (semi-linear) and (quasi-linear) are

classifications of the nonlinear equation.
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Section (1.2): Derivation of Partial Differential Equation
by the Elimination of Arbitrary Constants

For the given relation F(x,y,z,a,b) = 0 involving variables x,y, z
and arbitrary constants a and b, the relation is differentiated partially
with respect to independent variables x and y. Finally arbitrary

constants a and b are eliminated from the relations F(x,y,z,a,b) =

dF dF
0, & =0 and a_y =0
The equation free from a and b will be the required partial

differential equation.

Three situations may arise:
Situation (1):
When the number of arbitrary constants is less than the number
of independent variables, then the elimination of arbitrary constants
usually gives rise to more than one partial differential equation of

order one.

Example: Considerz =ax+y ............ (1)
where a is the only arbitrary constant and x, y are two independent
variables.

Differentiating (1) partially w.r.t. x, we get
0z

& e (2)

Differentiating (1) partially w.r.t. y, we get
0z .

o = 1 3)
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Eliminating abetween (1) and (2) yields

Z=X(%)+y ............ (4)

Since (3) does not contain arbitrary constant, so (3) is also PDE

under consideration thus, we get two PDEs (3) and (4).

Situation (2):
When the number of arbitrary constants is equal to the number
of independent variables, then the elimination of arbitrary constants

shall give rise to a unique PDE of order one.

Example: Eliminate a and b from

az+b=a%x+y ... (1)
Differencing (1) partially w.r.t. x and y, we have
d
a (f{) =a% )
0z
a (a—y) =1 ] 3)

Eliminating a from (2) and (3), we have

(62) (62) _q
dx/) \dy/
which is the unique PDE of order one.

Situation (3):

When the number of arbitrary constants is greater than the number
of independent variables. Then the elimination of arbitrary constants
leads to a partial differential equations of order usually greater than
one.

Example: Eliminate a, b and c from

7
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Z=ax+by+cxy  ............ (1)

Differentiating (1) partially w.r.t. x and y, we have
Zmatcy ) Z—;=b+cx ............ 3)
fom()and (3) 22 =0, "’7 =0 4)
TL=C (5)

0z
X—=ax+oxy (6)
and
yg—; —bY + XY e (7), by adding (6) to (7), we
obtain
0y % ax 4 by + cxy +
X yay—ax y +exy +cxy

from (1) and (5)

0z 0z 0%y
x&+ya—y—z+xyaxay ............ (8)

Thus, we get three PDEs given by (4) and (8) which are all of

order two.
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Examples:

Examplel: Find a PDE by eliminating a and b from
z = ax + by + a? + b?

Sol. Givenz =ax+by+a?+b% ............ (1)
Differentiating (1) partially with respect to x and y,
0z 0z
weget —-=a and O_y_b

Substituting these values of a and b in (1), we see that the

arbitrary constants a and b are eliminated and we obtain
0z 0z 0z
c=x(50) +v(5)+ G+ Gy
which is required PDE.

Example2: Eliminate arbitrary constants a and b from
z=(x—a)?+ (y —b)? to form the PDE.

Sol. Given z=(x—a)’ +(y—b)? ............ (1)

Differentiating (1) partially with respect to x and y, to get

0z _
aX—Z(x—a) a—y—Z(y b)

Squaring and adding these equations, we have

0
&) F G = 4= 2 + 4y - b)°

d 0
(2) + G = 4Gc— ) + (7~ b))

(Z}Z{) (—)2—42 using (1)

9
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Example 3: Find the PDEs by eliminating arbitrary constants a and b

from the following relations:

@ z=akx+y)+b (b) z=ax+ by +ab
(c)z=ax+a’y?+b (dyz=(x+a)(y+b)
Sol.(a) Givenz=a(x+y)+b ............ (1)

Differentiating (1) w.r.t. x and y, we get

0z 0z

w=d g2

Eliminating a between these, we get

0z 0z . . :
3% = 3y which is the required PDE.

(b)Try by yourself  (c)Try by yourself  (d)Try by yourself

... Exercises ...

Ex.(1): Eliminate a and b from z = axeY + %aze2y +b to form the

PDE.

Ex.(2): Eliminate h and k from the equation (x — h)? + (y — k)? +
z? = ato form the PDE.
y2

2
Ex.(3): Eliminate a and b from the equation 2z = X—Z + = to form the
a b2

PDE.

10
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Ex.(4): Eliminate the arbitrary constants indicated in brackets from
the following equations and form corresponding PDEs
(1) z=ax3+by®> ,(aandb)
2
(2) 4z = [ax + (Z) + b] ,(a and b)

(3) z=ax?+bxy + cy? , (a,b,c)

11
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Section (1.3): Methods for solving linear and nonlinear
partial differential equations of order one

(1.3.1) Lagrange's method of solving Pp + Qg = R , when
P, Q and R are function of x,v, z.

A quasi-linear partial differential equation of order one is of the
form Pp + Qq = R, where P,Q and R are function of x,y,z. Such a
partial differential equation is known as (Lagrange equation), for
example: * xyp + yzq = zx

*E-y)p+(y-z)gq=z—-x

(1.3.2) Working Rule for solving Pp + Qq = R by
Lagrange's method

Step 1. Put the given quasi-linear PDE of the first order in the
standard form Pp+Qgq=R ............ (1)

Step 2. Write down Lagrange's auxiliary equations for (1) namely
x _dy _ dz

PTG TR (2)

Step 3. Solve (2) by using the method for solving ordinary
differential equation of order one. The equation (2) gives three
ordinary differential equations. every two of them are independent

and give a solution.

12
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Let u(x,y,z) =a and v(x,y,z) =Db, then the (general
solution) is @(u,v) = 0, wher @ is an arbitrary function and the
complete solution is u = av + 3 where «, 3 are arbitrary constant.

Ex.1: Solve 2E — 3E = 2X
— ox ay

. 0z 0z
Sol. Given 2& — 36_y =2X ..., (1)

The Lagrange's auxiliary for (1) are

dx dy dz
2 -3  2x

Taking the first two fractions of (2), we have

%:f_i_) —3dx—2dy =0 ........... 3)
Integrating (3), —3x— 2y =a ............ 4)

a being an arbitrary constant

Next, taking the first and the last fractions of (2), we get

K, ydx=dz —xdx—dz=0...... ®))
2 2X

2
Integrating (5), —~—z=b ............ (6)

b being an arbitrary constant

From (4) and (6) the required general solution is
X2
@(a,b) =0 - Q)<—3x— 2y,7—z) =0

Where @ is an arbitrary function.

13
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2
Ex.2: Solve (%) p + xzq = y?

2
Sol. Given(%) pP+xzq=Vy?% ............ (1)

The Lagrange's auxiliary equation for (1) are

dx dy dz
vz xz  y?
X

Taking the first two fractions of (2), we have

x?zdx = y?zdy - x?dx—y?dy=0 ............ (3)

3

Integrating (3), X? ——=a > x3—-y3=a; ...... 4)

y3
3
a, being an arbitrary constant.

Next, taking the first and the last fractions of (2), we get

xy?dx = y?zdz —» xdx—zdz=0 ............ (5)

i x2  z?
Integrating (5), > ——=b - x? —z2 =by ...(6)

b, being an arbitrary constant
From (4) and (6) the general solution is
®(a;, b)) =0 - B3 —y3,x2—-22)=0

. Ou 0 Bz _
Ex.3: Solve X+t Yoy +t-- = xyt
. 0z 0z 0z
Sol. Given x&+ya—y+ta—xyt ............ (1)

The Lagrange's auxiliary equation for (1) are
dx _dy _de_ dz
X y t xyt
Taking the first two fractions of (2), we have
dx _dy dx _dy _ 0

S & By 3)

X y X y

14
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Integrating (3), Inx — Iny = Ina - § =a ... (4)

Taking the second and the third fractions of (2), we get

_y=_ - —y——=O ............ (5)
y t y t

Integrating (5), Iny —Int=Inb - ==b ...... (6)

Next, taking the second and the last fractions of (2), we get

dy _ dz —dz =
S T o - xtdy—dz=0 ............ (7)

Substituting (4) and (6) in (7), we get
%yzdy—dz =0 e (8)

Integrating (8), %y3 —z=c
Using (4) and (6), sxyt—z=c ... 9)

Where a, b and c are an arbitrary constant

The general solution is

@(a,b,c) =0 (Z)(Xy - t ) 0
= —_ —_ —_— = _ =
a; IC y,t,?)xy Z

@ being an arbitrary function.

Rule: for any equal fractions, if the sum of the denominators equal

to zero, then the sum of the numerators equal to zero also.

Now, Return to the last example depending on the Rule above

we will find the constant c.

15
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Multiplying each fraction in Lagrange's auxiliary (2) by
yt, xt, xy, —3 respectively, we get the sum of the denominators is
xyt+ xyt+xyt—3xyt=0 ............ (10)

Then the sum of the numerators equal to zero also:

ytdx + xtdy + xydt —3dz =0 - d(xyt) —3dz=0...... (11)
Integrating (11), xyt—3z=c ............ (12)

Note that (12) and (9) are the same.

Ex4:Solve (y—z)p+(z—x)q=x—Yy
Sol.Given(y —z2)p+ (Zz—X)q=X—Y ..cevn..... (1)

The Lagrange's auxiliary equations for (1) are
dx dy dz

-y _d )

y—z Z—-X X-y

The sum of the denominators is

y—z+z—x+x—-y=0
Then, the sum of the numerators is equal to zero also, (by Rule)
dx+dy+dz=0 ............ (3)
Integrating (3), x+y+z=a ............ (4)
To find b, multiplying (2) by x,y, z resp. the sum of the denominators
IS
X(y—z2)+yz—x)+z(x—y)=xy—xX2+yz—xy+zx—yz=0
Then, the sum of the numerators is equal to zero
xdx +ydy+zdz=0 ............ (5)

Integrating (5), X?Z + y?z + % =b ... (6)

Where, a and b are arbitrary constants.

16
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The general solution is

X2 y? 72
@(a,b) =0 - ®<x+y+z,7+7+?)=0

... Exercises ...

Solve the following partial differential equation:
1. p tanx + q tany = tanz .

2.y°p —xyq = x(z — 2y) .

3. (x2+2y*)p—xyq = xz .

4. xp+yq=1z.
5(—a+x)p+(-b+y)g=(—c+2).
6.x°p +y%q+2z-2=0.

7.yZp + zxq = xy .

8.v%p + x%q = x%y?z? .

VA
(x+y)

9p—q=

17
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(1.3.2) The equation of the form f(p,q) = 0

Here we consider equations in which p and g occur other than
in the first degree, that is nonlinear equations. To solve the equation
f(p,q) =0 ......... (1)

Taking p=constant=a ............ (2)
q=constant =b ............ 3)
Substituting (2),(3) in (1), we get
F(a,b)=0 - b= F;(a) or a=F,(b)........... 4)
Fromdz =pdx +qdy ............ (%)
Using (2),(3) - dz=adx +bdy ........... (6)
Integrating (6), z=ax+by+c ........... (7)
Where c is an arbitrary constant
Substituting (4) in (7) to obtain the complete integral (complete
solution)

z=ax+F (@)y+c or z=F,(b)x+by+c .......... (8)

Ex.1: Solve p? + p = ¢*
Sol. p2+p—q*=0 ........... (1)
The equation (1) of the form f(p,q) = 0
Let p=a,q=>b
Substituting in (1)
a’+a—b>=0- b?’=a’+a >b=+ya%+a
The complete integral is

Zz=ax+by+c

18
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=axt+a’+ay+c

Where c is an arbitrary constant.

Ex.2: Solve pq = k, where k is a constant.

Sol. Giventhat pg =k ............ (1)

Since (1) is of the form f(p, q) = 0, it's solution is
z=ax+by+c ............ (2)

Letp =a,q = b, substituting in (1) , then ab = k —» b = = _(3)
Putting (3) in (2), to get the complete solution

zZ=ax + Sy + ¢ ; cisan arbitrary constant .

Ex3: Solve = — 33—; = (3—;)3

Sol. Giventhatp —3g =¢q3 ........... (1)

Since (1) is of the form f(p,q) = 0, then

let p=a, q=0>

Substitutingin (1), a—3b=b% - a=b3+3b ......... (2)

Putting (2) in the equation z = ax + by + c , we get
z=(b>+3b)x+by+c
Where c is an arbitrary constant

The equation (3) is the complete integral.

(1.3.3) The Equation of the formz = px + qy + f(p.q)

A first order partial differential equation is said to be of Clariaut

form if it can be written in the form

19




Chapter One: Methods of solving partial differential equations

z=px+qy+f(pq) ...(1)
to solve this equation taking p = a , g = b and substituting in
(1), so the complete integral is

z=ax+by+ f(a,b) ...(2)
Example 1: Solve z = px + qy + pq
Sol. The given equation is of the form z = px + qy + f (p, q)
let p = a and g = b substituting in the given equation, so the

complete integral is

Z=ax + by +ab

where a, b being arbitrary constant.

. 0z 0z dz 0z 0z
Example 2: Solve x P oy = 2 56x t3; %

Sol. Rearrange the given equation, we have

xXp+tyq=z—>5p+pq
Z=xp+yq+5p—pq ...(3)
Equation (3) is of Clariaut form

let p =a and g = b substituting in (3), then the complete

integral iIs |z =ax + by +5a—ab

where a, b being arbitrary constant.

Example 3: Solve px + qy = z — p3 — ¢3

Sol. Rearrange the given equation, we have
z=px+qy+p3+q° ...(4)
let p = a and g = b substituting in (4)

20
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z = ax + by + a3 + b3 that is the complete integral and

a, b being arbitrary constants.

(1.3.4) The Equation of the form f(z,p,.q) = 0

To solve the equation of the form

f(z,p,q) =0 ...(1)
l. Let u=x+ay ..(2)

where a is an arbitrary constant
2. Replace p and g by % and aZ—i respectively in (1) as follows,

Jdz 0z 6u_az au_dz

pzaza'au_au'ax_du
0z Jdz Ju 0z Jdu dz
q_a_ala_ala_aa ...(3)
ou ou
from (2) 5—1 and 3 — @

3. Substituting (3) in (1) and solve the resulting ordinary differential
equation of first order by usual methods.
4. Next, replace u by x + ay in the solution obtained in step 3 to get

the complete solution.

Example 1: Solve z=p+ ¢q
Sol. Given equationis z=p+q ..(4)
which is of the form f(z,p,q) = 0. Let u = x + ay where a is an

arbitrary constant.

21
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Now, replacing p and q by Z—Z and aZ—i respectively in (4), we

dz
=>z=(1+a)a

=du=1+a)2 ..(3)

Integrating (5), u+c=(1+a)lnz
where c is an arbitrary constant
Replacing u,
x+ay+c=Inz1+%
— pXtay+c — ,(1+a)

x+ay+c
— Z =€ 1+a (6)

and that is the complete integral.

. 92\ 2 92\ 2 .
Example 2: Solve (E) z— (5) =1
Sol. Rearrange the given equation, we have
p?z—q?=1...(7)
This equation is of the form f(z,p,q) = 0

Letu = x + ay , where a is an arbitrary constant

Now, replacing p and g by % and aZ—z respectively in (7), we get

(dz>2 ( dz>2 _4
du ‘ ¢ du)

22
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= (z —a?) (;i_z)z =1

= +Vz — a? 1 by taking the square root
du

= +Vz—a?dz =du...(8)
Integrating (8),
t2@z-a>) 2 =u+c..©9)

Replacing u in (9) to get the complete integral

2 3
ig(z—a2)§=x+ay+c

(1.3.5) The Equation of the form f;(x,p) = f>(y.q) =0

In this form z does not appear and the terms containing x and p
are on one side and those containing y and g on the other side.
To solve this equation putting
fitkp) = f2(y,9) = a...(1)
where a is an arbitrary constant
~ filkkp)=a = p=g:(x,a)...(2)
Lyad=a = q=g.0a..0)
Substituting (2) and (3) in dz = pdx + qdy, we get
dz = g,(x,a)dx + g,(y,a)dy...(4)
Integrating (4),

z = ng(x,a)dx+jgz(y,a)dy+b

23



Chapter One: Methods of solving partial differential equations

which is a complete integral containing two arbitrary constants a and
b.

Example 1: Solve p = 2xq?>

Sol. Separating p and x from g and y, the given equation reduces
P _ .2
tox = 2q*“...(5)

Equating each side to an arbitrary constant a, we have

P a = p =ax
x p
a
2¢°=a =q=+ |-
2
Putting these values of p and g in
dz = pdx + qdy , we get
dz = axdx + \/%dy ...(6)

Integrating (6), z = %xz + \/% y+b
where a and b are two arbitrary constants.

Example 2: Solve xq — y*p — x*y* =0

Sol. Separating p and x from g and y, the given equation reduces to

_a
= L.

Equating each side to an arbitrary constant a, we have

p+x?

X

2
P _ g = p=ax—x? ...(8)

X
%za = gqg=ay? ...(9)

24
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Putting (8) and (9) in dz = pdx + qdy , we get

dz = (ax — x?)dx + ay?dy ...(10)
2 3 3
Integrating (10) , z = — — —+aZ-+b

which is a complete integral containing two arbitrary constantsa and
b.

Example 3: Solve p —3x? = ¢*> —y

Sol. Equating each side to an arbitrary constant a, we get
p—3xt=a = p=a+3x? ..(11)
@°-y=a = gqg=+Ja+ty ...(12)

Putting these values of p and q in dz = pdx + qdy , we get
dz = (a + 3x?)dx + \Ja + ydy ...(13)

Integrating (13) ,z = ax + x3 + % (a + y)3/2 + b

which is a complete integral containing two arbitrary constant a and
b.

25



Chapter One: Methods of solving partial differential equations

(1.3.6) Charpit’s Method (General Method of Solving
PDEs of Order One but of any Deqgree)

Let the given PDE of first order and nonlinear in p and q be

fxy,z,p,q) =0 .-(1)
To solve this equation, we will use the following charpit’s

auxiliary equations.
dp dq dz dx dy

of , 9f 9of _ 9f _ of _ 9f _9f _of
oxtP3z; 3yt93; P~ 93¢ “ap g

or
dp dq dz dx _ dy

f+0f fytdfs —Pho—afy —f» —1

After substituting the partial derivatives in charpit’s auxiliary

equations select the proper fractions so that the resulting integral may
come out to be the simplest relation involving at least one of p and q.
Then, putting p and q in the relation dz = pdx 4+ qdy which on

integration gives the complete integral of the given equation.

