
 

Chapter Two 
Models for Single Species  

 

 
 

Continuous Population 

In many cases, mathematical modeling is applied to understand population 
growth dynamics for animal and human population. For example, modeling the 
way fish populations grow, and accounting for the effect of fishing is essential to 
the fishing industry, as we cannot afford to deplete this resource. Another use of 
modeling is to understand the manner in which human populations grow: in the 
world, in individual countries, in towns and in organizations.  

Model 1- Exponential Growth 

We can consider this problem as a compartmental model, with the 
compartment being the ‘world’, ‘town’, etc. as in the sketch: 

 

                                Births                                           Death 

  

This compartmental sketch leads to a word equation describing a changing 
population  

																	"
Rate	of	
Change	of

Population	size
4 = "

Rate		
	of

births
4 − "

Rate		
	of

deaths
4																																									… (1) 

 

 

World 
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Model assumptions 

Ø We assume that the populations are sufficiently large so that we ignore 
random difference between individuals.  

Ø We assume that the births and deaths are continuous in time.  
Ø We assume that per-capita birth and death rates are constant. 
Ø We ignore immigration and emigration. 

 
Then we assume  

"
Rate		
	of

births
4 = 𝛽𝑃(𝑡),													"

Rate		
	of

deaths
4 = 𝛼𝑃(𝑡)																																										… (2) 

Substituting (2) in (1) we obtain 

																				
𝑑𝑃
𝑑𝑡 = 𝛽𝑃	 − 	𝛼𝑃																																																																 … (3)	

To solve this equation 

Let 𝑟	 = 	𝛽 − 𝛼 and then   

𝑑𝑃
𝑑𝑡 = 𝑟𝑃. 

We call 𝑟 the growth rate or the reproduction rate 

Ø when 𝑟	 > 	0 this is a model describing exponential growth. 
Ø when 𝑟	 < 	0 the process is exponential decay. 

 

∴
𝑑𝑃
𝑃 = 𝑟	𝑑𝑡	 ⟹ ln𝑃 = 𝑟	𝑡 + 𝑐 

∴ 𝑃(𝑡) = 𝐴	𝑒QR																															

and by 𝑃(0) = 𝑃S 

then 

𝑃(𝑡) = 𝑃S	𝑒QR 																																																													… (4) 
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Model validation 

Taking the 1990 world population values 𝑟	 = 	0.017 and 𝑃S 	= 	5.3 billion, 
we apply equation (3.4)  

Ø To find the population in 1995  
 

𝑃(5) = 	5.3	𝑒(S.SWX)(Y) 

								= 5.77 billion. 

Ø To find or predicts the population in 2090 
 

𝑃(100) = 	5.3	𝑒(S.SWX)(WSS) 
 

										= 29.01 billion. 
 

Model 2:𝐄𝐱𝐩𝐨𝐧𝐞𝐧𝐭𝐢𝐚𝐥	𝐰𝐢𝐭𝐡	𝐇𝐚𝐫𝐯𝐞𝐬𝐭𝐢𝐧𝐠: 
Harvesting from population models may result from hunting or capturing individuals, resulting in a 
population drop. A population will expand without limit if it is experiencing exponential growth. For 
illustration, we looked at several harvesting techniques that may be used to manage a rabbit population. 
Population growth will slow as the population size rises since an ecosystem cannot support unlimited 
species. The Foundational Equation of A model of exponential (natural with harvesting) is 

dP
dt = Pr − m	……… . . (1) 

Using	the	initial	condition	P = PS	To	solve	this	equation	 

dP = (rP −m)dt		by separating variables	

st
utvw

= dt…………… . . (2)		by integral  

	x
dP

rP −m = xdt	

1
r ln

|rP − m| = t + c…… (3)		 

where	c	is	the	constant	of	integration	

P(0) = PS	

c = 		 W
u
ln 	|rPS − m| 	 ………..(4) by substituting an equation (4) in (3)	
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W
u
ln	|rP − m| = t + W

u
ln	|rPS − m|			multiplied by r	

ln	|rP − m| = rt + ln	|r𝑃S − m|	

ln	|rP − m| − 	ln	|r𝑃S − m| = rt	

ln {
rP − m
rPS − m

{ = rt	

rP − m
rPS − m

= eu|	

rP − P = (	𝑟𝑃S − 𝑚	)	eu|	

rP = m++	(	rPS − m	)eu|			by dividing by r	

P(t) = 	w
u
+ ~	PS −	

w
u
� eu|			is the analytical solution  

If PSr	 > m, P(t) is increase   

If PSr	 < m P (t) is the decline 

If PS	r = m P(t)	is	fixed		and stable 

See Figure 2.3 Exponential harvesting with different values of m 

 

Figure 2.1 Exponential harvesting with 𝒓 = 𝟎. 𝟓	, 𝐰𝟎 = 𝟐 
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Stability of Exponential (natural )with harvesting stability model 

We make the equation (1) equal to zero 

	��
�R
= 	𝑟𝑃 −𝑚		equal to zero 

dP
dt = 0	

rP − m = 0	

P� = 	
m
r 			is	a	fixed	point	

dP
dt = rP −m	

s�t
s�|

= r  	

Then	the	point	P� =
m
r 	is	unstable	point	

 

Model 3- Logistic Growth (or Density-Dependent Growth) 

Populations cannot continue growing exponentially over time due to limited 
resources and/or competition for these with other species.  

