Ring Theory (3'rd class) Dr. Tamadher Arif

Definition. Let R be a nonempty set and "+", "." be two binary operations

defined on R such that:

1. (R, +) is an abelian group.
2. (R, .) is a semigroup.

3. The operation "." is distributive on the operation "+", then the ordered

triple (R, +, .) is said to be ring.
Definitions.

1. Aring (R, +,.) is said to be commutative if a.b = b.a for all a, b €R.

2. Aring R is said to be ring with identity if there exists 1€ R such that a.1
=l.a=aforallainR.

3. Anelement a € R ( R is a ring) is said to be invertible if there exists b €
R such thata.b=b.a=1.

Notations.

1. 0 is the identity element of the group (R, +).
2. 1 is the identity element of the semigroup (R, .) (if it exists).
3. —a s the inverse element of a in the group (R, +).

4. a’is the inverse element of a in (R, .) (if a™ exists).

Remark. We will refer to (R, +, .) by only R.

Examples.

1. (Z,+,.)is a commutative ring with identity 1 for that:
a. (Z,+) is an abelian group (why?)
b. (Z,.) is a semigroup (why?)
c. Foralla,b,c€R,:

a.(btc)=ab+a.c
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(b+c).a=b.a+c.a
& Z 1s ring
Now, foralla,b€Z,l.a=a.1=a
= Z 1s ring with identity and for alla, b € Z,a.b=b.a
=~ Z. is commutative ring with identity.

2. 27,47, ...,nZ(n+ 1) is a commutative ring with identity.

3. 4€4Zbuta’ € 4Zsuch thatd.a' =a' 4=1.

= 4 has no inverse
4. (C,+, ), (R, +,.), (Q, +,.) and (My,, +, .) are rings (where M,;, is the set

of all 2x2 matrix).
Theorem. Let R be a ring, then for all a, b,c € R :

1. If the identity element exists, the it is unique.

If the inverse element a-' (for all a €R) exists, then it is unique. .2
3. a0=0.a=0
4. a.(-b)=(-a).b=-(a.b)
5. (-a).(-b)=a.b
6. a.(b-c)=ab-a.c
7. (b—c).a=b.a—c.a

Remarks.

1. Aring R is said to be trivial if R = {0}
2. Aring R is said to be nontrivial if R # {0}
3. Let R be a ring with identity. If R is not trivial, then 1+ 0.
Proof. Since R# {0}, thenif 1=0,3 0+ a€ Rsuchthata=a.l=a.0=
0 c!
~ 1#0
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4. IfRis aring, n € Z*, x € R, then:

nx=x +x + ... +x

n—times
(mx=(-x) +(—x) + ... +(—x)
n—times
X' =X.X. . X
—r__/
n—times

Theorem. Let
R* = {a €R | a has inverse}
be a set of all unite element of a ring R, then (R*, .) is a group

1. R*# @ (1 € R¥).
2. Ifa,b € R*, then 3 a”’, b’ € R* such that
aa'=ala=landb.b'=b'b=1

also,
ab(b' a')=a(bb')a'=a(l)a'=aa' =1
b'a'(ab)=b"'(a'a)b=b" (I)b=b"b=1
~ bt alis the inverse element of ab in R*.
~b'aleRr*

~ R* is closed under ".

3. (R*,.) is associative(prove that)

~ (R*,.) 1s group

Examples.



Ring Theory (3'rd class) | Dr. Tamadher Arif

1. Let X be a nonempty set and P(X) denote the collection of all subset of
X. then each of (P(X), U,N) and (P(X), N,V) is not ring (because neither
(P(X), N) nor (P(X), U) form group(prove that?)).

2. Let X be a nonempty set and (R, +, . ) be an arbitrary ring. Let map(X,
R) be the set of all mapping from X into R

map(X, R) = {f| f: X - R}
define for a € X:
(frg) (a) = f(a) + g(a)
(f.2) (a) = f(a) . g(a)
then, (map(X, R), +, . ) is a ring with 1.
Proof.

a) map(X, R) =0 (3 0 : X—=R such that 0(a) = 0 for all a € R).

b) 0 is zero map (additive identity)

c¢) 1 is the constant map (if R has 1, then f(a) = 1 for all a € R).

d) —f is the additive inverse map of ( f+(-f)(x) = 0(x)

3. LetR=C[0,1] = {f: [0,1] = R| fis continuous} then (R, +, .) = (C[O0, 1],
+, .) 1s a ring.

Proof.
a) (R, +) is an abelian group ( prove ?)
b) Distributive lows
[f.(g+h)] (x) = [f.g + fh](x)
= (£2)(x) + (Fh)(x)
= f(x) g(x) + f(x) h(x)
= g(x)f(x) + h(x). f(x)
= [g.f+ h.f](x)
= [(g+h)f](x)

~ (R, +,.)is aring
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4. The ordered triple (Z,,, +,,, .n) forms a commutative ring with identity 1.
Proof. foralla,b€Z,={0,1,...,n— 1}
Firstly, @ +,, b = [a]+,[b]=[a+tb] = a + b
a., b=[a].,,[b]=[ab]= a.b
a) (Z,, +,) is an abelian group (prove?)

b) (Z,, .,) 1s a semigroup (prove?)