Example 1: Solve px + qy = pq by charpit’s method.
Sol. Let f(x,y,z,p,q) =px+qy—pq =0...2)

charpit’s auxiliary equation are
dp.  _ dq dz _dx dy
f+ofs f+af, -vh—afy —f —fu
From(@2) fi=p.f,=q4.£,=0.p=x—q.f3=y—-p
dp dq _ dz _dx dy
p g -px-@—-qy—-p) -x+q -y+p

26
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%pz% :lnp—lnq=lna=>§=a = p=aq ....(Q3)

Substituting (3) in (2)
agx +qy =aq®* = ax+y=aq >

q = ax:y then from (3), we get p=ax + y (4
Putting (4) in dz = pdx + qdy
ax +
dz = (ax + y)dx + dy

dz = axdx + ydx + xdy + gdy

dz = axdx + d(xy) + gdy

xZ 2

_ Y
Z—UL2 +xy+2a+c

where a and c are arbitrary constants.

Example 2: Solve 2zx —px* —2qxy +pq =0 by charpit’s
method.
Sol. Let f(x,y,2z,p,q) = 2zx — px? —2qxy + pq = 0...(5)

fx =2z—2px —2qy, f, = —2qx, f=2x, f=—x*+q,
fo=—2xy+p
Substituting in charpit’s auxiliary equations , we get

dp _ dq _ dz _dx _ ady (6)
2z-2px—2qy+2px  —2qx+2qx  —-p(-x2+q)—q(-2xy+p) x%2-q 2xy-p "

Taking the second fraction of (6)
dg=0 - qg=c...(7)
Substituting (7) in (5)

27




Chapter One: Methods of solving partial differential equations

2zx —px*> —2cxy+cp =0

...(8)
Putting (7) and (8) in dz = pdx + qdy

2x(z — cy)

zZ = >
X« —C
dz—cdy _ 2xdx

__ 2xz-2cxy N _ 2x(z-cy)

x2—c x2—c

2x(z — cy)
> dx
X4 —c

dx + cdy = dz — cdy =

..(9)

Integrating (9), In|z — cy| = In|x? —c| +Inb

(z—cy)  x2-c”

z—cy =b(x?—c¢)

z=b(x*>—c)+cy

which is a complete integral where b and c are two arbitrary

constants.

... Exercises ...

Solve the following equations:

1. g = 3p?

2.2pq =p+q

3.p* —y*q=y* —x*

4, (y*+4)xpqg — (x> +2) =0
5. q—px—p*=0
7.p>—q*> =z
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(1.3.7) Using Some Hypotheses in the Solution

Sometimes we need some hypotheses to solve the partial
differential equation, here we will give three types of hypotheses.

A) When the equation contains the term (px) or its’ powers we use

the hypothesis X = Inx

as follows

0z 0z 0X 0z 0X Jz 1 . 1504 1
=== = =—.-(since X=Inx = —=-)

T ox  9x 90X 90X dx 0X'x Ox X
0z

Then substituting this result in the given equation and solve it by

previous methods.

Example 1: Solve z = px by hypotheses

Sol. From X = Inx we have xp = Z—)Z( ..(1)

Substituting (1) in the given equation, we get

) d
2= = ox =2 E)
Integrating (2), X =Inz+ In@(y) ...(3)

where @ is an arbitrary function for y

replacing X in (3) to get the general solution
Inx = In(@(y).2)

=|z =-24...(4)
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Example 2: Solve g = px + p*x? by hypotheses
Sol. Given that g = px + (px)? ...(5)

0z

from X =Inx we have Xp = % ...(6)

Substituting (6) in (5), we get

0z A

q=7xT (a_x) ..(7)
0z .

Let Frank then (7) will be

q=-t+t? ..(8)

The equation (8) is of the form f(t,q) = 0

Thenlett = aand g = b, puttingin (8) b = a + a?
Substitutingin z=aX + by + ¢
=z=aX+(a+a®)y+c...(9

where c is an arbitrary constant

replacing X in (9) to get the complete integral

z=alnx+ (a+a®)y+c
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B) When the equation contains the term (qy) or its’ powers we use

the hypothesisY =1ny

as follows:
0z _0z O _ 0z ov _ 0z 1 S (since Y =Iny = w1
dy dy 0dY adY ody ETa dy y
0z
= qy = Y

Then solving by the same way in (A).

Example 3: Solve 2p + qy = 4 by hypotheses
Sol. Giventhat 2p +qy =4 ...(10)

fromY =Iny we have qy=g—lz/ ..(11)

Substituting (11) in (10), we get

2 +aZ 4
PT oy
Let %zt then,
oY
2p+t=4 ...(12)

The equation (12) is of the form f(p,t) =0

Thenletp =aandt = b, puttingin (12) 2a+b =4
—=b=4-2a ...(13)
Substituting (13) in z =ax + bY + ¢

= z=ax+ (4 —-2a)Y +c...(14)

where c is an arbitrary constant

replacing Y in (14) to get the complete integral

z=ax+ (4 —-2a)lny+c
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Example 4: Solve p?x? = z? + q*y* by hypotheses

Sol. Given that p2x? = z2? + g*y? ...(13)
fromX =Inxand Y =1Iny we have

9 )
xp=£and qyza—i ...(16)

Substituting (16) in (15), we get

(g—;)z — 22 4 (%)2 ..(17)

0z 0z . ;
Let t = X and r = 5, butting in (17)

t2 — 72 = 72 ..(18)
Note that (18) is of the form f(t,r,z) = 0
Taking u=X+aY (a is constant)
0z 0z 0Ju 0z 0du dz
Then t—a—X—a—X.E—a.a—X—a
0z 0z Jdu dz du dz
T—a—Y—E.E—E.E—aa (19)
ou ou
because ( a_x_l and prial’ )

putting (19) in (18)

2 2
() () =
du du
dz
() =

(1 -a) |7~ z
+vV1 — a? Z—i =z (taking the square root)
+V1-a2Z = du ...(20)
Integrating (20),
+V1—a?Ilnz=u+Inc (cisconstant) ...(21)
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Now, replacing u in (21) to get the complete integral
+Vli—a?lnz=X+a¥ +lnc ...(22)

Next, replacing X and Y in (22) to get the complete integral
+v1—a?lnz=Inx+alny+Inc

Inz? =Ilncxy®  where b = +V1 —a?

= zP = cx y? ...(23)
So, (23) is the complete integral.

C) When the equation contains the terms % or < or its’ powers we use

the hypothesis |Z = In 7

as follows:
=02 02020z 02 _ 0% (sincea—z—z)
D= x T oxaz oz ox  Zox 0z
YA
hence 2=%
z ox
RVA
by the same way we havegz o

then substituting this terms in the given equation and solve it by the

same way in (A) and (B).

Example 5: Solve p%? +q?> =2z> by |Z=1Ingz

Sol. Given that p? + q* = z* ...(24)
2 2
Dividing on z2, Z—2+CZ’—2 =1 ...(25)
ing 7 = P _0Z 40 _ 9% it ting i
usingZ =Inz we have - = and . = 3y ,substituting in (25)
) +(G) =1 (26)
™ 3
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Let t =2 and r =2 thus, (26) would be
0x ady

t2+r2=1 ...(27)
Clear that (27) is of the form f(t,r) = 0

lett=a , r=0»> (a, b are constant)

Then a?+b%2=1 ...(28)
a=+V1-h2 ...(29)
Substitutinga,bin Z=ax+ by +c
=Z=+V1—-b2x+by+c ...(30)

Replacing Z from the hypothesis to get the complete integral
~Inz=4+V1—-b2x+ by +c

— |z = pV1-b*x+by+c] ..(31)

Then (31) is the complete integral.

Example 6: Solve p? + q* = z?*(x +y) by hypotheses

Sol. Dividing on z?2,

2 2

P+l =x+y ...(32)

72 72
ox
(Z‘i)z + (Z_i)z =xty ..(33)

YA YA .
Let t = F and r = 3 putting in (33)

usingZ =Inz wehave %= % and ~ = Z—i , substituting in (32)

t’+r2=x+y ...(34)
Then t?—x=a -»t=+Va+x

y—ré=a -r=%/y—a
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Substituting in  dZ = tdx + rdy

= dZ = +Va+ xdx + +,/y — ady ...(35)
Integrating (35), we get

Z=4% g (a + x)3/2 + g (y — a)3/2 +c (where c is constant)

Replacing Z from the hypothesis to get the complete integral

2 2
= [nz = ig(a+x)3/2 ig(y—a)B/z + ¢

... Exercises ...
p*x* =z(z — qy)
pq = z%ysecx
p+q=ze ™Y
p*+zq =2z°(x — )
p?+zp =2z*(x — )
xp +4q = cosy

N o g kWD PRE

p*+q* =2z%
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Chapter One: Methods of solving partial differential equations

Section(1.4): Homogeneous linear partial differential
equations with constant coefficients and higher order

A linear partial differential equation with constant coefficients is
called homogeneous if all it's derivatives are of the same order. The

general form of such an equation is

onz

"z 0"z
A0ﬁ+‘41m+"'+‘4nm=f(x'y) ............ (1)

Where Ay, A4, ..., A, are constant coefficients.

For example:
0%z 9%z 9%z
1. 3-5+5 axay Ty = O homo. of order 2.
03z 03z 03z 03z
2. 2553 2oy T 56x6y2 - 8a—y3 =x +y homo. of order 3.

For convenience % and aa—y will be denoted by D or D, and D’ or

D,, respectively. Then (1) can be rewritten as:

(AoD} + A1D} Dy v AnD)z = f(x,¥) oo (2)

On the other hand, when all the derivatives in the given equation are
not of the same order, then it is called a non-homogenous linear
partial differential equation with constant coefficients.

In this section we propose to study the various methods of solving
homogeneous linear partial differential equation with constant
coefficients, namely (2).

Equation (2) may rewritten as:

F(Dy,Dy)z=f(6,¥) | oo (3)
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Chapter One: Methods of solving partial differential equations

Where F(Dy,Dy) = A¢D} + A, D} 1Dy,  AnDY
Equation (3) has a general solution when f(x,y) =0
i.eF(Dy,Dy)z =0

— (AoDy + A1D} Dy ApDY)Zz = 0.l (4)

And a particular solution (particular integral) when f(x,y) # 0

“* Now, we will find the general solution of (4)

Let z=@(y+ mx) be a solution of (4) where @ is an arbitrary

functionand m is a constant, then
D,z=0(y + mx).m
D%z =@ (y + mx).m?

Dz = 9™ (y + mx). m"

DD,z =m@"(y + mx)
DD,z = m*@® (y + mx)

DiDyz = m" @+ (y + mx)

= m" 0™ (y + mx) ,where r+s=n
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Substituting these values in (4) and simplifying, we get :
(Agm™ + Am™ T+ A,m" 2 + -4+ 4,)0™(y + mx) =0 ...(5)
Which is true if m is a root of the equation
Aym" + Am™l+ A,m" 2+ 4+ A, =0 . (6)
The equation (6) is known as the (characteristic equation) or the

(auxiliary equation(A.E.)) and is obtained by putting D, =m and
D, =1 inF(D,,D,)z = 0, and it has nroots.

Let my,m,,...,m, be n roots of A.E. (6). Three cases arise:
Case 1) when the roots are distinct.

If my,m,,..,m, are n distinct roots of A.E. (6) then
O.(y +myx),0,(y + myx), ... ... ... ,0,(y + m,x) are the linear
solution corresponding to them and since the sum of any linear
solutions is a solution too than the general solution in this case is:

z=0,(y+mx)+ 0, (y +myx)+ -+ 0,(y + myx) .....(7)

Ex.1: Find the general solution of
(D3 + 2D%D, — 5D, D5 — 6D3)z =0

Sol. The AE.ism3 +2m? —-5m—6 =0

> (m+1D)(mM*+m—-6=0

- mM+1)(m+3)(m—-2)=0

my=-—1, m,=-3, my=2
Note that m;,m, and mg are different roots, then the general
solution is

z=0,(y+mx)+ 0,(y + myx) + 03(y + m3x)
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- z2=0,(y—x)+0,(y —3x) + 05(y + 2x)
Where @, , @, ,®5 are arbitrary functions.

Ex.2: Find the general solution of m? — a? = 0 where a is a real
number.
Sol. Giventhat m? —a?=0 - m? = a*
— m = t+a different root
m=a ,m,=—a

The general solution is

z=0:(y +ax) + 0,y — ax)
Where @,,@, are arbitrary functions.

Case 2_J when the roots are repeated.
If the root m is repeated k times.iem;=m, = - =my ,
then the corresponding solution is :
z=0.(y + mx) + x0,(y + myx) + -+ x*710,. (y + myx)...(8)

Where @4, ..., @, are arbitrary functions.

Note: If some of the roots m,,m,, ..., m,, are repeated and the other
are not . i.e. my =my = =my F My - #m, then the

general solution is :

z=0.(y +mx) +x0,(y + myx) + -+ x* 1@, (y + mx) +
D1y +mpx)+ -+ 0,(y+myx) ............ 9)
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Ex.3: Solve (D3 — D3D, — 8D, D3 + 12D3)z = 0
Sol. The AE.is m3—-m?—-8m+12=0
-» (m=-2)(m-2)(m+3)=0
m =m,=2 , mg=-3
Then, the general solution is
z=0:(y + 2x) + x0,(y + 2x) + @3(y — 3x)

Where @, ,0,, @5 are arbitrary functions.

Ex.4: Find the general solution of the equation that it's A.E. is :
(m-1?*m+23m-3)(m+4)=0
Sol. Giventhat (m—1)2(m+2)3(m—-3)(m+4)=0
m=my,=1 mg=my=mg=-2 ,mg=3 ,m;,=—4
The general solution is
z=0,(y+x)+x0,(y +x) + 03(y — 2x) + xD,(y — 2x)
+ x205(y — 2x) + B¢ (y + 3x) + B,(y — 4x)

Where @, , ... ,@- are arbitrary functions.

Case 3 )when the roots are complex.
If one of the roots of the given equation is complex let be m,

then the conjugate of m, is also a root, let be m, , so the general

solution is:
z=0,(y+mx)+0,(y + myx)+ -+ 0,(y + m,x)
Where @, ... ,@,, are arbitrary functions.
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Ex.5: Solve (D5 + D3)z = 0

Sol. The A. E. is m?>+1=0 - m=+i

The general solution is
Z = @1(}7 + lX) + Qz(y - l.X)
Where @,,@, are arbitrary functions.

Ex.6: Solve (D% — 2D,D, + 5D3)z =0
Sol. The A.E.is m?-2m+5=0

2++4-20
= =1+ 2i
2
m1=1+2l ,m2=1—2i
z=0;(y+ (1 +2)x)+ 0,(y + (1 —2i)x)

That is the general solution where @, , @, are arbitrary functions.

- m

Ex.7: Solve (D; — D3D,, + 2D3D% — 5D, D3 + 3D})z = 0
Sol. The AE.is m*—-m3+2m?-5m+3=0
-» (Mm-1)?m*+m+3)=0

~14V1-12 _ —1+V11i
2 o 2

-1+ V11
B 2

Then, the general solution is

m=m,=1, m=

_ —1—11i
B 2

. ms y My
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z=0:(y+x)+x0,(y + x) + 05 <y + (_1 +2\/Hi)x>
s o, (y . (—1 —zx/ﬁi)x)

Where @, ..., 0, are arbitrary functions.
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¢ Particular integral (P.l1.) of homogeneous linear partial

differential equation
When f(x, y) # 0in the equation (3) which it'sF(D,, D, )z = f(x,)

1
F(Dx,Dy)

multiplying (3) by the inverse operator of the operator

F(D,, D) to have

1
F (Dx»Dy)

1
F (Dx'Dy)

'F(Dx' Dy) zZ= f(xy)

1
F(Dx.Dy)

fO,y) ... (11)

Which it's the particular integral (P.1.)

The operator F(D,, Dy, ) can be written as

F(Dy,Dy) = (Dy —myD,)(Dy — myD,) ... (Dy — myDy) ....(12)
Substituting (12) in (11) :

1
~ (Dx—m1Dy)(Dx—m;Dy)...(Dx—mpDy)

Z

f,y) . (13)

Taking u; = SR — f(x,y)

(Dx—mpDy)

(Dx - mnDy)ul = f(xy)
This equation can be solved by Lagrange's method .

The Lagrange's auxiliary equations are

dx dy _ dug
1 -mp f(xY)

Taking the first two fractions of (14)

mudx+dy=0 - myx+y=a ...... (15)
Taking the first and third fractions of (14)

_ du1 _
dx = oy flx,y)dx =duy| .......... (16)
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Substituting (15) in (16) we have
f(x,a—mux)dx = du,

Integrating the last one we have
U, = ff(x,a —myx)dx + b

Let b =0, then we have u,

By the same way , we take

1
Dx - mn_lDy

uZ - u1

And solve it by Lagrange's method to get wu, , then continue in this

way until we get to

1
D un—l

Z=U, =

And by solving this equation we get the particular integral (P.1.)

Ex.1:solve (D% —D3)z = sec*(x +y)

Sol. Firstly, we will find the general solution of

(DZ-D32)z=0 ... (1)

The A.E.is m?—-1=0->m?=1 > m=+1
m =1, m,=-1

L z=0v+x)+0,(y—x) (2)

Where @,,®, are arbitrary functions.

