Finite and Infinite Sets

Definition:

- 1. A set A is said to be **finite** if \exists bijective f: A \rightarrow B with B \subseteq N where B = {1, 2, ..., m} and m \in N.
- 2. A set A is said to be **infinite** if \nexists bijective f: A \rightarrow B with B \subseteq N.

Remark:

Let A be a set. The cardinal number of A is the number of elements in the set A. (#(A) or |A|)

Remarks:

- 1. The set of natural numbers is an infinite set.
- 2. $B = \{6, 8, 10, 12, ...\}$ is an infinite set.
- 3. The empty set φ is a finite set (because there exists a bijection g: $\varphi \rightarrow \{0\}$).
- 4. The set $A = \{a, b, c, d\}$ is a finite set.

Definition:

- 1. A set S is said to be countable if there does not exist a 1-1 function $f: S \to \mathbb{N}$.
- 2. A set S is said to be uncountable if there does not exist a 1-1 function $f: S \to \mathbb{N}$.
- 3. $\#(\mathbb{N}) = \aleph_0$ (aleph-null). If #A or $|A| \leq \aleph_0$, then A is countable.
- 4. A is countable infinite if $|A| = \aleph_0$.
- 5. Every subset of a countable set is either finite or countable.

Theorem: For any set A, the following statements are equivalent:

- 1. A is Countable (A معدودة مجموعة).
- 2. \exists a bijective function α : $A \rightarrow \mathbb{N}$.
- 3. A is either finite or countably infinite

Theorem:

For any set A, the following statements are equivalent:

- 1. A is Countably Infinite (A منتهية غير معدودة).
- 2. There exists a bijective function $f: A \rightarrow \mathbb{N}$.

9

3. The elements of A can be arranged in an infinite sequence a_0 , a_1 , a_2 , ..., where $a_i \neq a_i$ for $i \neq j$.

 $(a_i \neq a_j)$ عناصر المجموعة A يمكن ترتيبها ضمن تسلسل غير منتهٍ من عناصر مختلفة (

Corollary. For any set A, the following statements are equivalent:

- 1. A is Countably Infinite (A منتهية غير معدودة).
- 2. The elements of A can be arranged in an infinite sequence $a_0, a_1, a_2, ...,$ where $a_i \neq a_j$ for $i \neq j$.

Proof. \Rightarrow) Suppose A is countable $\Rightarrow \exists$ a bijective f: $\mathbb{N} \rightarrow A$.

 $\Rightarrow A = f(\mathbb{N}) = \{f(1), f(2), \ldots\}$

Put $f(n) = a_n$ for all n in \mathbb{N} . $\Rightarrow A = \{a_1, a_2, \ldots\}$

⇐) suppose that $A = \{a_1, a_2, ...\}$ such that $a_i \neq a_j$ for $i \neq j$.

Define f: $\mathbb{N} \to A$ by $f(n) = a_n$ for all n in \mathbb{N} . Then

- 1. f is one-one: let x, $y \in \mathbb{N}$ such that $f(x) = f(y) \Rightarrow a_x = a_y$. $\Rightarrow x = y$ if $x \neq y \Rightarrow a_x \neq a_y \Rightarrow f(x) \neq f(y) \Rightarrow f$ is one to one.
- 2. f is onto: by definition of f, $\forall a_n \in A$, $\exists n \in \mathbb{N}$ such that $f(n) = a_n$

 \therefore f is bijective

 \therefore A is countable

Remarks:

1. If A and B are countable sets, then $A \times B$ is countable.

Proof. A and B are countable sets, then:

i. either A and B are finite sets, then

 $A{=} \{a_1, a_2, ..., a_m\} \text{ and } \Rightarrow \ B{=} \{b_1, b_2, ..., b_n\}$

 \therefore A × B is countable.

ii. Or A and B are infinite sets, then

iii. A= $\{a_1, a_2, ...\}$ and $\Rightarrow B=\{b_1, b_2, ...\}$

 \Rightarrow A × B = {(a_i, b_j)| a_i ∈ A, bj∈ B and i, j ∈ N} is infinite.

 \Rightarrow A × B can be arranged by

So, the first element is (a_1, b_1)

 \Rightarrow we can list all elements of A \times B in an infinite sequence.

 $:: A \times B$ is countable

- 2. If A and B are countable sets, then A \cup B is countable.
- 3. The set of all finite subsets of \mathbb{N} is countable.

Cantor's Theorem:

Let A be a set and P(A) be the power set of A. Then there does not exist a surjective function f: $A \rightarrow P(A)$.

Theorem:

The set $P(\mathbb{N})$ is uncountable.

The Cartesian product of $\mathbb{N} \times \mathbb{N}$ is countable. Theorem

الضرب الديكارتي للأعداد الطبيعية مجموعة معدودة

Proof. To prove that $\mathbb{N} \times \mathbb{N}$ is countable:

The elements of $\mathbb{N} \times \mathbb{N}$ can be arranged as a matrix:

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow \dots$$

$$\downarrow \qquad \nearrow \qquad \swarrow \qquad \swarrow \qquad \swarrow \qquad \swarrow \qquad (2,1) \rightarrow (2,2) \rightarrow (2,3) \rightarrow \dots$$

$$\downarrow \qquad \swarrow \qquad \swarrow \qquad \swarrow \qquad \swarrow \qquad (3,1) \rightarrow (3,2) \rightarrow (3,3) \rightarrow \dots$$

. Hence:

hents of
$$\mathbb{N} \times \mathbb{N}$$
 can be arranged as a matrix:
 $(2) \rightarrow (1,3) \rightarrow \dots$
 $(2,3) \rightarrow \dots$
 $(2,3) \rightarrow \dots$
 $(2,3) \rightarrow \dots$
 $(3,3) \rightarrow \dots$
 $\mathbb{N} \times \mathbb{N} = \{ (1,1), (2,1), (1,2), (3,1), (2,2), (1,3), \dots \}$

We can write it as:

$$\mathbb{N} \times \mathbb{N} = \{ a_0, a_1, a_2, a_3, a_4, a_5, \dots \}$$

Where:

$$a_{1} = (1,1)$$

$$a_{2} = (2, 1)$$

$$a_{3} = (1, 2)$$

$$a_{4} = (3, 1)$$

$$a_{5} = (2, 2)$$

The elements of $\mathbb{N} \times \mathbb{N}$ can be numbered,

which means that we can arrange the natural numbers in a sequence that matches all pairs in $\mathbb{N} \times \mathbb{N}$ without repetition.

 $\therefore \mathbb{N} \times \mathbb{N}$ is countable.