Instead of assuming a constant death rate, we allow the death rates to increase 
as the population increases 

 

												"
Rate		
	of

births
4 = αP(	t	) + 	γP�(	t	) 																																																	… (5)	 

 

                      

 

Normal rate of 
deaths 

Rate of death by 
crowding 
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Carrying capacity 

 

Then the eq. (3) becomes  

𝑑𝑃
𝑑𝑡 = 	𝛽𝑃 − 𝛼𝑃 − 𝛾𝑃�.	

by 𝑟 = 𝛽 − 𝛼 

																					
𝑑𝑃
𝑑𝑡 = 𝑟𝑃 − 𝛾𝑃� 																																																							… (6)	 

with 𝐾 = Q
�
, the differential equation (6) becomes 

 

 
𝑑𝑃
𝑑𝑡 = 𝑟𝑃 −

𝑟
𝐾 𝑃

�																												 

																																							
𝑑𝑃
𝑑𝑡 = 𝑟𝑃 �1 −

𝑃
𝐾�																																																							…

(7) 

This model leads to a nonlinear differential equation called logistic equation (some 
time called density-dependent model). We consider only 𝑟	 > 	0 and 𝐾	 > 	0 to 
ensure positive population values. 

Interpretation of the parameters 

We can write a general differential equation for population growth as 

𝑑𝑃
𝑑𝑡 = 𝑅(𝑃)𝑃	

where 𝑅(𝑃) = 𝑟 ~1 − �
�
�. 

Note that 𝑅(𝑃), a linear function of 𝑃, tends to zero as the population approaches to 
carrying capacity 𝐾, while as the population size tends to zero, 𝑅(𝑃) approaches 𝑟, 
as the figure. 
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Figure 2.2 Interpretation of the parameters 

 

 
Analytic solution 
Example  

Solve the logistic differential equation initial value problem 

��
�R
= 𝑟𝑃 ~1 − �

�
�,  𝑃(0) = 𝑃S	. 

Solution: 

𝑑𝑃
𝑑𝑡 = 𝑟𝑃 �1 −

𝑃
𝑘� =

𝑟𝑃(𝑘 − 𝑃)
𝑘 	 

𝑘
𝑃(𝑘 − 𝑃)	

𝑑𝑃
𝑑𝑡 = 𝑟 

Assuming that 𝑃 ≠ 0 and 𝑃	 ≠ 	𝐾. Integrating gives 

x
𝑘

𝑃(𝑘 − 𝑃) 𝑑𝑃 = x𝑟𝑑𝑡 

For the integral on the left-hand side (LHS), we need to use partial fractions 
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𝑘
𝑃(𝑘 − 𝑃) =

𝑎
𝑃 +

𝑏
𝑘 − 𝑃 =

𝑎(𝑘 − 𝑃) + 𝑏𝑃
𝑃(𝑘 − 𝑃)  

Solving for the constants a and b gives 

𝑎𝑘 = 𝑘	 

(−𝑎 + 𝑏)𝑃 = 0 

which implies that 𝑎 = 𝑏 = 1, and then 

𝑘
𝑃(𝑘 − 𝑃) =

1
𝑃 +

1
𝑘 − 𝑃 

Now  

x
𝑘

𝑃(𝑘 − 𝑃) 𝑑𝑃 = x
1
𝑋 	𝑑𝑃 + x

1
𝑘 − 𝑋 𝑑𝑃 = x𝑟 𝑑𝑡 

ln|𝑃| − ln|𝑘 − 𝑃| = 𝑟𝑡 + 𝑐	 

{
𝑃

𝑘 − 𝑃
{ = 𝑐W𝑒QR											; 𝑐W = 𝑒� 

Assuming 0 < 𝑃 < 𝑘, then 

𝑃 = 𝑐W𝑒QR(𝑘 − 𝑃) 

Using the initial condition 𝑃(0) 	= 	𝑃S 

𝑃S = 𝑐W𝑒S(𝑘 − 𝑃S) 

𝑐W =
𝑃S

𝑘 − 𝑃S
 

∴ 𝑃 = �
𝑃S

𝑘 − 𝑃S
� 𝑒QR(𝑘 − 𝑃) 