Second, we will find the particular integral as follows

1 2
———sec’(x +y)

7y =
2 DZ-D2
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1
= sec?(x + y)
(Dx - Dy)(Dx + Dy)
__1 2
Let u; = rtDy) sec”(x +y)

(Dy + Dy)uy = sec?(x +y)
The Lagrange's auxiliary equations are

dx dy du,
1 1 sec?(x+y)

Taking the first two fractions

dx=dy - x—y=a .......... 3)
Taking the first and third fractions
d
dx = leclw) - sec’(x+y)dx=du; .......... (4)

Substituting (3) in (4), we have
sec?(2x —a)dx =du;  ............ (5)

Integrating (5), we have
1
u, = Etan(Zx —a)+b

Let b =0 andreplacing a , we get

u, = ! tan(x +y) ... (6)

T2
Putting (6) in z,
1

1
= . _t
Zy 0. =Dy 2 an(x + y)

1
> (D — Dy)z2 = Etan(x +y)

The Lagrange's auxiliary equation are
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dx dy dz,
1 -1

%tan(x +vy)

Taking the first two fractions

dx =—dy - x+y=a .......... (7)
Taking the first and third fractions
dz
dx = T 2
7tan(x + )

%tan(x +y)dx=dz, ... (8)
Substituting (7) in (8)
%tan adx=dz, ... 9)

Integrating (9) , we get

1
Extana =Z,+b

Let b = 0, and replacing a from (7) we get the particular integral
Z, = %xtan(x +Y) (10)
Hence the required general solution is

z=2z1+2,

=@1(y+x)+Q)2(y—x)+§tan(x+y) .......... (11)

Short methods of finding the P.I. in certain cases :
Case 1| When f(x,y) = e®**?Y where a and b are arbitrary
constants
To find the P.l. when F(a,b) # 0, we derive f(x,y) for x any y n

times:
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Dxeax+by — aeax+by

D}%eax+by — azeax+by

D}rcleax+by — aneax+by
Dyeax+by — beax+by

DJ%eax+by — bzeax+by

D;leax+by — bneax+by
DyDse®*by = q"pSe®*PY where r+s=n
So
F(Dx, Dy)eax+by — F(a, b)eax+by

1

Multiplying both sides by FDnDy) we get
p@x+by — 1 F(a, b)eax+by
F(Dy, Dy)
Since F(a, b) #+ 0, then we can divide on it :
—_extby — __1__paxtby *
F(a,b) F(Dyx.Dy)

Which itis equal to z , thenthe P. I. is

— 1 ax+by _ 1 ax+by
z=- DeDy) e D) e , Wwhere F(a,b) # 0

when F(a,b) = 0, then analyze F(D,,D,) as follows
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a
F(Dy,Dy) = (Dy — BDy)rG(Dx»Dy)

Where G(a,b) # 0, we get

1 1
eax+by — eax+by

- FDxDy) (Dx = 5 Dy)" G(Dx, Dy)

Z

1 1

— a eax+by from *
(Dx_EDy)T G(ab)

Since G(a,b) # 0

— 1 . 1 eax+by
a
G(@b) (D, ~%p,)
Then by Lagrange's method r times , we get
7 = 1 eadxtby — 1 . ﬂeax+by
F(Dy,D,) G(a,b) 7!

Which it's the P.I. where F(a,b) =0, G(a,b) # 0

Ex.2: Solve (D% — D, D, — 6D3)z = e**~3Y
Sol.

1) To find the general solution
The A.E. of the given equation is

m>—m—-6=0 - (m—-3)(m+2)=0
. my =3, my, = —2

vz = 0,(y +3x) + B,(y — 2x)
Where @,and@,are arbitrary functions

2) To find the particular Integral (P.1.)
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a=2,b=-3
F(a,b) = a® — ab — 6b?
F(2,-3)=4+6—54=—44 %0

1 ax+by _ 1 er—Sy

“2 = F(a b) —44

e Z=Zl+Zz

1
=0,(y +3x) + 0, (y — 2x) — —e**73

44
Ex.3: Solve (D2 — — 6D3)z = e3**Y
Sol.
1) The general solution is similar to that in Ex.2
2) To find P.I.

a=3,b=1
F(a,b) = a? — ab — 6b?
F(31)=9-3-6=0,
analyze F(Dy,D,),F(Dy,Dy) = D2 — DD, — 6D?
— (Dy — 3D,)(Dy + 2D,)

(Dx—%Dy)r—w.r:l, 342=5%#0=G

r
1 X eax+by — 3x+y — f

1
G(a, b) r! 5
+

3x+y

X
Zy = ' Te e
X
=0,(y +3x) + B,(y — 2x) + §e3x+3’

Where @,and@,are arbitrary functions
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Case 2 \when f(x,y) = sin(ax + by) or cos(ax + by) where
a and b are arbitrary constants
Here, we will find the P.1. of (H.L.P.D.E.) of order 2 only, by the
same way that in case 1 we will derive f(x,y) forx andy .
Let f(x,y) = sin(ax + by)
D,sin(ax + by) = a cos(ax + by)
D2sin(ax + by) = —a? sin(ax + by)
Dysin(ax + by) = b cos(ax + by)
D3sin(ax + by) = —b* sin(ax + by)
D..D, sin(ax + by) = D,[b cos(ax + by)]
= —ab sin(ax + by)
F(D% D,D,,D?)sin(ax + by) = F(—a? —ab,—b?)sin(ax + by)

1
,DxDy,D3)

Multiplying both sides by EGY

sin(ax + by) = ! 2)F(—az, —ab, —b?) sin(ax + by)

F(D%,DxDy,D3
If |F(—a? —ab,—b?) # 0 | then we can divide on it
1
~ F(DZ,D,D,,D2)
1
- F(—a?,—ab,—b?)
Which is the particular integral.

and if F(—a? —ab,—b?) = 0, then we write

sin(ax + by)

- Z

sin(ax + by)

. pif _ p-if . pif 4 p-if
sinf = —— cos =——
2i ’ 2

and follow the solution of the exponential function in casel.
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Ex.4: Solve (D% — D, D, — 6D%)z = sin(2x — 3y)
Sol.
1) The general solution z; is the same in Ex.2
2) The P.1.z,
a=2,b=-3
F(—a? —ab,—b?) = —a? + ab + 6b?
F(—4,6,—9)=—-4—-6+54=44+0

1
Z, = Esin(Zx —3y)
The required general solution

nZ =21+ 7

1
=0,(y+3x)+0,(y — 2x) + Esin(Zx —3y)

Where @, and @, are arbitrary functions.

Ex.5: Solve (D% —3D,D, + 2D3)z = e***3Y + **Y + sin(x — 2y)
Sol.
1) Finding the general solution z;
The A.E. is
m?>—3m+2=0 = (m-2)(m—-1)=0
smyp=2,my, =1
w21 =0,y +2x) + 0,(y + x)
where @, and @, are arbitrary functions.

2) The P.I. of the given equation is
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Chapter One: Methods of solving partial differential equations

1 1 1
P.l. z,= et 4 Y — —  _gin(x— 2
27 F(Dy.Dy) F(DxDy) FOwDy) S~ 2)
1
Let u, = e2xt3y ,a=2,b=3
F(Dx,Dy)

F(Dy,D,) = a® — 3ab + 2b?
F(23)=4—-18+18=4#0

1
— 2x+3y
u, = —e
174
1
Uy = ——— " a=1b=1
F(Dx,Dy)

F(Dy,Dy,) = a* — 3ab + 2b?
F(1,1)=1-3+4+2=0
Analyze F(D,,D,),

F(D,, D) = (Dy — 2D,)(Dy — D,)

N S
27 G(a,b) 1!
Lo
U, = —xe*
— 1 .
Uz = msm(x —2y)

F(—a? —ab,—b?) = —a? + 3ab — 2b?
F(-1,2,-4)=-1-6—-8=—-15#0

1
U, = ——sin(x — 2
3 1 ( y)

Then, the required general solution is
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1
z=21+2, =0,(y + 2x) + 0,(y + x) +Zezx+33’ — xe**y

1
— Esm(x —2y)

where @, and @, are arbitrary functions.

Ex. 6: Find the P.l. of the equation
(DZ — 4D,D, + 3D%)z = cos(x +y)
Sol.a=1b=1
F(—a? —ab,—b?) = —a? + 4ab — 3b?
F(-1,-1,-1)=-14+4-3=0
ixHy | p—ix—iy

Taking cos(x +y) =<

2

7 = 1 1 eix+iy + 1 e—ix—iy
2 [DZ — 4D, D, + 3D2 DZ — 4D, D, + 3D2
1 L
Letu, = ety

D3—4D,D,+3D}
Tofinduy,a=ib=i
F(a,b) = a? — 4ab + 3b?
F(i,i) = i®* —4i*+3i* =0

Analyze F(D,,D,),

F(D,,D,) = (D, — D,)(D, — 3D,)

Uy = xeix+iy

—2i

1 L
By the same way u, = ~ xe— iy

. — 1 l 1 ix+iy 1 —ix—iyl
-.Z—2 —Zixe +2ixe

—x [eix+iy_e—ix—iy]

— = —sin(x +y) which is the P.I.
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Chapter One: Methods of solving partial differential equations

Case 3/When f(x,y) = x*y®? where a and b are Non- Negative

Integer Numbers

The particular integral (P.l.) is evaluated by expanding the

function in an infinite series of ascending powers of D, or

1
F(Dy,Dy)

D,, (i.e.) by transfer the function according to the following

(xy)

! =1+60+06°+
1-6

Ex.7: Find P.1. of the equation (D% — 2D,D,)z = x3y

_ 1 3

Sol. P.1. —D)%_ZDnyx y
= ﬁﬁy, Djy™ =0if n>m

Dx(l_zD_x)

1 D, 4Dy 3 4D§
=—2[1+2—+—2+---]xy -5 =

Dx Dx X

[x y+ X ]

1 [x* x>
D, 4 10 20 60

Ex.8: Find P.1. of the equation (D3 — 7D, D3 — 6D;)z = x*y

1
Sol. P.I. = x?
D3—7DyxD%—6D5, y
_ 1 2
3[ (m% 6D§’,) Xy
D3|1-( =L+
X 2 3
D% Dj3
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Chapter One: Methods of solving partial differential equations

1

Dy

x2y

7D2  6D3 7D2  6D3\°
14+ |+ 2 )+ |—=+—=) +
Dy Dy Dy Dy

1 i 7D  6D3 7D2  6D3\?

ZF;[ny]Slnce(D_;-l_D_g)=O'(D_§y+D_;’y) =0
_1x’y  1x*y xPy
D23 D 12 60

Ex.9: Solve (D3 —a*D,D3)z =x,wherea € R
Sol.

1) the general solution z;
The A.E. of the given equation is
mi—a’m=0 = m(m?—-a?)=0

> mm—-—a)(m+a)=0

~my; =0,m, =a ,mz;=—a (differentroots) . z, = @,(y) +
?,(y + ax) + @3(y — ax)
where @4, ®, and @5 are arbitrary functions.

2) The P.I. of the given equation is

Pl =2z,=
2" D3-a?DyD3
_ 1
3 a2D§/ x
D3|1—
Dx
1 a2D2 aZp2 2 a2Dp2 a2Dp2 2
=—=|[1+ 2y+( zy) + -+ | x, where 2y=0and( Zy) =0,
D D D
X X X X X




Chapter One: Methods of solving partial differential equations

XZ

2

1

"D}

1 lx3

Dy

6

then, the required general solution is

z=2z1+2, =0:(y) + 0, (y + ax) + B3(y — ax)+§

where @4, ®, and @ are arbitrary functions.
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Chapter One: Methods of solving partial differential equations

Case 4 |When f(x,y) = e®**bYy where V is a function of x and y

1
F(Dx.Dy)

1
/4
F(Dy+a, D, + b)

The P.1. in this case is z = ax+by

— pdx+tby

and solving this equation depending on the type of V can get the
particular integral (P.1.), as follows:

Ex.10: Find P.I. of the equation D, D,z = e***3Yx2y

1
Sol. P.l. =——e?**3Yx2y qa=2,b=3andV = x%y
Dy Dy,
—p2%+3Yy 1 2

(Dx+2)(Dy+3) Xy

1
— p2x+3y 2

D, * 7
3(Dx +2)(1 +3)

1 D, D2
— p2x+3y 000 1__y_|__y_... 2
¢ 3(Dx+2)[ 379 ]xy

1 L x?]
30, +2)| 73
1 L x?]
6(1+ 291 3.

— p2x+3y

— p2x+3y

2182x+3)’[1_&+D_’%_D_’%+][xzy—x—z] ’(D—;ZO)
6 2 4 8 3 8

1 x? X 1
=gezx+3y [xzy———xy+—+z——]

3 37276
1 x? 1 x y 1
— p2X+3y | _ 42,4, - _ _ _ ~
¢ [6x Y18 e T8 127 36
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Ex.11: Find P.1. of the equation (D% — D, D, )z = e**¥ xy?

Sol.

Pl = D)%_—;CDye”y xy?,a=1,b=1andV = xy?

=Xty (Dxﬂ)(le_Dy) xy?,since D2 — D,D, = D,(D, — D)
— Xty 1 xyz

D
(Dx + DD.(1 = 5

= e*tYy ! 1+ Dy Y+ Dy 2+ 2
- (Dy + 1)D, D, D? g

1 [ 2xy  2x]

= XY +—+—

¢ T, + Do, | xy? D, ' D2

1 [ x3]

— ,X+Y 2 2 -

e (Dx+1)Dx_xy +Xx y+3_

24,2 3
_ pxty 1 xXcys x’y L X
Dy +1) 3 12

2 2

3
=ex+3’[1—Dx+D,§—D,§+D,‘C‘—D,§+-~][x +—+—] where

x2y?  x3y x®
= Xty > +T+E—xy —-Xx y—?+y +2xy +x* =2y —2x +2

Ex.12: Find P.I. of the equation (D, — Dy)zz = e**V sin(x + 2y)
1
(020’

1

(Dyx+4-Dy—1)

Sol.P.l. = e*tY sin(x + 2y) ,a; =1,b; =1

=Xty

> sin(x + 2y)
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= Xty 5 sin(x + 2y)
(Dx_Dy)

1 .
= e*tV 5755 popz Sin(x + 2y) ,a, =1,b, =2

F(—a3,—asb,,—b%) = —a} + 2a,b, — bZ

F(-1,-2,-4)=-14+4—-4=-1#0
. _x+yi- = —eXtV gj
LnZ=e ._151n(x+y) = zZ=-—e sin(x +y)

Case 5 |\When f(x,y) = g(ax + by) where F(a,b) + 0
The particular integral of H.L.P.D.E. of order n is

j glax + by) d(ax + by) ..d(ax + by)
— times

Ex.13: Find P.1. of (D% + 2D,D, — 8D2)z =/2x ¥ 3y
Sol.

a=2,b=3 ,92x+3y) =,/2x+ 3y
F(a,b) = a? + 2ab — 8b?
F(2,3) =4+4+12—-72 = —56 # 0, integrating g twice

~Pl.=z= _Lff,/Zx + 3y d(2x + 3y)d(2x + 3y)

" F(a,b) ) n— times

—56f (2x + 3y) /Zd(Zx + 3y)

5
- /
_56(15)(2x+3y) 2

= 1(2 +3y)°2
~ 210 T
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Chapter One: Methods of solving partial differential equations

Case 6 | When f(x,y) = g(ax + by) where F(a,b) = 0
If F(a,b) = 0, then F(D,, D, ) can be written as
F(Dy,Dy) = (bDy — aDy)"

x™ g(ax+by)

nl hn

and the particular solutionis [Z =

Ex.14: Find P.l. of (D% — 6D,D, +9D3)z=3x+y

Sol.a=3,b=1 ,9gBx+y)=3x+y
F(a,b) = a? — 6ab + 9b*
F(3,1)=9-184+9=0
Then F(D,,D,) = Df — 6D,D, + 9D = (D, —3D,)* ,son =2

_ x?3x+y 1
-'-P.l.—Z=; 12 =5X2(3X+y)

Ex.15: Find P.1. of (D% —4D,D, + 4D%)z = tan(2x + )
Sol.a=2b=1 ,g(2x+y) =tan(2x + y)
F(a,b) = a? — 4ab + 4b*
F21)=4—-8+4=0
Then F(D,,D,) = D7 —4D,D, + 4D = (D, — 2D;)* ,son =2

x?tan(2x+y) 1 o
= = _x
2! 12

~Pl.=2z tan(2x +y)

Ex.16: Find P.1. of (D% — D3)z = sec*(x + y)
Sol.a=1,b=1 ,g(x+7y)=sec?*(x+y)
F(a,b) = a? — b?
F1,1)=1-1=0
Then F(D,,D,) = DZ — DZ = (D, — D;,)(Dy + D))
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Chapter One: Methods of solving partial differential equations

1
zZ = sec’(x + y)
(Dyx — D,)(Dy + D)
1
Letu, = (5or0y) sec’(x +y) by case (5) we have
u, = F(:b)fg(ax + by)d(ax + by) , FL)=1+1=2

_ 1 2
—Efsec (x+y)d(x+y)

1
=Etan(x+y)
G +)
= z=-————tan(x
(Dx_Dy)Z ¢
F(Dy,Dy) =D, — D,
F(1,1)=1-1=0 wheren =1

_x'1tan(x +y)
112 1

oo Z

X

= Etan(x +y) which its’ the particular integral
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...General Exercises ...
1- (D} —Dy)z=0
2 (DS B 7DxD321 - 6D35;)Z = cos(x — y) + x° + xy* + y*
3- (Dy — 2D,)z = e3*(y + 1)
4- (D2 +3D,D, +2D3)z=x+y

5- (DZ — 5D,D, + 4D2)z = sin(4x + y)

5e*
ey

6- (2DZ — DD, —3D2)z =
7- (D,% — 3Dny + ZDJZ,)Z = e?*7Y 4 cos(x + 2y)

8- (D,% — Dny)z =Iny

9- (D + Dy)z = sec(x +y)

10- x(y? — z%)p + y(z% — x*)q = z(x* — y?)

11- (y2 + z? — x®)p — 2xyq = —2xz

12- pg+2y(x+1)g+x(x+2)g—2(x+1)=0
13- (x*+2x)p+ (x+1)gy =0

1

14- (D3 —3D,D3 +2D3)z = —
15- (D3 +2D2D, — D, D2 —2D3)z = (y + 2)e*

16- (4D2—4D.D, +D2)z = (x + 2y) /2

17- DyD,z = e* Vxy?*

18- (Dy — Dy)z = tan(x + 2y)

19- 2(D3 —9D2D, + 27D,D% — 27D3)z = tan™* (3x + y)

i 3. _ 9.4y9Z 4 _ .3.092 _ 3 3
20- (y°x 2x)6x+(2y xy)ay—x y
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Chapter Two: Non-homogeneous Linear Partial Differential Equations

Section(2.1):Non-homogeneous linear partial differential
equations with constant coefficients

Definition: A linear partial differential equation with constant
coefficients is known as non-homogeneous LPDE with
constant coefficients if the order of all the partial

derivatives involved in the equation are not all equal.

For example:
0%z 0z
1) Py + 5 +z=x+y
2) 93z | 9%z 9z o Xty

0x3  0x0y 5; -

Definition: A linear differential operator F(D,,D,) is known as
(reducible), if it can be written as the product of linear
factors of the form aD, + bD, + ¢ with a,b and c as
constants. F(Dy, D,,) is known as (irreducible), if it is not
reducible.

For example:

The operator Df — Dy which can be written in the form

(Dy — Dy)(Dy + Dy) is reducible, whereas the operator D — D;

which cannot be decomposed into linear factors is irreducible.