O

¢) (@., (b+,8)=...=@., b+, a.,
also, (b+,C) .p@ =...=b ., a+,

a)
3
Ql

For examples:

ZZ = {6,1}
Z;=1{0,1,2}
Z,=10,1,2,3}

Definition. The ring ((R; X R,), @, ®) is said to be direct product to the two
rings R; and R,.

Remark. The ring R is commutative if and only if for all a € R, a =a’

Proof. - atb € R, then
atb=(at+tb)y=a’+ab+ba+b’

=(a’+b’) +ab+ba
~ab+ba=0-ab=-ba=(-ba)’=ba
-~ ab=ba

~ R 1s a commutative ring

Definition. Let R be a ring, then R is said to be Boolean ring if x> = x for all x
€ R.
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Remark. Every Boolean ring is a commutative ring. but the converse is not

true in general.

Homework. Give an example to show that the converse of the previous remark

is not true in general
Definitions. Let R be a ring and a be element in R, then a is said to be:

1. Idempotent element if a* = a.
2. Nilpotent element if a" = 0 for n >0.

3. Unite element if 3 b € R such that ab=ba = 1.

Examples.

1. InZ, Q, R the idempotent elements are only 1, 0.
. In 2 Z the idempotent element is 0

. InZ, Q, R, the nilpotent element is 0.

2

3

4. In Z, the unites elements are 1, -1

5. In @, R the unites elements are every nonzero element
6

. (P(X), A, n)is aBoolean ring with identity @

SUBRINGS

Definition. (subring)

Let (R, +,.)bearingand @ # S € R. then (S, +, .) is said to be subring of R
(S<R) if (S, +, .) is ring itself.

Remarks.

1. If S < R such that R has 1, then it is not necessary that S has 1.
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Example. (2Z, +, .) is a subring of the ring of integers (Z, +, .) and (2Z,
+, .) is a ring without identity although (Z, +, .) has identity.

2. Both ring and one of its subrings possess identity but they are different.
Example. the ring (Z, +, .¢) has 1 but the subring ({ 0, 2,4},+4, .4) of
(Zg, +¢, .¢) of Zghas an identity 4.

3. Some subring has an identity, but the entire ring does not.

Example. Th ring R = Z x 27 has no identity while the subring s =
Zx{0} is a subring of R with identity (1,0).

Theorem. A nonempty subset (S, +,.) of a ring R is said to be subring if and

only if:

1. a-b€ S
2. ab€eS
forall a,b, € S

example. The Z. forms a subring of integer ring . for that
2n—2m = 2(n-m) € Ze
2n.2m= 4(n.m) = 2(2n.m) = 2(2nm) € Z,

Examples.

1. IfR=(Z,+,.)and H,= (nZ, +, .), then H, is a subring of R (H, < R) for
alln € Z*.

2. fR=(R, +,.), then (@\/_ , Z\/E Z,Q, H, are subrings of the ring R
with the same binary operations "+" and "."(p prime number).

3. For each ring R, there are two trivial subrings R and {0}.

4. 27Z¢ 1s asubring of Zg( 2Z¢ < Zg) and nZg < Zg.

5. Each of
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S={(8 €)|a,b,c € Z} and T={(::l (l))|n,m,l € Z} subring of

M, (Z) ={()ZC 3‘]/ )| X,¥,Z,w € Z} where
606 = v
Theorem. If' S;, S, are subrings of R, then so is S;N S,.

Proof. Suppose S, and S, are subrings of R. then 0 € S; A0 € S,, then S;N' S,
* Q.

Now, forallx,y € SiNS, > X, yES; AXYES,

l. x-yES|AX-YyES,»x-yESINS,
2. XYyESAXYES,»x.yESINS,

=~ SN S, is a subring of R

Remark. If S, S, are subrings of R, then not necessary S|U S, is a subring of

R.

Example. 27, 3 Z subring of Z while 2Z U3 Z £ Z since 3,2 € 2ZU 3 Z
while3-2=1¢ 2Z U 3 Z.

Definition. Let R be aring . A set

center R= {x ER|xr=rx,VreR }
is said to be center of the ring R.
Remarks.

1. Cent(R) # Q.
2. Aring R is commutative iff cent(R) = R.
3. Cent(R) is a subring of R.



Ring Theory (3'rd class) Dr. Tamadher Arif

Proof. HW
Definition. let R be a ring and a € R. the set

C(a) = {w € R| wa=aw}
Is called the centralizer of x.

Remarks.

1. C(a) # @ (a.a=a.a = a € C(a)).
2. C(a) is a subring of R.
3. Cent(R)=Nger C(a)

Proof. 1. HW.
Proof 2.

a. C(a) # 0 and C(a) subset of R.
b. Letx,y € C(a), then xa = ax and ya = ay.

Then (x-y)(a) = Xa-ya = ax-ay = a(x - y)— x-y € C(a)
(xy )(a) = x(ya) = x(ay) = (xa)y = (ax)y = a(xy) = xy € C(a)
- C(a) is a subring of R
Examples.

1. Cent(Z4) = Z4
2. Cent(Z,) =17,
3. Cent(Z) =17

=~ the ring Z,, and Z are commutative

H.W. find Cent(M»(Z))?