∴ 𝑃(𝑡) =
𝑘

1 + 𝑚	𝑒vQR 

where 𝑚 = �v��
��

. 
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Alternatively, in the case where 0 < 𝑘 < 𝑃, 

𝑃(𝑡) = 𝑐W𝑒QR(𝑃 − 𝑘). 

with 𝑃(0) 	= 	𝑃S 

we get  

										𝑃(𝑡) =
𝑘

1 + 𝑚	𝑒vQR 																																																																		… (8) 

 

 

 

 

 

 

 

 

 

Figure 2.3 Logistic model  

Equilibrium Solutions and Stability 

If we observe the levelling of a population over time, this implies that the rate 
of change of the population approaches 0, that is, 𝑋′ → 0. Any value of 𝑋 that gives 
a zero rate of change is called an equilibrium point (solution). 

Equilibrium solutions are constant solutions where, here, the rate of increase 
(births) exactly balances the rate of decrease (deaths). Equilibrium solutions satisfy 

												
𝑑𝑃
𝑑𝑡 = 0,					 ⟹ 					𝑟𝑃 �1 −

𝑃
𝑘� = 0																																							 … (9)	

𝑘  

Time 𝑡 

𝑃(
𝑡)

 

𝑡  
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There are two possible equilibrium solutions, 𝑃� = 0 and 𝑃� = 𝐾, that satisfy 
equation (3). We are interested in which of these are stable. For stable solutions, 
this means that if we start near the equilibrium solution then we are attracted 
towards it. The condition for local stability is 𝑓′(𝑃�) < 0, where 𝑓 is the RHS of the 
differential equation. 

Here 𝑓(𝑃) = 	𝑟𝑃 ~1	 − �
�
� ⟶ 𝑓¢(𝑃) = 𝑟 − �Q�

�
  

and so 𝑓¢(0) = 	𝑟 > 0 and 𝑓¢(𝐾) = −𝑟 < 	0, for all positive values of r. 

The equilibrium solution 𝑃 = 0 is always unstable and the equilibrium solution 
𝑃 = 𝐾 is always stable. 

Model 4-Logistic growth with Harvesting model 

The effect of harvesting a population on a regular or constant basis is 
extremely important to many industries. One example is the fishing industry. Will a 
high harvesting rate destroy the population? Will a low harvesting rate destroy the 
viability of the industry? 

Formulating the equation 

Including a constant harvesting rate in our logistic model gives  

£rate	of	change	inpopulation ¤ = ¥rate	ofbirths¦ − "
normal	
rate	of
deaths

4 − "
rate	of
death	by
crowding

4 − "
rate	of
death	by
harvesting	

4 					… (10) 

Assuming the harvesting rate to be constant, equation (10) translates to 

									
𝑑𝑋
𝑑𝑡 = 𝑟𝑃 �1 −

𝑃
𝑘� − ℎ																																															 … (11) 

Here ℎ is included as the constant rate of harvesting 

Solving the differential equation 

First, we can write (11) in factored form 
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𝑑𝑃
𝑑𝑡 = −

𝑟
𝑘 (𝑃

� − 𝑘𝑃 + 𝑘ℎ) 

with 𝑟, 𝑘 and ℎ positive constant 

 Example 

Let 𝑟 = 1, 𝑘 = 10, ℎ = ©
WS

 and 𝑃(0) = 𝑃S. 

Solution:  

𝑑𝑃
𝑑𝑡 = −

1
10ª𝑃

� − 10𝑃 + 10 �
9
10�« = −

1
10
(𝑃� − 10𝑃 + 9) 

 

𝑑𝑃
𝑑𝑡 = −

1
10
(𝑃 − 1)(𝑃 − 9) 

x
1

(𝑃 − 1)(𝑃 − 9) 𝑑𝑋 = −x
1
10𝑑𝑡 

and using partial fractions, 
1
8x�

1
(𝑃 − 9) −

1
(𝑃 − 1)� 𝑑𝑋 = −x

1
10𝑑𝑡 

ln {
𝑃 − 9
𝑃 − 1	

{
W
¬
= −

1
10 𝑡 + 𝑐, 

Then rearranging with constant 𝑏	 = 	 𝑒¬� 

{
𝑃 − 9
𝑃 − 1	

{
W
¬
= 𝑏𝑒v

­R
Y  

By 𝑃(0) = 𝑥S 	⟶ 	𝑏 = ¯��v©
��vW

	¯ 

and the explicit solution is 
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𝑃(𝑡) =
9 − 𝑏	𝑒v­R/Y

1 − 𝑏	𝑒v­R/Y 

 
Stability  

We have the following cases to consider when sketching a graph.  