Note: A LPDE with constant coefficient F(Dy,D,)z = f(x,y) is
known as reducible, if F(D,,D,) reducible, and is known as

irreducible, if F(D,, D,) is irreducible.
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(2.1.1) Determination of Complementary Function (CF)
(the general solution) of a reducible non-homo. LPDE with

constant coefficients

(A)/let F(Dy,Dy) = (aDy+bD,+c)*, where a,b,c are
constants and k is a natural number
then the equation F(Dy, D)z = 0 will be
(aD, + bD,, + ¢)*z = 0 and the solution is
—C
z=-¢ea @P(ay — bx) ca+0 k=1
or
—C
z=eb”@(ay — bx) c b#0 k=1
Forany k > 1, the solution is

zZ = e%:y[wl(ay — bx) + x@,(ay — bx) + -+ x*7 1@, (ay — bx)]; b # 0
or

-C

z=ea"[@;(ay — bx) + x@,(ay — bx) + -+ x* 1@, (ay — bx)]; a = 0

Where @, ..., @,, are arbitrary functions.

Ex.1: Solve (2D, — 3Dy, —5)z=0
Sol. The given equation is linear in F(D,, D,)
Then a=2,b=-3,c=-5k=1
The general solution is
5
z=e2*P(2y + 3x)

Where @ is an arbitrary function.
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Ex.2: Solve (D, — 5)z = e**Y

Sol. To find the general solution of (D, —5)z =0

Wehave a=1,b=0,c=-5k=1

=z, = e>*@(y), where @ is an arbitrary function.

TofindtheP.l. z, ,wehave a=1,b=1
F(a,b)=a—-5 - F(1,1)=1-5=—-4%#0

1
N Ty = Xty

—4
Then the required general solution of the given equation is

z=2,+2, - z=e>@(y)— Zexﬂ’

Ex.3: Solve (2D, + 5)*z =0

Sol. The given equation is reducible, then
a=0,b=2,c=5,k=2.

The general solution is

2 = €27 [0, (~2x) + x05(~2x)]

Where @, and @, are arbitrary functions

Ex.4: Solve (D, — 2D, + 1)*z =10
Sol. Wehave a=1,b=-2,c=1k=4
then

zZ= e%y[(z)l(y + 2x) + x0, (v + 2x) + x205(y + 2x) + x30,(y + 2x)]

Where @, , ..., @, are arbitrary functions
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(B)/ when F(D,, Dy )can be written as the product of linear factors

of the form (aD, + bD, + ¢) , i.e. F(D,, D, ) is reducible , then
the general solution is the sum of the solutions corresponding to

each factor.

Ex.5: solve (2D, — 3D, +1) (D, +2D,—2)z=10

linear linear

Sol. The given equation is reducible, then we have
a1=2,b1=_3 ,C1=1 ,k1=1

-1
z;=e2 0,2y + 3x)
a2=1,b2=2 ,C2=_2 ,k2=1
Zy = erQ)Z(y — 2x)

The general solution is

1
z=12,+2, — z=¢€2 @0,;y+3x)+e*0,(y — 2x)

Where @, , @, are two arbitrary functions.

Ex.6: solve D,(D,+ D, +1)(D,+3D,—2)z=0
Sol. We have
a,=1,b=0 ,¢4=0 k=1
a,=1,b,=1 ,c,=1 ,k,=1

a3=1,b3=3 ,C3=_2 ,k3=1

Then the general solution is
z=0;(y) +e70,(y — x) + e*03(y — 3x)

R —————————
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Where @, ..., @ are arbitrary functions.
Ex.7: solve (D3 — D,D3 — D%+ D,D,)z =0
Sol. We have , (D — D,D2 — DZ + D,D,)z = 0
D,(D?—D2—Dy,+D,)z=0
Dx[(Dx - Dy)(Dx + Dy) - (Dx - Dy)] =0
Dy(Dyx —Dy)(Dy+ Dy, —1)z=0
Then,a; =1 ,b;=0 ,c;,=0 ,k;=1
a,=1,b,=—1 ,c,=0 ,k,=1
a;=1,b3=1 ,c3=-1 kz=1
Then the general solution is
z=0,) +0,(y +x)+ed;(y — x)

Where @,, ..., @5 are arbitrary functions.
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(C) / When F(D,, D,) is irreducible then the complete solution is

o0
7 = ZAi edixXtbiy
i=1

Where F(a;, b;) = 0 ,4;, a;, b; are all constants.
Ex.8: Solve (D, — D3)z =0
Sol. The given equation is irreducible, then
F(a,b)=0 - F(a;b;))=0
a—b3=0 - aq,—-b>=0 - aq =0’

The complete solution is

(0.0) oo
7 = zAi e®iX+thiy — zAi ebi3x+biy
i=1 i=1

Where A; , b; are constants.
Ex.9: Solve (D% + D, + D)z =0
Sol. The given equation is irreducible, then
F(a,b)=a*+a+b=0 - a?+ a;+b;=0
- b=-a;"— q

The complete solution is

(0] (0]
z = z A; e@X by — z A; pdix+(-ai®= a;)y
i=1 i=1

Where A; , a; are constants.

Ex.10: Solve (D, — D3)z = e***3¥
Sol. (1) we find the complete solution of the irreducible equation

(Dxy—DZ)z=10
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F(a,b)=a—b2=0 - F(ai,bi)= ai—bi2=0—> a;
= b,*

(0e) o0
D 2,0
Z; = ZAi ediXtbiy — ZAi ebi"x+biy
i=1 i=1

Where A; , b;are constants.
(2) The P.1.is

Then

F(a,b) = a — b?
ZF(23)=2-9=-7%0

h 7, = —— 2X*3Y

—7
and the required complete solution is

oo
Zyiby L
z2=2z;+2z, = 2’41' ebi"x+byy _762x+3y

=1

(D) / When F(D,, D,) can be written as the product of reducible and
irreducible factors the general solution is the sum of the solutions
corresponding to each factor.

Ex.11: Solve (D, + 2D,)(D, — 2D, +1)(D, — D%)z =0

Sol:

Factorl, a;, =1 ,by=2 ,c;=0 ,k;=1

Factor2, a, =1 ,b, =-2 ,c, =1 ,k,=1

Factor 3, F(a,b)=a—b2=0 - a=5b? - aizbiz

1 (0]
~z=0,(y—2x) +e270,(y + 2x) + z A; ebi*x+biy
i=1
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Where @,, @, are arbitrary functions and A; , b; are constants.

Ex.12: Solve (D% — D2 + D,)z = x* + 2y
Sol: (1) The complete solution of (DZ — DZ + Dy)z=0is F(a,b) =
a*—b*+a=0>b=+Va?+a->b =1 /ai2+ai

Then

(00)

ajxt ’a-2+a-y
Zl = Z Ai e ' l '

i=1
(2) The P.1.is
= 242
“2 D§—D§,+Dx(x t2)
1 2
= D2 (x* + 2y)
Dy(1+ Dy —5%)
X
1 2
= 2 (x“ + 2y)
Dy[1 - (D—y — DX>]
X

1 D2 2 2

y y
=D—[1 +D——DX+<D——DX> +”'](X2+2y)
X X
=0

1 x3
=—[x*4+2y—2x+2] =—+2xy — x* + 2x
D, 3

The required complete solution is
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> . / 2, . x3
Z=2z +2z,= z:fliealxir ey 5t 2xy — x% + 2x
i=1
Ex.13: Solve(2D, + 3D,)(3D, — 4D, + 5)(3D, — D3)z =0
Sol:
Factorl, a;, =2 ,by=3 ,c;=0 ,k; =1
FaCtOI’Z, a2=3,b2=_4 ,C2=5 ,k2=1
b? b?

Factor 3, F(a,b) =3a —b? =0 S a=2> - a=-+

The general solution is

5 s b}
wz=0,2y-3x)+e¥ 0,3y + 4x) + Z A; e 3XHhY
i=1

Where @, @, are arbitrary functions and 4, , b; are constants.

Note To determine the P.l. of non-homo. PDE when
f(x,y) =sin(ax + by) or cos(ax + by) weputD2 = —a?,

D = —b* , D,D,, = —ab , which provided the denominator is non-
zero, as follows.

Ex.14: Solve (D% — D,)z = sin(x — 2y)
Sol: (1) The complete solution z; of (DZ — D)z = 0'is

F(a,b)=a?—-b=0 —|a?=b;

(0.0)

E . 2
Z, = A; pdix+ajy

=1

(2) To find the P.1. of the given equation
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a=1, b=-2 ->D2=-q?=-1

1
= oo, sin(x — 2y)

= _1+Dy sm(x —2y)
D% = —h? = —4
= 1+Dy sin(x — 2y)
%[ sin(x — 2y) — 2 cos(x — 2y)]

Then the complete solution is

1
z=2z1+2, = Z A; e@Xtaiy 4 T [—sin(x — 2y) — 2 cos(x — 2y)]
i=1

...Exercises...
Solve the following equations:
1.(D +DyDy+ D, —1)z=0
2.(Dy +1)(Dy—Dy+1)z=0
3.(Df + DyD, + Dy)z =0
4.(DZ+ Dy +4)z = e**7Y
5.(DZ + DDy + D, — 1)z = sin(x + 2y)
6.(Dy—D, —1)(Dy =D, —2)z=x
7.(DZ — D2+ Dy + 3D, — 2)z = x%y
8. (Dy + 3D, — 2)*z = 2e**sin(y + 3x)
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Section(2.2): Partial differential equations of order two
with variable coefficients

In the present section, we propose to discuss partial differential
equations of order two with variable coefficients. An equation is said

to be of order two, if it involves at least one of the differential

0%z ¢ = 0%z 0%z
ax2’° " axay '~ ay?

coefficients r = but none of higher order,

the quantities p and g may also inter into the equation. Thus the
general form of a second order partial differential equation is

RGo») 22 4 St y) 2 4 T y) 2t PCy) 4 Q) 2+ V)2 = f(2,y)
Y) 552 X,y axdy xy ay? xy)as Qx,y 3y x,y)z=f(xy

(1)
Or Rr+Ss+Tt+Pp+Qq+Vz=f.. (2)

Where R,S,T,P,Q,V, f are functions of x and y only and not all

R,S,T are zero.

We will discuss three cases of the equation (2):

Case 1 )when one of R, S, T not equal to zero and P, Q,V are equal
to zero, then the solution can be obtained by integrating both sides

of the equation directly.

Ex.15:Solve y + 5y — x%y?

Sol: Given equation can be written (dividing by 'y')

62
ax?

= yx% —5... (3)
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Integrating (3) w.r.t. x

9z _ yx3
dx 3

Integrating (4) w.r.t. x, then the general solution will be:

yx* 5
Z="5 5 + x0,(y) + B (y)

Where @, and @, are two arbitrary functions.

%z

2., —
y“x =0
0xdy

Ex.16: Solve xy

Sol: Given equation can be written (dividing by 'xy')

0%z
oxdy y.. (5)

Integrating (5) w.r.t. x

0z

3y =Vt D1(y)-. (6)

Integrating (6) w.r.t. y, then the general solution will be:

2

2
2=+ [ 0,000y + 0,0 = 5=+ 00) + 0,00

Where @pand @, are two arbitrary functions.

Case2 When all the derivatives in the equation for one
independent variable i.e the equation is of the form

Rr+Pp+Vz=Ff(x,y) orTt+Qq+Vz=f(xy)

Some of these coefficients may be Zeros.
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Chapter Two: Non-homogeneous Linear Partial Differential Equations

These equations will be treated as an ordinary linear differential

equation, a follows:

2
Ex.17: Solve yz—yz + 33—; =2x+3

0z 0%z  0q
Sol: let — = — = —
oy q dy?2 oy

Substituting in the given equation, we get

_ 2x+3

q= ..(7)

3
y y

dq . daq
y$+3q—2x+3 - 6y+

Which it's linear diff. eq. in variables g and y , regarding x as a

constant.
3

9
Integrating factor (I.F.)of (7) = efy Y = g3y = y3

And solution of (7) is

3 2x + 3 3
y’q = y y>dy + 041(x)

3
y3q = (2x+3) % + 0,(®)

2x + 3 _3
q=—7"1y"0:x)
Z_; = 2x3+3 + y73@,(x) , integrating w.r.t. y, then the general solution
will be: =22y = 730100 + 0, (%)

Where @, and @, are two arbitrary functions.

Ex.18: Solve 22 — 2y % 4 y27 = (y — 3)e?*+3Y
EE— dx2 x

Sol: The given equation can be written as
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D¢ = 2yDy +y?z = (y — 3)e®* ™
> (Dy —y)?z = (y — 3)e®* .. (8)
The A.E. of the equation (D, —y)?z = 0is
(m=-y)?=0-m=my=y
~z1 = 0.()eX + x0,(y)e”*... (9)
Where @, and @, are two arbitrary functions.

The P.l. (z,) is

1
Zy (y _ 3)62x+3y — (y _ 3)—62x+3y

T Dy — y)? 2 —y)?

NZ=27Z1+ 2y

= 0,(0)e” + 20, (e + (y = 3) o €2+

Case3 ) under this type, we consider equations of the form

2z

d 0z

2
Rr+Ss+Pp=f(x,y)—>R%+S

3%z

9%z 0z
And Ss+Tt+ Qq = f(x,y) _)Saxay-l_TW-l_Q@_f(x’y)

This equation can be reduced to a first order PDEs with p or q as
dependent variable and x,y as independent variables. In such
situations we shall apply well known Lagrange's method.

9%z 9%z 0z
Ex.19: Solve x — — ——=0
— dx?2 y dxdy 0x

0z 0%z 0p 0%z op
Sol:let p=——->—=—, =—
p 0x 0x2  0x '0xdy Oy

Substituting in the given equation , we get
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dp dp _
Xa - 5 —p = 0(10)

Which it is in Lagrange's form, the Lagrange's auxiliary equations are

L Y _& (11)
X -y D
Taking the first and second fractions of (11)
: % = 6_1—3; - Inx = —Iny + lna - xy = a.. (12)
Taking the first and the third fractions of (11)
dx dp X
—=—>=Inx=Inp+Inb—--=>b.. (13)
X D p
From (12) &(13), the general solution is
0(a,b) =08 (xy,>) =0-> = g(xy) X
a, = - xy,— = —)—=gxy —)p:
p p 9(xy)
0z X
ax gy (14)
Integrating (14) w.r.t. x , we get
X
= | —— 1
2= [0 0x+9) (15)

Where g and ¢ are two arbitrary functions.
Then (15) is the required general solution of the given equation.
...Exercises...

Solve the following equations:

9%z \ _ 0%z 9z 5
1))ln(axay)—x+y 2)) 372 xay—x
0%z 0%z x 5 0%z 9z _
3))axay_a_yz_y 4)) y _ay2+2yay_1
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Section 2.3: Euler-Cauchy PDEs reducible to equations
with constant coefficients

In this section, we propose to discuss the method of solving the
partial differential equation, which is also called Euler-Cauchy type

partial differential equations of the form :

nz oz n 0"z _
apx™ oo T a, xm yaxn-lay + -+ a,y Iy + = f(x,y)..(1)
i.e. all th f th ion of the formul nym 02
i.e. all the terms of the equation of the formula a,x"y 2oy To
solve this equation ,define two new variables u and v by
x=e%andy =eVsothat u =Ilnx andv = Iny... (2)
] ]
LetDu —Eande —a
0z dz OJu 1 0z .
NOW,a—a'a—;'E,USIng(Z)
0z 0z
..a—X'a—) DZ XDZ (3)
i ,2.0%2 _ 20 0z
Again x oo = X ax)
]
(1 =) from (3)
2
_ xz_l_ 07z 2. 0z 2
x 0xou ou
0%z 0z
— 5
dxdu OJu
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B d (62) 0z
_xau 0x Ju

B 0 (1 62) 0z
_xau x 0u Ju
1 0%z 0z

— =7

~x?D2z =D,(D, — 1)z
and so on similarly, we have
yDyz = D,z ,y*D;z = D,(D, — 1)z,...

Hence

A D,(D, —1)(Dy, —2)...(Dy, —n+1)z...(4)

oxn

am
ym ayiz =D,(D, — (D, —2) ...(D, —m + 1)z...(5)

an+mz

axnoym

x"y™ z=D,(D,—-1)..D,—n+1)D,(D, —1)..(D, —m + 1)z ...(6)

Substituting (4),(5),(6) in (1) to get an equation having constant
coefficients can easily be solved by the methods of solving homo.
and non-homo. Partial differential equations with constant
coefficients, Finally , with help of (2), the solution is obtained in

terms of old variables x and y.
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9%z 9%z 0z 0z
Ex.20: Solve x?> — — y?> — — y— — =
0: Solve x“ —— —y 272 yay+xax 0

Sol:letx =e%,y =eVthen u =Inx andv = lny

2
x% =D,z x? -% =D,(D, — 1)z
and ..(7)
0z 2 0%z
Y3, = Doz, Y* 552 = Do(Dy — Dz

Substituting (7) in the given equation,
(D2 —-D,—D2+D,—D,+D,)z=0
(Dl% - Dg)Z =0-> Dy —Dy)(Dy +Dy)z=0

TheAEis (m—1)(m+1)=0

mi=1 mp=—1

Then the general solution is
z=0,(v+u)+0,(v—u)

= @,(Iny + Inx) + 0,(Iny — Inx)

= @, (Inxy) + @, (ln %)

= hy(xy) + h; (%)

Where h; and h, are two arbitrary functions.
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...Exercises...

Solve the following equations:

1)) (x*Di —y*Dj —yDy, + xD,)z = xy

2)) (x®Df—2xyD,Dy, + y*Dy + yD, + xD,)z =0

2& 2 622 0z

0z
tx_—= Inxy

Classification of partial differential equations of second order:

Consider a general partial differential equation of second order for a
function of two independent variables x and y in the form

Auyy + Buyy, + Cuyy + Duy + Euy + Fu =G ... (1)
Where A4,B,C,D, E, F, G are function of x, y or constants.
The equation (1) is said to be

(i) Hyperbolic at a point (x,y)in domain D if B> — 4AC > 0.
(i) Parabolic at a point (x, y)in domain D if B> — 4AC = 0.
(iii) Elliptic at a point (x,y)in domain D if B2 — 4AC < 0.

Ex.21: Classify the following partial differential equation
2uyy + 33Uy, =0

Sol:
Comparing the given equation with (1),wegetA =2,B=3,C =0
B?—4AC =9-4(2)(0)=9>0

Showing that the given equation is hyperbolic at all points.
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Ex.22: Classify the following PDEs.

d 2 02
1) 5 Py

u _ 2 *u
(2) atZ xZ
(3) — + — =0

Sol. (1)Re-writing the given equation, we get
AUy — U = 0
Comparing with (1), weget A = a?,B=0,C =0
B2 —4AC =0—-4(a®)(0)=0
Showing that the given equation is Parabolic at all points.
Sol. (2) Re-writing the given equation, we get
CUyy — U = 0
Comparing with (1), weget A =c%,B=10,C = —1
B? —4AC =0—-4(c*)(-1) =4c* >0
Showing that the given equation is hyperbolic at all points.
Sol. (3)Comparing with (1), weget A=1,B=0,C =1
B?—4AC=0-4(1)(1)=-4<0

Then the equation is an Elliptic at all points.
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...Exercises...
Classify the following equations:
1)) Uy — Uyy — Uy, =0
2) Upy — TUpg +T2Ugg = 0 ;u(r, )
3)) Zux + Zxy + 2, = 2x

)XY Zyx — (xz - yZ)ny —XYZyy tYZy — XZy = Z(xz - yz)

0%z
dxdy

E 3z 9
+4(y—1)ﬁ+xya—i—£=o

5) x2(y — 1) 22— x(y2 — 1)

6))u, —ugg =5

0%u 0%u 0%u
7))26x2+46x6y+46y2 =2
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Chapter Three: Fourier series

Section(3.1): The definition of Fourier series and how
to find it

In this chapter we will find that we can solve many important
problems involving partial differential equations provided that we
can express a given function as an infinite sum of sines and (or)

cosines. These trigonometric series are called (Fourier Series).
Definition: Let f be defined on [—m, ] , we said

a
70 + Z (ay cosnx + b, sinnx) .. (1)
n=1

Is Fourier Series of f if it converges at all points of f on the

interval [—m, ] , where

1 T
a0=E ff(x)dx

T
1
a, = ff(x) cos nx dx

-TT
s

1
b, = ff(x) sin nx dx

T

a, ,a, , b, are called Fourier coefficients.

f is a periodic function with period 2m since sine and

cosine are periodic functions with period 27 , as shown :

f(x+2m) = f(x)
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Qo
2

N

f(x+2n) =—+ ) [a,cosn(x + 2m) + b, sinn(x + 2m)]

S
Il
=

[a,, cos(nx + 2nm) + b, sin(nx + 2nm)]

[l
IR

+
Nk

S
Il
=

Since cosine and sine are periodic functions with period 2m then
Ao N .
f(x+2m) = > + Z(an cosnx + b, sinnx)
n=1

= f(x) from the definition

1, nm<x<0

EX. 1: Find the Fourier Series for f(x) = {2 0<x<T

Sol:

s

1
aO:E ff(x)dx

T

0 T

1 1
= ff(x)dx+gjf(x)dx
- 0

1
tn = — ]f(x)cosnxdx
—Tr

0 T
1 1

= — jcosnxdx+—J2cosnxdx
T T
g 0
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1 . 0 2 s
= —sinnx | +—sinnx| =0
nm — nm 0

T

T

1
b, = jf(x) sin nx dx

T
0 T

1 2
= — jsinnxdx+—jsinnxdx
T T
g 0
-1 0 -2 T
= —cosnx | + —cosnx |
nm —T  nn 0
= — + L cosnm — = cosnm + —
nrm nm nm nrt
1 1
= — — —COSNTIT
nmw N
= (1- (-1
Conm
Hence

bn =12 if nisodd

nm

{O If niseven

a
s fx) = ?0 + Z (a, cosnx + b, sinnx)
n=1

nis odd

3 2 2
=—-+-—sinx +_-—sin3x + -
2 m 31
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1. cosnmt = (—1)" ,sinnm =0
2. fiseven & f(x) = f(—x)
fisodd e f(x) = —f(—x)

for example:
f(x) = x?% cosx ,x*4, .. f is even
f(x) =x,x3,sinx , ... f is odd

3. even function X even function = even function
odd function X odd function = even function
even function X odd function = odd function

f (even function)dx = 2 j (even function)dx

j(odd function)dx =0

5. When f is even then

T

ij@dx— jf(x)dx from 4

T

1
j f(x)cosnxdx = J f(x) cosnx dx from 3,4
o 2 even

s

1
=—jf(x)sinnxdx=0 from 3,4
n N’

n even
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When f is odd function then

T

1
ao=—j@dx=0 from4

T
—q odd
s

1
n = — jf(x) cosnxdx =0 from 3,4

———
—q odd

T

f f(x)sinnx dx from 3,4
0

T

) _1[ _ p 2

n=_ @smnx x—n
—q odd

-1 if-m<x<0

Ex. 2: Find the Fourier Series for f(x) = { 1 if 0<x<m

Sol: note that f is odd, then

apg=a, =0
b, = %f(?f(x) sin nx dx} from (notes) 2
I?»n—-—«;
2 _ —2 T & PR e
= — | sinnxdx =—cosnx | = 9 v
T nm 0 \

WV

N O\a
|

— —2 |
== —cos0] =—[(-D"—1 te 1
— [cos nm — cos 0] — [(—1) ]  from (note 1)
4 dd
_ {nn ifniso
0 If niseven
Then, f(x) = % + Yo-4(a, cosnx + b, sin nx)
>
= —sinnx
nm
n=1
nis odd

Or
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o 4
f(x)= Z (Zn = 1)nsin (2n—1)x

—x if—-m<x<0
Ex. 3: Find the Fourier Series for f(x) = { x i)l: 7(:< x<T1

/ /\\\
S \
BN
N
N e

T T
1 2 ) |
d — f d 3 =t "='\'! a\y
O .[ f(x) X f (x) X & - _,‘v —_";‘ =7 i - 91 7

- 0 ‘i
: !
2 1 T ;

Sol. note that f is even, then ~

T T
1 2
= ff(x)cosnxdx=gjf(x)cosnxdx
v 0

T

2 2 x 1 /[
=—| xcosnxdx =—[=sinnx + — cosnx]
[ T n n 0
0
2 m 1 0 1
= —[=sinnm + — cosnm — —sinn0 — — cos n0]
Tn n n n

4 L.
%[(_1)n_1]={ﬁ if nis odd

0 If niseven
b,=0 since f is even.

Then, f(x) = % + Yn—q,(a, cos nx + b, sinnx)

[
=E Z n—1)2 cos(2n — 1)x
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Section(3.2): The Fourier convergence

When we find a Fourier series for a function f we assume that
f is defined on [—m, ] and periodic with period 27w, then f  must
satisfy f(m) = f(—m) otherwise, the function becomes discontinuous
at the points ©w + 2nm, n =0,1,2,..., when f discontinuous at x,
then the series

a
70 + Z (ay cosnx + b, sinnx)
n=1

may not be convergent to f(x,) unless some certain conditions are
satisfied. There are many conditions , if at least one of them satisfies,
the Fourier series approaching f.

Here we will discuss the (Dirichlet's conditions) in the following
theorem.

Dirichlet theorem:

Suppose that f and f’ are piecewise continuous on the interval
—n < x < m. Further suppose that f is defined outside the interval
—n < x < m, So that it is periodic with period 27 then f has a
Fourier series

a
f(x) = 70 + Z(an cosnx + by, sin nx)
n=1

The Fourier series converges to f(x) at all points where f is
continuous, and to %[limx_,xar f(x) +1lim,_,,~ f(x)] at all points

where f is discontinuous.
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Ex. 4: Find the Fourier series for f(x) = x where x € [—m, ]

then find:

(i) The convergence on the interval [—m, r].
(if) The convergence of 1 — % + % — % + ..

(ili) The approximate value of m.
Sol. f is odd function then

g
I
|

|
I
|

e

,3“'

ag=a, =0 :
J

™

4 ! i

T
2 2 '
b,, =—ff(x) sin nx dx =—jxsinnxdx
s s
0 0

YA
2 -1 s
=—x-—cosnx| _ +— | cosnxdx
s n 0 nm
0
) 2 . T 2(_1)n+1
=—xcosnx + [=sinnx| =—"
mn nem 0 n
© 2(_1)Tl+1 .
s~ flx) = Z—smnx
n=1 "

(i) The convergence on [—m, 7T].

[-m, ] = (-7, m) U {—m, }

The convergence on the interval (—m, ) which it's continuous is

s 2(_1)n+1 .
X = E —SInnx
n
n=1
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The convergence on the point x = —m (where fis discount on it) is

The convergence on the point x = m (where fis discount on it) is

1r _ 1
f@ =5 lim f) + Jim fGO] =5 [~m+n] =0

2(_1)1’l+1

(i) f(x) = Xn=q sinnx o (%)

Let x = — (where f is continuous)

substituting in (*), we get

(0.0)

s 212(—1)”+1 o nm

— = sin

2 ] n 2

T T 1_+1_3TL’ 1_2+1_5n

4—sm2 25111()71 3sm > 451r107t 5sm >
=1 B =-1 B =1

n_l 1+1

4~ 35

e T 11 1 .

(iii) since S =1 —3to— ot (from (ii))

Thenm=4—24Z-24...
3 5 7

letn=1->m=4

Iﬁn=2%n=4—§=§=2%
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et n=3-sm=4—242-22_34¢
3 5 15

So, we approaching from the approximate value of m when

n increasing .

Ex. 5: Find the Fourier series for f(x) = e* on [—m, ] , then find

The convergence of Fourier seriesto f .

T
Sol. f is not odd neither even / | }mb )
“ ,’/
| | / 1
YA T / ‘ // ]
a== [ferax== [erar , -
1T —TT e K| e {x "2k *‘3/\7
1w etoe I
=—e¥| dx=

A T
1 1
tn = — jf(x)cosnxdx=g jexcosnxdx
—TT —Tr

_ (DMeT—e™)

m(1+n?)

(by [udv twice)

T A
1 1
b, = — jf(x)sinnxdx=— fexsinnxd
s s
-1 v [A

B n(_l)n+1(eﬂ _ e—Tc)
B n(1 + n?)

Then
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T_,—T AN, _ ,—TC _a\n+l1l,,m__,-T
i D e D) osnax + HED—(e e )sinnx]

m(1+n?) m(1+n?)

flx) = + Yn=1l

2T

The convergence
[-m, ] = (—n,7) U {—m, 7}
In the interval (—m, ) the Fourier series converge to e*

at the point x = —m the Fourier series converge to

1r . 1
femy =3[ tim, f@)+ lim f@)| =2l +em]

at the point x = m the Fourier series converge to

Ir . 1
f@) =3[ lim, fG) + lim f@)| = 5[ +e™]
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Section 3: Extension of functions

' The odd extension: Let f be defined on the interval [0, ], we
will define the function F(x) on the interval [—m, r] such that

P ={_ ) e moy

We must prove that F(x) = —F(—x) (i.e: Fis odd)

let x € [0,7] > —x € [—m, 0)

F(=x) = —f(=(=%)) = —f(x) = —F(x)

. F(—x) = —F(x), then by multiply both sides by (-1), we obtain,
—F(=x) = F(x),

By the same way if x € [—m,0) , we get

F(—x) = —F(x)
then F is odd.
hence,

T

1
ag = — fF(x)dx=0
T edd

T

a, =— ]F(x) cosnxdx =0
T —— N ——
g _odd even

odd
T T
1 . 2 .
b, = — j F(x) sinnxdx = —J F(x) sinnx dx
T g _odd odd T 0

even

and
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F(x)=2bnsinnx ;x € [0, 7]
n=1

but F(x) = f(x) on the interval [0, 7] , then

A
2
b, = Ej f(x) sinnx dx
0
and

f(x)=2bnsinnx ;x € [0, ]
n=1
This series is called ((Fourier sine series)).

EX. 6: Find the Fourier sine series for the function f(x) = cosx

where x € [0, «].

Sol.

2

b, = — | cosx sinnx dx

S
OR:‘

1
> [sin(n + 1) x + sin(n — 1) x]dx

Il
QN
o —

[sin(n + 1) x + sin(n — 1) x]dx

=1Ir—\
O\a

1 [—cos(n +1x cos(n—1Dx|nx
= — m#F1

s n+1 n—1 |o
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1 _(_1)n+1 (_1)71—1 1 1
ZE[ n+l  n-1 +n+1+n—1]
1 (-D"n-D+(D"(n+1)+n—-1+n+1
T nz—1 |
1 (—D"n—-(CFD"+(D)"n+(—1)"+ 2n
T n? -1 |
1 2(-1D)™+ 2n
T n? —1 |

_2n (VD" +1
ot n2-1

0 ifnisodd n+1
= 4n

m ifnis even

T

2 .

b; =— | cosx sinx dx

/[
0

T
1 _ -1 T
= — | sin2x dx = — [cos2x]
T 21 0
0
-1 —1
=—/|[cos2m —cos0] =—[1—-1] =0
21 21

Then the Fourier sine series is

(00]

4
flx) = z ﬂ(nz—n_l)sinnx

niseven
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The even extension: Let f be defined on the interval [0, ], we
will define the function F(x) on the interval [—m, ] , such that:

fx) ;x€[0,m]
f(—x) ;x€][-m0]
We must prove that F iseven i.e F(x) = F(—x)
xe[0,n] —-Fx)=f(x)

let —x € [-m,0] - F(—x) = f(—(—x)) = f(x) = F(x)
L F(=x) = F(x)

by the same way when x € [—m, 0], we get F(x) = F(—x)

Fx) = {

then F is even , hence the Fourier series of F is

s

2
a0=ng(x)dx
0

s

2
a, = Ef F(x) cosnx dx
0
b, =0
(0 1)) -
F(x)=?+2ancosnx ;x €10, 7]
n=1
But on the interval [0, 7] the function F(x) is equal to f(x) then
T YA
2 2
ao =g]f(x)dx ; A =Eff(x)cosnxdx ; b, =0
0 0
and

ag =
flx) = 7+ Z a, Cos nx
n=1

This series is called ((Fourier cosine series)).
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Ex.7: Find the Fourier cosine series for the function f(x) =
sinx ;x € [0, ]

T T
-2 e =2 [ sinxa
ao—n f(x x—n sin x dx
0 0
—2 T -2
=—cosx|  =—][cosm —cos0] =—
T 0 T T
T T
2 21
an=Eff(x)cosnxdx=Efsmxcosnxdx
0 0

s

= 1f[sin(l + n)x + sin(1 — n)x |dx
& 0

_1{—1 (n+ Dx + 1 ( D T
—nn+1cosn X n_lcosn xO

( by the same way in Ex.6)
0 if nisodd ,n #1

— —4
m ileiS even
T T
2 (. 11 .
a, = —J sin x cos x dx =—j sin2xdx =0
T T
0 0
| 2 - _4
-°f(x)=g+ Z —n(nz_l)cosnx
n=2
nis even

Note) 1.sin(a + f) + sin(a — ) = 2sina cos
2.cos(a+ ) +cos(a —f) =2cosacospf
3. cos(a — ) —cos(a+ f) =2sinasinf
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Section 4: Fourier series on the interval [-L,L]

Let f be defined on the interval [—L, L], we assume that z = ”Tx to
transform f on the interval [—m, 7], hence

f(x)=F(z)where-L<x<L & —n<z<m,and

F(z) = 7 Z [a, cosnz + b, sinnz]  ..(%)

s.t.
T

a0=% fF(Z)dZ

-7
T

1
tn = — fF(z) cosnzdz

-TT
s

1
b, == fF(z) sinnz dz

—T1T
Replacing z from the hypothesis, we get

(0]

ao nmx . nmx
f(x) —7 [a, CoS —— + b, smT]
n=1
S.t.
L L
=~ [feoTa —1f () d
== f(x Tox =7 f(x)dx
L
1 nmwx m nimx
= jf(x)cos— —dx = — ff(x)cos—dx
L
b 1 ) nnxnd_l ()_nnxd
nﬂfxsmLLx fxsmLx
“L —L
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Ex. 8: Find the Fourier series and the convergence on [—1, 1] for

| 3 -1<x<
thefunctlonf(x)={ 23 foi;zio

Sol. [-L,L] = [-1,1]

0 1

=%fLLf(x)dx= f—3dx+f2dx

-1 0

=—=3x|_ +2x =-3+2=-1

K

L 0 1

1 nmx
an = 7 f(x)cosde= f—Scosnnx dx+f2cosn7tx dx

-L -1 0

-3 0 2 1
=—sinnnx| . +-—sinnnx| =0
nm —1 nm 0

0

1

nmwx

jf(x)sm—dx = j—SSinnnx dx+j251nnﬂx dx
0

-1

3 0 2 1
= — COS NIX| — —CO0S nnx|
nm -1 nm
3 3 2 2
= —c0Ss0 ——cosnmt ——cosnmw +—cos0
nm nm nm nm
5 5(—1)" 5 0 if niseven
nm nm nm — ifnisodd
nm
Then
N - 10
f(x) = > 2, nnsmnnx
nisodd
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* the convergence on [—1,1]
[-1,1] = (—1,0) U (0,1) U {-1,0,1}

(i) on the interval (—1,0) the Fourier series converge to —3
(i) on the interval (0,1) the Fourier series converge to 2
(iii) at the point x = —1 the Fourier series converge to

1 _ 1 -1
fD = lim, fG)+ lim fG)]=5[-3+2]=—

at the point x = 0 the Fourier series converge to

1 1
10 = 3]l 100+l 79] =312+ 91 =

at the point x = 1 the Fourier series converge to

1r _ 1 ~1
f) =5 | lim fG) + lim fCo| =5 [-3+2]=—
85 s e
r-——| "—‘—"1" ‘
1
I | [ 1 ' \
| \ | right | '
- a | i el \ 2 “+§»
1 = =AY o |
=3 2 e | | ‘
left
u u , S
| ‘ | | |
1 ‘ \ -2 | \
|
| \[’ 3 =g
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Chapter Three: Fourier Series
... Exercises ...

(i) Find the Fourier cosine series for f(x) = x where x € [0, «].
(if) For the given functions:
(a) Find the Fourier series.
(b) Find the convergence on the whole interval.
(c) Sketch the graph of the function.
1. f(x) =x? ;x€[-mm]
2. x)=1—-x% ;x€[-11]
0 ;, 1<x<0

3. fe =1,

xc ;0<x<m

x —n<x<0
4. f(x)‘{o 0<x<m

Then find the sum of the series 1 4 = + — 4+ = + -.-
9 25 49

_(x+m ; —nt<x<0
. f(x)—{ T—x ;0<x<m
(iii) Find the Fourier cosine series for f(x) =T —x ;x € [0, m].
(iv) Find the Fourier sine series for f(x) = m —x ;x € [0, ].

(v) Find the Fourier sine and Fourier cosine series for

2
1 ;0<XS§

Fx) = ,
0 ;§<X<1

Then find the sum of the series 1 — % + i - é + % — e
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Chapter Four: The Heat Conduction Equation
The Heat Conduction Equation

Let us consider a heat conduction problem for a straight bar of
uniform cross section and homogeneous material. Let the x-axis be
chosen to lie along the axis of the bar, and let x =0 and x =1
denote the ends of the bar (as shown in the figure) suppose further
that the sides of the bar are perfectly insulated so that no heat passes
through them. We also assume that the cross-sectional dimensions
are so small that the temperature u can be considered as constant on
any given cross section. Then u is a function only of the axial

coordinate x and the time t.