Ø If 𝑃S 	< 	1, then 𝑃′	 < 	0 and the population declines. 
Ø If 1	 < 	𝑃S 	< 	9, then 𝑃′	 > 	0 and the population increases. 
Ø If 𝑃S 	> 	9, then 𝑃′	 < 	0 and the population declines. 
Ø If 𝑃S 	= 	1 or	𝑃S 	= 	9, then the population does not change 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 The Logistic Equation with Harvesting 

  

𝑃S = 9  

𝑃S = 1  
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𝐌𝐨𝐝𝐞𝐥	𝟓 − 𝐆𝐨𝐦𝐩𝐞𝐫𝐭𝐳	𝐆𝐫𝐨𝐰𝐭𝐡	𝐦𝐨𝐝𝐞𝐥	

The model of Gompertz growth is characterized by an exponential decrease when the population reaches 

its peak. Both Gompertz and logistic models produce comparable curves. The logistic mode develops 

slower than the Gompertz model when M is low. Gompertz curves or functions are mathematical models 

for time series named after Benjamin Gompertz (1779–1865). A sigmoid function characterizes growth as 

slowest at the beginning and conclusion of a period. 

The Foundational Equation of A model Gompertz growth model is: 

st
s|
= rp	ln ~¶

t
�    …..(1) 

where	r	is	constant	and	M	is	Carrying	capacity 

Using	the	initial	condition	P(0) = PS	To	solve	Eq. 1	 

For the integral on both sides, we need to use partial fractions 

ʃ st

t ¹º~»¼�
= ʃrdt		  ….(2) 

	let	u = 	ln �
M
P�		… . (3)	, du =

1
M
P
∗
−M
P� dP 

dP = t
¶
∗ v¶
t�
dP  leads to  𝑑𝑢 = vW

�
𝑑𝑃   …..(4) 

By substitute equation (3),(4) in (2)  

−ʃ W
À
du = ʃrdt	  

	ʃ
1
u du = −ʃrdt 

ln|𝑢| = 	−	(r	t + KW) 

	ln|𝑢| = −r	t − KW							. . (5) 		,						− KW = K� 				… . (6)   

 By substituting equation (6) in (5)  

ln|𝑢| = 	−	𝑟𝑡 + 𝐾� 

|𝑢| = evu|ÂÃ� 				… (7)	,						eÃ� = KÄ 		… . (8) 
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By substitute equation (8) in (7)  

u = ∓KÄevu|   ….(9)         , k­ = ∓KÄ 				… . (10) 

By substituting equation (10) in (9)  

u = k­evu|																														 

ln �
M
P� = k­evu|	

By	P(0) = PS	we	get			ln �
M
PS
� = 	k­eS	

	k­ = ln �
M
PS
�	

ln �
𝑃
𝑤� = 	𝑘­𝑒

vQR	 

𝑀
𝑃 = 𝑒�Ê�ËÌÍ	

P =
M

eÎÊÏËÐÑ
				leads	to	P =

M

e¹º	~
¶
t�
�ÏËÐÑ

 

P	(t) 	= M⟮ev(¹º
»
¼�
ÏËÐÑ)⟯   is The	analytical	solution 

See Figure 2.11 the growth model with different values of r 
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Figure 2.5: The Gompertz Growth model with 𝑷𝟎 = 𝟐,𝑴 = 𝟏𝟎 

𝐌𝐨𝐝𝐞𝐥	𝟔 Allee	Effects	Model	
Allee effects are a dynamic phenomenon that affects population dynamics, including extinction and 
invasion. These sources are often quoted, but their strength and ubiquity have not been rigorously 
assessed. Allee's impacts on wild animal populations are reviewed from 91 research. We focus on 
empirical signatures used or might be used to detect Allee effects, data types in which they are evident, 
empirical support for critical densities in natural populations, and taxa differences in Allee effects and 
primary causal mechanisms. We found clear instances in Mollusca, Arthropoda, and Chordata, including 
three vertebrate groups, most often resulting from mating restriction in invertebrate’s predator–prey 
interactions in vertebrates. Most population-level dynamic implications of Allee effects (e.g., an unstable 
critical density associated with strong Allee effects) depend on distinguishing component and 
demographic Allee effects in data. Still, more than half of the studies failed to do so. Thus, we find 
conclusive evidence for Allee effects due to various mechanisms in natural populations of 59 animal 
species. Still, we lack data on the strength and commonness of Allee effects across species and 
populations and a critical density for most populations. We recommend population-scale experiments and 
methodologies linking component and demographic effects to augment observational investigations 
(Kramer et al., 2009). 

The Foundational Equation of A model Allee effects Growth Model is: 

dP
dt = rP �1 −

P
M�~1 −

m
P� 

Where w is population size, and r is the rate of increasing 

While M is the Carrying capacity and m is the threshold point 

 