The variation of temperature in the bar is governed by partial
differential equation called the (heat conduction equation), and

has the form

[ut=a2uxx 0<x<l ,O<t<00] (1)

Where a? is a constant known as the thermal diffusivity, the

parameter a? depends only on the material from which the bar is

made, and is defined by a? =£ where k is the thermal
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Chapter Four: The Heat Conduction Equation

conductivity , p is the density, and s is the specific heat of the

material in the bar.

Now, to find the solution of equation (1), we start by making
a basic assumption about the form of the solutions that has
far-reaching, and perhaps unforeseen, consequences. The
assumption is that u(x, t) is a product of two other functions, one

depending only on x and the other depending only on t.

This method is called (Separation of Variables).
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Chapter Four: The Heat Conduction Equation
@ Separation of VVariables
Letu(x,t) = X(x).T(¢t) ...(2)

Differentiating (2) w.r.t. t and x, we get

u

and
22712‘ = X"(x).T(t) (4

Substituting (3) and (4) in (1), we get
X.T =a?X".T ...(5)

Equation (5) is equivalent to

X = 7; = A  (where A is a constant)

X a<T

Hence T' — a?AT = 0 ...(6)
and X" —-2X=0 ..(7)

where (6) and (7) are two ordinary differential equations can be

solved as follows:

The (A.E)of 6)ism —a?A=0>=>m = a?]

2 T(t) = cie® M ...(8)
Where ¢, is an arbitrary constant .

The (A.E)of (7)ism? —21=0=>m = +VA

s X(x) = cze‘/zx + c3e“/zx ...9)

Where ¢, and c5 are two arbitrary constants.
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Chapter Four: The Heat Conduction Equation
Substituting (8) , (9) in (2), we get

u(x, t) = cpe® M [czeﬁx + c3e_‘/7x]

= u(x, t) = e® Mt [Ae*mx + Be“ﬂx] ...(10)

Where A= c1Cy B = C1C3

There are three possibilities to choose the constant A

1. 1> 0, This is contrary to reality because the temperature
increases infinitely with the passage of time.

2. A =0, This is also contrary to reality because the temperature
will remain constant over time.

3. 1 < 0, and this is the correct case because the temperature will

increase slightly and be restrained with the passage of time.
Letl = —w? = VA = wi
Then equation (10) will be :
u(x, t) = e‘“zwzt[Aeiwx + Be~WX|
from e'® = cos@ + isin 0 , we get
u(x, t) = e‘“zwzt[A(cos wx + i sinwx) + B(cos wx — i sinwx)]
= e~ @W’t[(A + B) cos wx + (Ai — Bi) sin wx]
u(x, t) = e~ *Wt[K cos wx + L sin wx] ..(11)
Where K =A+ B ,L = Ai — Bi

So equation (11) is the general solution of the heat equation.
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2 ( General Solution of heat equation with homogeneous

boundary Conditions

If both the ends of a bar of length [ are at temperature zero and the
initial temperature is to be prescribed function @(x) in the bar. (i.e.)

the boundary conditions are
u(0,t) = 0° ,u(l,t) = 0° (homo. Boundary conditions)
and the initial condition is u(x, 0) = @(x).

To find the general solution of heat equation under this conditions we
will substitute the boundary and initial conditions one after the other

in equation (11) as follows :
u(x, t) = e‘“zwzt[K coswx + L sin wx] ...(11)

Substituting the boundary condition u(0,t) = 0 in (11), we get
1(0,t) = e~ *W*t[K cos 0 + L sin 0]

0=e *WitK= |[K=0 ...(12)
#0

Butting (12) in (11), we get
u(x, t) = e~ WL sinwx ...(13)

Substituting the second boundary condition (u(l,t) = 0) in (13), we
get

w(l,t) = e~ Wt sinwl

2.2 ) .
0=e Y1l | sinwl =2sinwl=0=wl =nn
N e\
20 %0
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Chapter Four: The Heat Conduction Equation

=S w =$,n =0,4+1,+2, ...

Then

u,(x,t) =e =~ 1 L,sin— ...(14)

There are infinitely many functions in (14) so a general combination
of them is an infinite series.

Thus we assume that

(00 (0] 2. 2
_ 2T nmx
u(x,t) = u,(x,t) = e 2 "L, smT
— 00 — 00
0 00
2(n)?m? nmx nm? nITx
_ —-a —Zt . —-a ) t .
= e 2 "L, smT+ e > "L, smT
Nn=—oo n=0
(00] o
Y Gt —nmx _2me, nmx
—_ 2 1 2 1
—Ze ! L_, sin l +ze l LnsmT
n=1 n=1
(e 0] (e 0]
2T, s 2T nmx
= z 2 "(=L_,)sin—+ > "L, sinT
n=1 n=1
* 2.2
B 2 _aznl_gt . nmx
= u(x,t) = ne smT
n=1

...(15)
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Now, substituting the initial condition (u(x, 0) = @(x))in equation
(15), we get

- nmwx
u(x,0) = ) A,e° sinT
n=1
- nmwx
(Z)(X) = An Sil’lT
n=1

Which it is Fourier sine series, so the constants A,, are given by

l

2 . nmx
A, = Tf D (x) sdex;n =123, ..
0

...(16)

Hence ,(15) is the required solution where 4,, is given by (16).

Ex 1: Find the temperature u(x, t) at any time in a metal rod (2

cm) long, homogeneous and insulated, which initially has a

uniform temperature of 3x, and it's ends are maintained at 0°c

for all t > 0. Then find the temperature of the middle of the rod

att = 4.

Sol. 1=2,0(x)=3x,u(0,t) =0,u(2,t) =0

l 2

4 2 @()_nnxd _2J3 _mtxd

n =7 xsml x—2 xsm2 X
0 0

—6x nmx 12 namx12  12(—-1)"t?
= l cos + > ]O =

sin
nm 2 n2m? nm
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S 12(=1)™ _ onPr?. nmx
u(x,t)zz 1) e % 3 tsinT

nm
n=1
° 12(—1 n+1 n2m2 nm
u(1,4)=z D e” "7 *gin—
nm 2
n=1

sin—
nm 2

_ i 12(_1)n+1 e_aznzn_z . nm

n=1

Ex 2: A rod of length 50 cm is homogeneous and insulated, is
initially at a uniform temperature 20°, and it's ends are
maintained at 0°c for all t > 0, find the temperature u(x, t).

Sol.
[l =50,0(x) =20%u(0,t) =0,u(50,t) =0

l

2 nmx
A, = 7 D (x) sianx

50

nmnx

50 20 smﬁdx

] nmwx
sin——dx
B

B —40 nmx 50
onm cos 50 | 0
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40 80

_ [(-1)" —1] = {E if nisodd
nm e

0 ifniseven

Finally, by substituting in u(x, t), we get

® 2.2
u(x, t) = A,e 12 sin——
n=1

2.2
o0 80 _—g2™M ™+ | nmx
=) n=1 —e 2500 sin—
nisodd N 50
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ﬁ%}General Solution of heat equation with non-

homogeneous boundary Conditions

Suppose now that one end of the bar is held at a constant
temperature k; and the other is maintained at a constant temperature
k, , then the boundary conditions are u(0,t) =k; , u(l,t) =k, ,
t > 0 the initial condition u(x,0) = @(x) remain unchanged we can
solve it by reducing it to a problem having homogeneous boundary
conditions, which can then be solved as in previous case, thus we

write
u@m)=k1+§%2—kﬂ+leﬂ (17

We will prove that (17) is satisfy equation (1) we derive the equation

(17) w.r.t. t and x , we have

Ju oU ou k,—k; 90U 0%u 02U
— T — , —_— + ﬁ —_
Jat ot 0x [ 0x 0x%2 0x?2

Substituting in (1) we get :

ou 0%
— = —

ot dx?

..(18)

Substituting the boundary and initial conditions in (17), we have

ki =ki+0+U(0,1t) :[U(O, t) = 0] (from cond.1)

l
k2 :k1 +Z(k2_k1)+U(l,t) :>k2_k1_k2+k1 - U(l,t)
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=>[U(l, t)=0 ] (from cond. 2)

B(x) = ky +§(k2 —ky) + U(x,0) (from the initial cond.)

[U(x, 0) =0(x) —k,y —é(kz — k) ]

Hence the new equation U(x, t) represent a heat conduction equation

with homo. boundary conditions and initial condition
U©,0)=0,U0Lt)=0,U(x0) = 0(x) — k; —%(k2 — k)

Then the general solution can be found as follows:

2.2
”;Tt nm

C —a? .
U(x,t) = Z Aye 12 "sin—x
n=1

[

...(19) (from (15))
Where

l

2 X nm
A, = —f [(D(x) —k; ——=(k, — kl)] sin—ux dx
[ [ [
0

...(20)
Substituting (19) in (17), we get

x = _2m.  onm
ulx,t) =k + 7 (k, — ki) + Z Ae 2 “sin—x
n=1

[

.21

So (21) is the general solution with A,, shown in (20).
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Ex. 3: A rod of length 1, is initially at a uniform temperature x,
the end x = 0 is heated to 2° and the end x = 1 is heated to 39,

Find the temperature distribution in the rod at any time t.
Sol.

u(0,t) =2 ,u(1,t) =3 ,u(x,0) =0(x) =x

1
2 X nm
A, = Tf [(Z)(x) — ky _T(kz — kl)] sinTx dx
0

1

2 X nm
=If[x—2—I(3—2)]sinTxdx
0
1
2[ x — 2 — x] sinnmx dx
0
1
= —4jsinnnx dx
0
—8
4 1 -
——cosmtx| ——(( 1)”—1)—{_ nis odd
nm
0 niseven

annzt nm

X s —a _
ulx,t) =2+-3-2)+ Z —e T "sin—x
1 nm 1

n=1,3,5,...
(0.0]

—8 —a’n?m?t
=24+x+ —e sin nmtx
nm
n=1
nisodd
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Ex. 4: A copper rod of length 50 cm, is initially at a uniform

temperature— the end x = 0is heated to 10%°c and the end

x = 50 is heated to 35°c, Find the temperature distribution in the

rod at any time.

Sol.

L= 50,u(0,) = 10° ,u(50,0) = 35 ,0(x) = >
) l
A, = 7-[ [@(X) —ky _§(k2 — kl)] Siﬂ?x dx
0

Zj[x 10 — = (35 10)] in— xd
~50) 12 50 Sgy ¥ &

50
—-10 nm
j [——10—— sm—xdx = sin—x dx

50 25 50
0
40
20 nt 50
——cos—x| __(( 1)11_1)_{— nis odd
50
0 niseven

'I‘LZTL'2 nr

X —a? t .
ulx,t) =k + T(kz — ki) + z Ae 12 sin—-x

n’m’ nm
u(x,t) =10+ —(35 —10) + e~ *"7500" sm%x
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4 7 Bar with Insulated Ends

A slightly different problem occurs if the ends of the bar are
insulated so that there is no passage of heat through them. Thus in this

case of no heat flow the boundary conditions are
u,(0,t) =0,u,([,t)=0,t>0

Ex_: Solve the equation u, = a®u,, ,0<x<1,0 <t < o that
satisfies the conditions u,(0,t) =0, u,(lt)=0,

u(x,0) = 9(x)

Sol. Using the equation

u(x, t) = e" WK coswx + L sin wx] ~..(1)
Differentiating (1) for x

u,(x,t) = e‘“zwzt[

—Kw sinwx + Lw cos wx] ...(2)
Butting the condition (1) in (2)

1, (0,) = e~ Wt [—Kwsin 0 + Lw cos 0]

0=e @Wilw= L=0 ..(3)
Butting (3) in (1)

u(x, t) = e" WK coswx ..(4)
Differentiating (4) for x

u, (x,t) = —e~ W Ky sin wx ...(5)

Substituting condition 2 in (5), we get

u, (L) = —e~ Wt Kw sinwl
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22 . .
0=—e ¥WIKwsinwl = sinwl =0
nm

>wl=nm ,n=0,%+1,+2, ... =>W=T

Substituting this in equation (4), we get
2 2

u(x,t) = e_a2 KcosTx ...(6)

Since n has infinite values, there are infinitely many functions in (6)
so a general combination of them is an infinite series, thus

up(x,t) = Ky

_zﬁ
a3

u,(x,t) = e ‘K, cosn—lnx

Co nm
u(x,t) ——+ch e 2 cosTx

n=1

..(7)
Where Ko = 2, ¢, = Kn + K_p
substituting the third condition in (7), then
u(x,0) —?O-FZC e? cos—x
=1

n
(o]

Q)(x)—?o Z cos—x

n=1
Which it is Fourier cosine series, so the constants ¢, and c,, are given
by

!
=%j®(x) dx
0
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C, = %fol ?(x) cosnTnx dx n=1273,.. ...(8)

Hence (8) is the required solution.

EX. : Find the solution of the heat problem in a bar of length 2

ou_ 262u 0<x<?2 t>0
ot C ox?’ XS4

with initial heat distribution 2x and no loss at either end (no heat flux
in the x-direction at either end)
u,(0,t) =0,u,(2,t) =0.

Sol.
[=2,0(x)=2x,u,(0,t) =0,u,(2,t) =0

_ 2n27T2

u(x,t) =%+Z;‘{’=1cn et tcos%x

where

l
2 2 x2|*
co=7j®(x)dx = CO=Ej2xdx=27
0

0 0

=4

C, = ;fOZZXCOSnZ—nde = Zfozxcosnz—nxdx (byudv)

3 —16 _
= —— ()" - 1) = {n2p2 nis odd
nem 0 niseven
ooty i ~16 _pn’n’,  nm
u(x,t) =— —— € COS— X
2 i n4m 2
nisodd
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5¢ Bar with mixed boundary conditions
In this problems the boundary conditions of the heat equation of
the forms
a) u(0,t)=0,u,(Lt)=0,t>0
b) u,(0,t) =0,u(l,t)=0,t>0
and the initial condition u(x,0) = @(x).
Case A:
In this case the boundary condition of the heat equation is
considered of the form u(0,t) = 0,u,(,t) =0, t > 0 and the
initial condition u(x, 0) = @(x).
Ex : Solve the equation u, = a®u,, ,0<x<1,0 <t < o that
satisfies the conditions u(0,t) =0, u,(l,t) = 0,u(x,0) = d(x)
Sol. Using the equation
u(x, t) = e"“zwzt[K cos wx + L sin wx] ...(1)
Butting the condition (1) in (1)
u(0,t) = e~ *"*t[K cos 0 + L sin 0]
0=e @WK = |K=0 (2
Butting (2) in (1)
u(x, t) = e~ WL sinwx ...(3)
Differentiating (3) for x
u, (%, ) = e WL w cos wx ...(4)

Substituting condition 2 in (4), we get
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u,(L,t) = e "t Lw coswl ...(5)

22
0=e *YIlwcoswl = coswl=0

Cn+Dm Cn+ D
>wl=— n=012,.. >Sw=——77"
2 21
Substituting this in equation (3), we get
_ (2n+1)2m2
u(x,t) =e L sin (Zn;)nx ...(6)

Since n has infinite values, there are infinitely many functions in (6)
so a general combination of them is an infinite series, thus

_a2(2n+1)271'2
u,(x,t) =e al2

- _g2@ntn)?n? 2n+ D
u(x,t) = z L,e & 4~ tsin(—)x
n=0

t

. (@Zn+1)m
Ly sm( Ty
21

21
..(7)
substituting the third condition in (7), then
c 2n+1
u(x,0) = z L, e° sin%x
n=0

- 2n + 1
D(x) = Z Ly sin%x
n=0

Which it is Fourier sine series, so the constant L,, are given by

2

l . 2n+
Ln =2 0(0) sin

1

xdx ,n=201,2,.. ...(8)

Hence (8) is the required solution.
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EXx: Find the solution of the heat problem u; = u,, ,0 < x <5,
0<t<oo, u(0,t) =0,u,(5¢t) =0, u(x,0) = 5.

Sol:

280 2n+ D
u(x,t) = Z L, e 412 1n2—lx

where

—_f @( ) (2n+1)nxdx

——xdx

f 2n+ D
Ln ~5 25

5

- (@2n+Dm
= 2fsm—xdx

10
0

—20 Cn+Dm\ |°
= COS X
2n+)m 10 0

- oo (252) - st

20
2n+1)m

Then

=20 el (2n+ D
U(X, t) = z m e 425 sinTx
n=0
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Case B:
In this case the boundary condition of the heat equation is
considered of the form u,(0,t) =0,u(l,t) =0, t > 0 and the
initial condition u(x, 0) = @(x).
Ex : Solve the equation u; = a®u,, ,0 <x<1,0 <t < o that
satisfies the conditions u,(0,t) =0, u(l,t) = 0,u(x,0) = 0(x)
Sol. Using the equation
u(x, t) = e‘“zwzt[l( cos wx + L sin wx] ..(1)
Differentiating (1) for x

—azwzt[

u,(x,t) =e —Kw sinwx + Lw cos wx] ...(2)

Butting the condition (1) in (2)

1, (0,t) = e~ W't [—Kwsin 0 + Lw cos 0]

0=e “Wilw= L=0 ...(3)
Butting (3) in (1)

u(x, t) = e" WK coswx ..(4)
Substituting the condition (2) in (4)

u(l,t) = e" WK coswl ...(5)

22
0=e ¥WIK coswl = coswl =0

2n+ Drm 2n+Dm
>wl=— n=201,2,.. SW=——m-
2 21
Substituting this in equation (4), we get
_q2entnint, @2n+1)m
u(x,t) =e w2 K cos————x ...(6)
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Since n has infinite values, there are infinitely many functions in (6)
so a general combination of them is an infinite series, thus

_a2(2n+1)271'2
u,(x,t) =e al2

t 2n+1)1m
( ) X

21l

o _e2lnD?m (n 4 Dn
u(x, t) = z K,e & a2 tcosgx
n=0

K, cos

21

..(7)
substituting the third condition in (7), then
c 2n+ 1
u(x,0) = z K, e° cos%x

n=0

- 2n +1
D(x) = Z K, cos%x
n=0

Which it is Fourier cosine series, so the constant K,, are given by

2n+)rm
21

K, = %fol @(x) cos xdx ,n=0,1,2,.. ...(8)

Hence (8) is the required solution.
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Chapter Four: The Heat Conduction Equation

EXx: Find the solution of the heat problem u; = u,, ,0 < x < 2,
0<t<oo, u,(0,t) =0,u(2,t) =0, u(x,0) = 4x.

Sol:

- _ 2 nt1)?n? 2n + 1)
u(x,t)=ZKnea 412 tcos%x

where

2 cl
K, = Tfo @(x) cos

2n+)m
21

x dx

2
2 2n+ m
K, =§j4xcos—xdx

2 %2
0
=4 [ xcos T x dx (by u dv)
64
_qy %%
(2n+1)n( D" - (2n+1)2m?
Then
u(x,t) =
00 _q\n___ 6% —aZMt 2n+1)m
Zn:O [(2n+1)n( ) (2n+1)2n2] € e cos 4 X
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Chapter Four: The Heat Conduction Equation
... Exercises ...

1. A rod of length (10 cm), is initially at a uniform temperature 2x ,
and it's ends are maintained at 0°c , find the temperature u(x,t) at

any time.

2. Find the solution of the heat problem u; = 100u,, ,0 < x < 1,
0<t<oo,u(0,t)=0,u(l,t)=0,u(x,0)=5°,0<x<1.

3. Find the solution of the heat problem u; = a?u,, ,0 < x < 2,
0<t<oo,u,(0,t) =0,u,(2,t) =0,u(x,0) =4x,0<x <2

4. Find the temperature u(x,t) in a metal rod of length (25 cm) that
is insulated on the ends as well as on the sides and whose initial

temperature distribution is u(x,0) = x for 0 < x < 25,

5. A rod of length (30 cm) , is initially at a uniform temperature
(60 — 2x), the end x = 0 is heated 20°c and the end x = 30 is heated

to 50°c . find the temperature distribution in the rod at any time.

6. A rod of length 1 unit, is initially at a uniform temperature , the
temperature of one ends is equal to zero and the rate of change of
temperature in the other end is equal to zero too. find the temperature

distribution in the rod at any time.

7. Find the solution of the heat problem u; = u,, ,0 < x < 3,

0<t<oo,u(0,t) =0,u,(3,t) =0,u(x,0) =3x.
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Chapter Five: One Dimensional Wave Equation

Section(5.1): The Wave Equation: Vibration of an Elastic string

A second partial differential equation occurring frequent in applied
mathematics is the wave equation. Some form of this equation, or a
generalization of it, almost inevitably arises in any mathematical analysis of
phenomena involving the propagation of waves, electromagnetic waves, and
seismic waves are all based on this equation.

Perhaps the easiest situation to visualize occurs in the investigation of
mechanical vibrations. Suppose that an elastic string of length 1 is tightly
stretched between two supports at the same horizontal level, so that the x-axis
lies along the string (see figure 1). The elastic string may be thought of as a
violin string, a guy wire, or possibly an electric power line.

Suppose that the string is set in motion (by plucking, for example) so that it
vibrates in a vertical plane and let u(x,t) denote the vertical displacement
experienced by the string at the point x at time t. If damping effects, such as air
resistance, are neglected, and if the amplitude of the motion is not too large,
then u(x, t) satisfies the partial differential equation:

Upr = CP Uy e ()

In the domain 0 < x <1, 0 <t < oo. Equation (1) is known as the (wave

equation), where the constant ¢ is given by ¢* = g

where T is the tension of the string and p is the mass per length of the string

material.
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Chapter Five: One Dimensional Wave Equation

By the same way that in the heat equation we will solve equation (1) by the
separation of variables method.
Letu(x,t) =Xx).Tt) ... (2)
Deriving Eq.(2) twice w.r.t x and ¢ and substituting in (1), we get

T'(t) X (x)
c2T()  X(x)

Equating this equation to a constant, say A:

T'(t) X (x) _

Zre = xm =4 e (3)
Then, we get
T —Ac®’T =0 e (4)
X —2X=0 R )
Solving this two ordinary differential equations, we obtain
T(t) = c;eVM 4 e~V (6)
X(x) = cze P e~V L (7)

Substituting (6), (7) in (2), we get
u(x,t) = (cle"’ﬁt+ cze“"ﬁt) (cgeﬁx+ c4e‘\/7x) ...... (8)

Where ¢y, ¢, c3 and ¢, are constants

There are three cases to choose A:
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Chapter Five: One Dimensional Wave Equation

1- A > 0, this leads to an elastic string will vibrate without stopping, and this is
contrary to reality.
2- A = 0, this leads u(x, t) is constant and this is contrary to reality too.
3- 1 < 0, this is the right situation, let A = —w? = VA1 = wi
Substituting in (8), we get
u(x,t) = |k, coscwt + k, sincwt|[ks coswx + k, sinwx] ... (9)
Where k; =c¢; + ¢,k =cii—cCyli, ks =c3 +c4,ky =c3i—cCyl

The equation (9) is the general solution of Eq.(1).

Section (5.2): General solution of one- dimensional wave equation
satisfying the given boundary and initial conditions.

5.2.1 General Solution of One- Dimensional Wave Equation with
Homogeneous Dirichlet Boundary Conditions

Suppose that we have an elastic string of length 1, its ends are fixed at x = 0
and x = 1, then we have the two boundary conditions
u(0,t) =0,ull,t)=0 ... (10)
The form of the motion of the string will depend on the initial deflection
(deflection at =0) and on the initial velocity (velocity at =0). Denoting the
initial deflection by f(x) and the initial velocity by g(x), we arrive at two
initial conditions
u(x,0)=f(x),u(x,0)=9gx), 0<x<l  .... (11)
Our problem now is to find a solution of (1) satisfying the conditions (10),
(11).
Substituting the condition u(0, t) in (9), we get
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u(0,t) = [k, coscwt + k, sincwt][ks cos0 + k, sin 0]
0 = [k, coscwt + k, sincwt]k; = k; =0
Substituting in (9), we obtain
u(x,t) = [k, coscwt + k, sincwt] k, sinwx .......(12)
Substituting the condition u(l,t) = 0 in (12), we get

u(l,t) = [k coscwt + k, sincwt] k, sinwl

0 = [k, coscwt + k, sincwt] k, sinwl
%0 70

ssinwl=0—owl=nm; n=1273,...

_nm
YT
Substituting in (12), we get
cnrt . cnmt . nmx
u(x,t) = lkl cos — + k, sin l ] 4 Sin——
cnrt . cnmt] | nmx
= u(x,t) = lRl cos— + R, sin ] Sin—— ... (13)

Where Rl - kl k4,R2 == k2 k4_
Since n has infinite values, then there are non-zero solutions

u, (x,t) of (13)

cnrt . cnmt] | nmx
l + R,,, sin l ]sm l

We consider more general solution

u, (x,t) = lRln CcoS

u(x, t) = Z u, (x,t)
n=0
= cnrt . cnmt] | nmx
~u(x, t) = Z lRln c0S — + R,,, sin l ] sin—— e (14)
n=1
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Substituting the initial condition u(x, 0) = f(x) in (14), we get

= Nnmwx
u(x,0) = Z[Rln cos 0 + R,,, sin0] sinT
n=1
Nwx
fG) = ) Rin sin—
n=1

Which 1s Fourier sine series, then

l
2 . nmx
Ry, = ij(x) sin—— dx .....(15)
0
Differentiating (14) partially w.r.t t we get:

o [—cnm . cnmt  cnm cnmt] | nmx
ut(x,t)=2l l R, sin l + l R,,, cos l ]smT

Substituting the initial velocity condition u; (x,0) = g(x) , we get

cnm nm . nmx
u; (x, O)—Z[ R, sm0+ e R, cosO] sin——

Which is Fourier sine series, then

nmwx 2 - nmx
Ry, l jg(x) Sln— dx — R,, = %jg(x) smT dx (16)

Hence the required solution is given by (14) where

Ry, and R,, are given in (15) and (16).
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Ex. 1: An elastic string of length (2 cm) has its ends x=0 and x=2 fixed with
no initial displacement. The string is released with initial velocity equal x.
Find the displacement function u(x,t).

Sol.:
[=2,f(x) =0,g(x) =x
Then R,,, = 0 because f(x) =0

l

R 2 ) mtxd
= x) sin— dx
2n T onm g l
0
n+1
——f xsmnnxd _8CDT

cnm cn?m?

(00
. cnmt | nmx
u(x, t) ZZRZ" sin—— sin——

(0]
28(—1)"+1 _cnmt | nmx
=) ——— sin sin
] c n?m? 2 2
n=

Ex. 2: Solve the wave equation u;; = u,,, 0 <x <1, 0 <t < oo under the
following conditions:

u(0,t) =0, u(1,t) =0,u(x,0) = 3,u, (x,0) = 5.

ol.: | =1 then from equation (14), we have

(00)

cnit . cnmt] | nmx
u(x, t) = Z lRln cos — + R,,, sin T] sin——

n=1

nmx

jf(x) sm— dx
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1
2 nmx —6 —6
R, = JB sin— dx = —cosnmx|j = — — (D" - 1]

1 1 nm
0
l
R 2 ) nmx q
= x) sin— dx
2n = one ) 9 l
0
1
R 2 - nmx q
= — sin— dx
T enm
0
—-10
_ 1 _
—anﬂzcosnnxl0 —annz [(—D)™ — 1]

~ulx t) = Z l— (—1)™ — 1] cos cnmt

n odd
10

 cn2m?

[(—=1)™ — 1] sin cnnt] sin nmx
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5.2.2 General Solution of One- Dimensional Wave Equation with

Non-Homogeneous Dirichlet Boundary Conditions

Consider the initial-value problem for the wave equation on an

interval with non-homogeneous Dirichlet boundary Conditions

u(0,t) =k, ,u(l,t) =k, (1)
The form of the motion of the string will depend on the initial
deflection (deflection at /=0) and on the initial velocity (velocity at /=0).
Denoting the initial deflection by f(x) and the initial velocity by g(x),
we arrive at two initial conditions
u(x,0) = f(x),u(x,0) =gx), 0<x<l (2)
Our problem now is to find a solution of the wave function
Uy = C2U,, satisfying the conditions (1), (2).

In this case, we can use the transformation
u(x, t) = ky +7 (ky — k) + U(x, 1) (3)

We will prove that (3) is satisfy the wave equation with the

homogeneous boundary conditions
We derive the equation (3) w.r.t. t and x twice, we have

au_aU:GZu_azU au_kz—k1+au =>02u_02U
at ot  dt2  at2’  oax I dx dx2 Qx>

Substituting in U, = c%u,, we get :

U 07U
_— C —_—
dat2 0x?2
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Chapter Five: One Dimensional Wave Equation
Substituting the boundary and initial conditions in (3), we have

[
k2 =k1 +Z(k2_k1)+U(l,t) =>k2_k1_k2+k1 == U(l,t)
~ULt)=0

FG) =k +7 (e = k) + U, 0)
= U(x,0) = f(x) — ky _§(k2 — k1)

Us(x,t) = us(x,t) then U,(x,0) =u:(x,0) = g(x)

Hence the new equation U(x,t) represent a wave conduction
equation with homogeneous Dirichlet boundary conditions and initial

conditions

Uu,t)=0,U(,t)=0,

U(x,0) = £(0) =k =7 (o = ko), Uex,0) = g()

Then, the general solution can be found as follows:

U(x,t) = 52y |Rin cos ™ + Ry sin & sin ™= 4)
where
l .
Rin =7 J,(f () = by = (kz = ky)) sin ™ dx 5)
and
l .
Ryn = o Jy 90 sin ™ dx (6)
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Substituting (4) in (3), we get

u(x,t) = ky + %(kz —ky)

cnmt . cnmt] | nmx
+ Z lRln €oS—— + R,, sin l ] sin——

n=1
(7)
So (7) is the general solution with R;,, and R,,, given in (5) and (6).

Example 1: Solve the wave equation ;s = uU,,, 0 <x <1, t>0
under the following conditions:

u(0,t) =1, u(l,t) =2

u(x,0) =1+ x, us(x,0) =msinm x

Sol:

l .
Rin =7 J,(f () = by = (kz = ky)) sin ™ dx
Rip ==f(A1+%) —1-2(2—1)sin™= dx = 0

R,, = —f g(x) sm— dx

cnm

1

R ZJ _ _ nnxd
= — | wsinmx sin— dx =
2T o 1

0

3|N

1
1
J§ cos (1 —n)mrx —cos (1 +n)mwx]dx
0

1]|sin(l1—-n)mrx sin(1+n)mrx]|1
—— — =0 ;n+#1
n| n(l—n) n(l+n) |0
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Whenn =1
1
R,4 =—Jnsinnxsin7rx dx =
T
0

— 9 (1cin2
=2 [, sin® mx dx

1
= 2f01§(1 — cos 2mx) dx = x|} —isinan = 1

X o mt | Tx _ _
u(x,t)=1+1(2—1)+smT smT=1+x+smnt sin 7Tx

Example 2: Solve the wave equation Uy = Uy, 0 <x <m, t>0
under the following conditions:

u(o,t) =1, u(mt)=14+m
ux,0) =1+x, ui(x,0) = sinx

Sol:

Rin =3 Jy(f () = ks =7 (ko = ky)) sin ™7 dx

R == [ (4% —1-2(1+m—1))sin"== dx =0

T

2 l . Nnmx
R,, = — x) sin— dx
2n cnir fo g( ) I
T
2 _ . nmx
R,, =— | sinxsin— dx =
ni T

0

=nz—nf0n%[cos (1—-n)x —cos (1+n)x]dx
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1 |sin(l—n)x sin(l+n)x|mw
REERENRICELL L

zmt 1—n 1+n 0

Whenn =1

YA
2( ..
R,; =— | sinxsinx dx =
T
0

_2 m . o
=, sin®xdx

2wl _1 1. o
—;fOE(l—COSZX)dX—n[Xlg 251n2x|0]—1

Then R21 - 1

X . : : :
u(x, t) = 1+E(1+n—1)+smt sinx =1+ x+sint sinx
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Section 5.3: The D'Alembert Solution of the Wave Equation
In the case of the free vibration of an infinite string, the required

function u(x, t) must satisfy the wave equation:

oz~ C o 1)
With the initial conditions:

U(X, O) = f(X), ut (X, 0) = g(X) (2)

Where f(x) and g(x) must be specified in the interval (—oo, o) since
the string is infinite.

The general solution of (1) can in fact be found, and in such a form
that conditions (2) can easily be satisfied.

For this, we transform (1) to the new independent variables:
E=x+ct, n=x—ct (3)

These variables are called the (canonical coordinates).

On taking u as depending on x and ¢ indirectly via ¢ and n

We can express the derivatives with respect to the first variables in
term of the derivatives with respect to the new variables:

u du 0d¢&  Odu @

a=a—5@+a—n(z&c (from (3))
_6u+6u
L
LUy = Ug + Uy, 4)
ou_du 9 ou o
Also, STPY: (25 + P ot (from (3))
=C =—C
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=<5~ 5)

e = ug —uy) )

0%u _ 0 ou
0x2  dx 0x
0 ou . du
= o (6_5 + 5_77) (from (4))

_0 9u 0 ou
T 9ETax  an ax

uxx —

B d (au N au) N d (au N Ou)
~ 08 \o¢ " on)  on'\o¢  on
0%°u . 0%u 0°u  0%u 9%u 0%u . 0%u

=3¢z T oton Toton Tomz — a2 T 23500 T om2

YUy = Ugs + 2Ugy + Upy (6)

By the same way, we get

U = ¢*(ugg — 2ugy + upy) (7)

Substituting (6) and (7) in (1), we get
Cz(ufs‘ — 2Ugy + unn) = c? (uff + 2ugy + unn)
CPUgy — 2C%Ugy + CPUyy — CPUgg — 20Uz — Uy, = 0

2 +—4c2
—4cugy = 0=—=|ug, = 0 (8)

Integrating (8) w.r.t £ and n, we get  u, = ¢, ()

u = ]cpl(n) 0n + $2(©)
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u(€,n) =oMm) +¥E)
Where ®(n) = [ ¢1(17) 0n and ¥(&) = ¢, (&)

® and W are two arbitrary functions.

Now, returning to the old variables x and t, we get

u(x,t) = d(x —ct) + Y(x + ct) (9)

Substituting the initial condition u(x,0) = f(x) in (9)
We get u(x,0) = &(x) + ¥(x)
f(x) = d(x) + W(x) (10)

Differentiating (9) w.r.t (¢),

u(x,t) = @' (x — ct)(—c) + c¥'(x + ct)
Substituting the second initial condition u,(x, 0) = g(x)
gx) = —cd'(x) + c¥'(x)

Integrating this equation from 0 to x:

X

k + J g(z)dz = —cP(x) + c¥(x)
0

= |2+ )7 9(2) dz = —®(x) + ¥(x) (11)

From (10) and (11), we can easily find ®(x) and W(x), as follows:

fy 9(2) dz

k 1
2c 2C

P =3 f (0 =

1 ko1
‘P(x)=§f(x)+z—c+z/!g(z)dz
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Then replacing x by (x —ct) in @ and by (x+ct) in ¥ and
substituting in (9)

x—ct
1 k 1 1 k
u(x,t)—zf(x—ct)—z—c—z—cj g(z)dz+§f(x+ct)+z—c
0
x+ct

1
+2_C j g(Z) dz
0

= |u(x, t) =%[f(x—ct)+f(x+ct) + - fx+Ct

(z2)dz| (12)

This is D'Alembert ‘s solution to (1) subject to (2), on the interval
(—OO’ OO)

Ex.1: Solve the equation uy = c®u,, — 0 <x< o, 0 <t< o
under the following conditions: u(x,0) = sinx,u;(x,0) =0

sol: from D'Alembert solution
x+ct

u(x,t) =%[f(x+ct)+f(x—ct)]+2—1€ j g(z) dz

Since f(x) = sinx and g(x) = 0, then
u(x, t) = %[sin (x + ct) + sin (x — ct)]
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Ex.2: Solve the equation uy = c%u,,, — 0 <X <0, 0 <t < oo
under the following conditions: u(x,0) =

1 -1<x<1 B
{0 otherwise 't (x,0) =0

sol: from D' Alembert solution
x+ct

u(x,t) =%[f(x+ct)+f(x—ct)]+2—1€ j g(z) dz

[1+1]4+0=1

N =

Ex.3: A string is set in motion its equilibrium position with an
initial velocity u,(x,0) = sinx Find the displacement u(x,t) of
the string.
sol:
u(x,0) =f(x) =0 (since the string is an equi. position)
u;(x,0) = sinx
x+ct

u(x,t) =%[f(x—ct)+f(x+ct)]+2—1€ j g(z) dz

xX+ct
1 1 _
=—[0+0]+— j sinz dz
2C
t

2
X—C
1
= % [cos (x — ct) — cos (x + ct)]
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... Exercises ...

1- An elastic string of length (5) has its ends x=0 and x=5 fixed is

initially in the position equal g The string is set in motion with
initial velocity equal % Find the displacement function u(x,t) for

all t.

2- An elastic string of length (2 cm) has its ends x=0 and x=2
fixed with no 1nitial displacement. The string is set in motion with
initial velocity equal 3. Find the displacement u(x,t) for all t.

3- An elastic string of length (4 cm) has its ends x=0 and x=4
fixed. It is released from rest in the position 2x. Find the
displacement of the string u(x, t).

4- An elastic string of length (2 cm) has its ends x=0 and x=2
fixed. It is released from rest in the position x2. Find the
displacement of the string at any time.

5- Solve the wave equation Uy = Uy, 0<x <1, 0<t< o0
under the following conditions:

u, (0,t) =0,u(1,t) = 0,u(x,0) = f(x),u; (x,0) = 0.
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Chapter Six: Laplace’s Equation

Section(6.1): 1- Laplace’s Equation in Two Dimensions

In Chapter 4 we learned about the PDEs that control the heat flow in one

dimensional spaces given by
Up = AUy

where a? is a constant known as thermal diffusion, and we know that the
heat equation in the two-dimensional spaces is given by

up = o (Uyy + Uyy)- (%)

If the temperature u reaches a steady state, that is, when u does not depend
on time t and depends only on the space variables, then the time derivative u;
vanishes as t — o. In view of this, we substitute u; = 0 into (*), hence we

obtain the Laplace's equation in two dimensions given by

Ugy T Uyy =0

One of the most important of all partial differential equations occurring in
applied mathematics in that associated with the name of Laplace, in two
dimensions

Uy +Uyy =0 v (1)

Laplace's equation appears in many branches of mathematical physics, for
example in a steady- state heat problems (i.e. the problems which the
temperature does not depend on time), as well as in steady- state electrical
problems.

We denote to Laplace s equation by V2u = 0 where V2 is Laplace s operator.
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2- General Solution of Two- Dimensional Laplace's Equation
To solve equation (1), we assume that (by separation of variables)

ulx,y) =Xx).Yopnp<o L. (2)
Where X and Y are functions of x and y, respectively.

02u . 0%u "
From(2), 7 = X"(x).Y(y) and 55 = X(x).Y"(y)

Hence (2) reduces to

X0 YD)+ X)) =0 =2 = -1 (3

Since the left hand side of (3) depends only on x and the right hand side
depend only on y, both sides of (3) must be equal to same constant, say u.
This leads to two ordinary differential equations.

X'"—pX=0and Y"4+uY =0 e (4)
Whose solutions depends only on the value of u. Three cases arise:
Case 1- When u = 0, thenreducesto X" =0and YY" =0

Solving these, X = Ax + Band Y = Cy + D, then a solution of (1) is
u(x,y) = (Ax + B)(Cy + D) e (5)

When A = 0 and B=0or C = 0 and D = 0 then u(x,y) = 0 and this will be a
trivial solution,

Case 2- When u = A2 i.e. positive. Here 2 = 0, then (4) reduces to
X'"—22X=0and Y'+2%Y =0

Solving these, we get

X(x) = Ae? + Be ™ and Y(y) = CcosAy + Dsin 1y

Then a solution of (1) is

u(x,y) = (Ae’lx + Be‘Ax)(Ccos/ly + Dsin 1y) ... (6)
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Where A, B, C,D are constant

Case 3- When u = —A2 i.e. negative. Here A = 0, then (4) reduces to
X'"+22X=0and Y'—2?Y =0

Solving these, we get

X(x) = AcosAx + Bsin Ax and Y(y) = Ce? + De ™

Then a solution of (1) is

u(x,y) = (Acosix + Bsin Ax)(Ce’ly + De‘ly) e (7)

Where A, B, C, and D are arbitrary constants

3- Dirichlet problem in a rectangle
Suppose that we have a rectangular metal plate isolated ends not depend on

time, as follows

0%u . 9%u
I <x< <vyv<
ax2+ay2 0, 0<x<a 0Zy<b

With boundary conditions:

LI(O, Y) = fl(y),u(a, Y) = fz(y),U(X, 0) = gl(X),U(X, b) = 82 (X)

here we will study the situation where one of the boundary conditions is a
function of x and the other conditions are equal to zero, as shown in the

following example.

Ex.1: Find the solution u(x,y) of Laplaces equation in the rectangle
0<x<a, 0<y<b also satisfying the boundary conditions:
u(0,y) =0,u(a,y) =0,u(x,0) =0,u(x,b) = f(x)

Sol: From equation (7)
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u(x,y) = (AcosAx + Bsin Ax)(Ce’W + De‘)‘y) ...... (7)
Substituting the condition u(0,y) = 0in (7)

u(0,y) = (Acos0 + Bsin 0)(Ce®” + De™»)

0=A(Ce” +De™™) =[A=0

#0

Substituting in (7)

u(x,y) = Bsinlx (Ce’ly + De"ly)

u(x,y) = sinAx (Ee™ + Fe™»>) .. (8)
Substituting the condition u(x,0) = 0

u(x, 0) = sindx (Ee® + Fe?)

O=sinix (E+F) >E+F=0=

#0

F = —E| Substituting in (8)

u(x,y) = sindx (Ee/'ly — Ee—/ly)

= u(x,y) = E sindx (e? —e™)
..(9)

Substituting the condition u(a,y) = 0 in (9)

u(a,y) = E sinda (e’ly — e"ly) = sinla =0
=0 #0 #_.'0

~Aa=nm, n=1,23, ... = 1=—
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Substituting in (9), hence non zero solutions u,,(x, y) of (9) are given by

nny nyN . nnx
u,(x,y) = E, (e a —e a )smT

For more general solution, we take

u(x,y) = Z up (x,y)
n=1
. nwy YN . nmx
= u(x,y) = Ym=1En (e a —e a )smT ... (10)

Substituting the condition u(x, b) = f(x) in (10)
- nmb  _nmb nmx
u(x,b) = ZEn(e a —e a )sinT
Which is Fourier sine series of f(x), hence we get

nmb nmb
nmb - _nmmb\ :
En(ea —e a):afoaf(x)smn%xdx

2

= En = nnb _nmb
a<e a —e a )

[ f@sn™=dx .. (11)

Hence (10) is the required solution where E,, is given in (11)

Now, if f(x) = x,a =2,b = 1then E, = —m i fozxsinnzix dx

2 (eT—e 2 )

4t 00 4 (-t nny BRCOA NN (4
= u(x, y) = anl I _nrc> ez —e 2 SIHT

nT_nn
TlTL’(@ 2 —e 2)

E, =

nn(e 2 —e 2
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Ex.2: Find the steady state temperature distribution in a rectangular plate
of sides a and b isolated at the lateral surface and satisfying the boundary

conditions:

u(0,y) = u(a,y)=0for0 <y <b,and u(x,b) =0 and,u(x,0) =

X(a—x)for0<x<a
sol: The boundary conditions are

u(0,y) = 0,u(x,b) =0, u(ay) =0, u(x,0) = x(a — x), then we begin with
equation (7)

u(x,y) = (AcosAx + Bsin /'lx)(Ce’W + De—/ly)

where A, B, C, and D are arbitrary constants

Substituting the first condition, we get

0=A(Ce?” +De™)=[4A=0

Substituting in (7) , we get

u(x,y) = sindx (Ee® + Fe™) v (12)
where E = BC, F =BD
Substituting the second condition in (16), we get

u(x,b) = sindx (Ee? + Fe ™) = Ee?? + Fe™ =0
='O 72'0

— |F = —Ee24b

Substituting in (12), we get
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u(x,y) = E sindx (e?Y — 24 e=4) e (13)
Substituting the third condition in (13),

0= 5 sinla (e"y — @24b e‘“’) = sinda =0
#0 %0

~sAda=nmt, n=123, ... D A1=—

Putting in (13), hence non zero solutions u,, (x, y) are given by

nITx nmy 2nmb  nmy
u,(x,y) = E, sin— (e a —e a e a)

For more general solution, we take the sum of u,, (x,y)

e (14)

00 . hmx nrny 2nmb _nmy
u(x;)’) =Zn:1En SlnT (e a —e a e a)

Substituting the fourth condition in (14)

(0]
nix 2nmb
u(x,0) = ) E, sin— (e’ —e a ¢e°
" a

n=1

> 2nnb NnTx
x(a—x)=ZEn (1—3 a )sin—
n=1 @

Which is the Fourier sine series, then E,, is given by

a
2 . nmx
E, = fx(a —X) smT dx

2nmb
a(l—e a )0
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2 .
= —foa(ax — x2) smn%x dx

2nmnhb
a(l—e a >

a . Nnmx a . Nnmx
=—[f ax sin— dx — [~ x?sin— dx]
0 a 0 a

0 ,If niseven
4a? n 8a? . :
= s 11— (D7) = 7, lf nisodd
n3n3 <1—e a ) n3m3 <1—e a )
* 2
8a . nmx [ nny
u(x,y) = Zmmpy Sin—— (e a
n=1 n3x3 (1 —e a )
nisodd
2nmb nmwy
—e a e a ) ... (15)
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Ex.3: Find the steady state temperature distribution In a
rectangular plate of sides a and b isolated at the lateral surface and

satisfying the boundary conditions:

u(0,y) = f(y), u(a,y) =0for0 < x <a,and u(x,0) =0 and
,u(x,b) =0for 0 <y < b.

sol: The boundary conditions are

u(x,0) =0,u(a,y) =0,ulx,b) =0, u(0,y) = f(y), thenwe
begin with equation (6)

u(x,y) = (Ae* + Be™)(Ccosdy + Dsin Ay).............. (*)

where A, B, C, and D are arbitrary constants.

Substituting the first condition, we get

u(x,0) = (Ae’lx + Be_)‘x)(CCOSO + Dsin 0)

0= (4e™* +Be™™)C =[C=0

#0

Substituting in (*), we get

u(x,y) = (Ae* + Be™*)Dsindy

u(x,y) = (Ee’lx + Fe"lx)sin/ly ...... (1)
where E = AD, F = BD.

Substituting the second condition in (1), we get

u(a,y) = sinly (Ee*® + Fe™4) = Ee?® + Fe™4 = 0
=0 #0
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= |F = —Ee?/@

Substituting in (1), we get
u(x,y) = E sinly (e?* — e?4@ ¢=2¥) )
Substituting the third condition in (2),

0=E sinib (e“ — g2ha e"lx) = sinlb = 0
#0 :#'0

~Ab=nm, n=123,..... = 1=—

Putting in (2), hence non zero solutions u,, (x, y) are given by

. nmy nmx 2nma nmx
u,(x,y) = E, sin—= (e b —e b e b )

For more general solution, we take the sum of u,, (x, y)

2nma nmnx

u(x,y) = Ype1En sinn% (eT —e b e b ) . (3)

Substituting the fourth condition in (3)

(0.0

ni 2nma
u(0,y) = ) E, sinTy (eo —e b eo)

n=1

> 2nma nmy
f(y)=ZEn(1—e b )sinT
n=1

Which is the Fourier sine series, then E,, is given by
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nmy
En = 2nmta ff(y) Sln_ dy

b(l_eb )

Now, if f(y) =y+1, b=1, a=2.

2 0
=k = 1= e4nn)f(y + 1) sinnmy dy
0
_ 2 —y | N 1 11 1
= T e |mr cosnmy| +——sinnmy . COS Ny )

IR R i PUPN SN
_(1—64”")_1171(_) _E(_) +E]

= o [ GO o]

§ 2 —2
uley) = nZl (1 —enm) lnﬂ 1)

nnx __ ,4nm —mrx)

+—l sinnmy (e e " e
nm

Ex.4: Find the steady state temperature distribution In a
rectangular plate of sides a and b isolated at the lateral surface and

satisfying the boundary conditions:

u(0,y) =0, u(a,y) =f(y)for0 < x <a,and u(x,0) =0 and
,u(x,b) =0for 0 <y <b.

sol: The boundary conditions are
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u(x,0) =0, u(0,y) =0,ulx,b) =0, u(a,y) = f(y), thenwe,
with equation (6)

u(x,y) = (Ae’lx + Be"lx)(CcosAy + Dsin Ay)

where A, B, C, and D are arbitrary constants

Substituting the first condition, we get

u(x,0) = (Ae’lx + Be"ﬂx)(CcosO + Dsin 0)

0= (4Ae*™ +Be™)C =[C=0

#0

Substituting in (6) , we get

u(x,y) = (Ae’lx + Be"’lx)Dsin/'ly

u(x,y) = (Ee®™ + Fe™™)sinzy ... (4)
where E = AD, F = BD.

Substituting the second condition in (4), we get

u(0,y) = sinly (Ee®+ Fe®) = E+F =0
=0 #0

u(x,y) = E sindy (e’lx - e"lx) .. (5)
Substituting the third condition in (5),

0= 5 sinAb (eM — e‘“) = sinAb =0
#0 ¢'O

“Ab=nm, n=123,..... = A =—
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Putting in (5), hence non zero solutions u,,(x, y) are given by

. Nt
u,(x,y) =E, smTy (e b —e b

nmnx TLTL’X)

For more general solution, we take the sum of u,, (x,y)

nmx nmx
ulx,y) = Ype1En sin% (eT — e_T)

.. (6)
Substituting the fourth condition in (6)

nmwy , nma  _nma
u(a,y) = ZEn sinTy (e b —e D )
n=1

nmy

nmwa nmwa
) sin—
b

fO)=ZiaEne® —e o

Which is the Fourier sine series, then E,, is given by

2 b .
Ep = ——wra—ma J, f() sin=> dy
b(e b —e b )

Now, if f(y) =4, b=4, a=1.

E, = MZ — f044sin% dy
4(e4—e 4)

0 ,if nis even
-8
= oy (D" — 1] = L if nisodd
e )

ex—e % nn(eT- e_T>

(0.0)

16 nmx _nmx . nmy
u(x,y) = z nm —nm (e — € )SIHT
n=1 N (eT— e T)
nisodd
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Now, we will study the situation where one of the boundary
conditions is a function of y and the other conditions are equal to

zero, as shown in the following example.

Ex.5: Find the solution u(x,y) of Laplace’s equation in the semi-

infinite plate 0 < x < o0, 0 <y < b also satisfying the boundary

conditions:
u(0,y) = f(y),u(oo,y) =0,u(x,0) =0,u(x,b) =0

Sol: Rearrange conditions

1- u(x,0) =0, 2-u(oo,y) =0, 3-u(x,b) =0, 4-u(0,y) = f(y)

From equation (6)
u(x,y) = (Ae’lx + Be_'lx)(CCOSAy + Dsin Ay)
Substituting the first condition, we get

u(x,0) = (Aelx + Be_)‘x)(CCOSO + Dsin 0)

0= (4e*™ +Be™)C =[C=0

#0

Butting in equation (6)

u(x,y) = (Ae* + Be™*)Dsinly

u(x,y) = (Ee*™ + Fe™™)sinzy ... (D)
where E = AD, F = BD.

Substituting the second condition in (1)

e
YoA
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u(oo,y) = ;L%(EBAx + Fe‘Ax)sin/ly

0 = | Esindy lime?* + Fsindly lime™**

X—00 X—00
=0

~0=E sinly lime*® = |[E =0
ks

Putting in (1)
u(x,y)=Fe *sinAy ... (2)
Substituting the third condition in (2)

u(x,b) = F e sinAb

0=F g_-jf sinlb = sindb = 0
*0 *0
~Ab=nm, n=123,..... 1=

Substituting in (2), hence non zero solutions u, (x, y) are given by

nmx
— . nrm
u,(x,y) =F,e b smTy

For more general solution, we take the sum of u,, (x, y)

nmx

ulx,y)=Yo-1Fe b sinn%y ...(3)

nmy

Substituting the fourth condition in (3) u(0,y) = Y., E,e’ sin .

yed
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(0]

nm

fG) =) Fy sin—>

n=1

Which is the Fourier sine series, then E, is the Fourier coefficient in

the form

E, = %fobf(y) sinn% dy e (4)

Then the equation (3) is the required solution with F, that given in (4)
Now, if f(y) =2y, b=3. = F, = %fog 2y sin% dy

12 (-1)**1 w 12 (-t X nmy
=—— S u(x =)—q—————e€ 3 Sin—-,

Fn

Ex.6: Find the solution u(x,y) of Laplace’s equation in the semi-
infinite plate 0 < x < a, 0 <y < o also satisfying the boundary
conditions:

u(0,y) =0, u(a,y) =0,u(x,0) = f(x) and,u(x,o) =0

sol: The boundary conditions are

u(0,y) =0, u(x,0) =0, u(a,y) =0, u(x,0) = f(x), then we use
Eq.(7):

u(x,y) = (AcosAx + Bsin Ax)(Ce’ly + De"ly) .......... (*)
Substituting the condition u(0,y) = 0in (*)

u(0,y) = (Acos0 + Bsin 0)(Ce? + De™)

e
Y1
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0=A(Ce™+De™™) =[A=0

#0

Substituting in (*), we obtain:

u(x,y) = BsinAx (Cely + De"ly)

u(x,y) = sinAx (Ee™ + Fe™»>) .. (D)
where E = BC, F = BD.

Substituting the second condition in (1)

u(x,o) = lim (Ee’ly + Fe"’ly)sin)lx

y—)OO

0 = | EsinAdx lime?Y + Fsinix lime™
y—)OO y—)OO
S ——

=0

~0=E sinlx lime?” =[E =0

~—— y-o

#0 —
£0
Putting in (1)
u(x,y)=Fe *sinAx . (2)

Substituting the third condition in (2)

u(a,y) = F e sinla

0= 5 e sinla = sinla = 0
£0  #0
~Ada=nm, n=123,.... 1=
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Substituting in (2), hence non zero solutions u, (x, y) are given by

_nny . nmx
u,(x,y) =F,e a sin—

For more general solution, we take the sum of u,, (x,y)

nry nmx

ulx,y) =Yg Fe a sin— ...(3)
Substituting the fourth condition in (3)

(00]

0 . NTX
u(x,0) = E,e” sin—
a
n=1
(00]
. nmx
f(x) = E, sin—
a
n=1

Which is the Fourier sine series, then E, is the Fourier coefficient in

the form
=2 (9 000 sin
E, = afo f(x) sin—dx e (4

Then the equation (3) is the required solution with E, that given in (4)

Now, if f(x) =x, b=1,a=1.

1 1
1 . —-X 1 .
>F =2 xsmnnxdx=2l—cosmtx| +— 2smmry”
0 nm 0 n<tm 0

. 2 (_1)n+1
o nt

2 (-1 n+1
(-1 e
nrm

> u(x,y) = Xn-1 MY sin nix.

Yy
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