<u>Definition</u>. Let R be a nonempty set and "+", "." be two binary operations defined on R such that:

- 1. $(\mathbf{R}, +)$ is an abelian group.
- 2. (R, .) is a semigroup.
- 3. The operation "." is distributive on the operation "+", then the ordered triple (R, +, .) is said to be *ring*.

Definitions.

- 1. A ring (R, +, .) is said to be commutative if a.b = b.a for all $a, b \in R$.
- 2. A ring R is said to be ring with identity if there exists $1 \in R$ such that a.1 = 1.a = a for all a in R.
- 3. An element a ∈ R (R is a ring) is said to be invertible if there exists b ∈ R such that a.b = b.a = 1.

Notations.

- 1. 0 is the identity element of the group (R, +).
- 2. 1 is the identity element of the semigroup (R, .) (if it exists).
- 3. -a is the inverse element of a in the group (R, +).
- 4. a^{-1} is the inverse element of a in (R, .) (if a^{-1} exists).

<u>Remark</u>. We will refer to (R, +, .) by only R.

Examples.

- 1. $(\mathbb{Z}, +, .)$ is a commutative ring with identity 1 for that:
 - a. $(\mathbb{Z}, +)$ is an abelian group (why?)
 - b. $(\mathbb{Z}, .)$ is a semigroup (why?)
 - c. For all a, b, $c \in R$, :

$$a.(b+c) = a.b + a.c$$

(b+c).a = b.a + c.a

 $\therefore \mathbb{Z}$ is ring

Now, for all $a, b \in \mathbb{Z}$, 1.a = a.1 = a

- $\therefore \mathbb{Z}$ is ring with identity and for all $a, b \in \mathbb{Z}$, a.b = b.a
- $\therefore \mathbb{Z}$ is commutative ring with identity.
- 2. 2 \mathbb{Z} , 4 \mathbb{Z} , ..., n \mathbb{Z} (n \neq 1) is a commutative ring with identity.
- 3. $4 \in 4\mathbb{Z}$ but $a^{-1} \notin 4\mathbb{Z}$ such that $4 \cdot a^{-1} = a^{-1} \cdot 4 = 1$.
 - \therefore 4 has no inverse
- (ℂ, +, .), (ℝ, +, .), (ℚ, +, .) and (M₂₂, +, .) are rings (where M₂₂ is the set of all 2x2 matrix).

<u>Theorem</u>. Let R be a ring, then for all a, b, $c \in R$:

1. If the identity element exists, the it is unique. If the improvement e^{-1} (for all e^{-2} D) with the it is unique.

If the inverse element a^{-1} (for all $a \in \mathbb{R}$) exists, then it is unique. .2

- 3. a.0 = 0.a = 0
- 4. $a.(-b) = (-a) \cdot b = (a.b)$
- 5. (-a).(-b) = a.b
- 6. a. (b c) = a.b a.c
- 7. (b-c) . a = b.a c.a

Remarks.

- 1. A ring R is said to be trivial if $R = \{0\}$
- 2. A ring R is said to be nontrivial if $R \neq \{0\}$
- 3. Let R be a ring with identity. If R is not trivial, then $1 \neq 0$.

Proof. Since $R \neq \{0\}$, then if 1 = 0, $\exists 0 \neq a \in R$ such that $a = a \cdot 1 = a \cdot 0 = 0$ *c*!

$$nx = \underbrace{x + x + \dots + x}_{n-times}$$
$$(-n)x = \underbrace{(-x) + (-x)}_{n-times} + \dots + (-x)$$

$$\mathbf{x}^{n} = \underbrace{\mathbf{x} \cdot \mathbf{x} \cdot \dots \cdot \mathbf{x}}_{n-times}$$

Theorem. Let

$$R^* = \{a \in R \mid a \text{ has inverse}\}$$

be a set of all unite element of a ring R, then $(R^*, .)$ is a group

- 1. $R^* \neq \emptyset$ (1 $\in R^*$).
- 2. If $a, b \in \mathbb{R}^*$, then $\exists a^{-1}, b^{-1} \in \mathbb{R}^*$ such that

$$a.a^{-1} = a^{-1}.a = 1$$
 and $b.b^{-1} = b^{-1}.b = 1$

also,

$$ab(b^{-1} a^{-1}) = a(b b^{-1}) a^{-1} = a(1) a^{-1} = a a^{-1} = 1$$

 $b^{-1} a^{-1}(ab) = b^{-1}(a^{-1} a)b = b^{-1}(1) b = b^{-1} b = 1$

 \therefore b⁻¹ a⁻¹ is the inverse element of ab in R^{*}.

 $\therefore b^{-1} a^{-1} \in R^*$

- \therefore R* is closed under "."
 - 3. (R*, .) is associative(prove that)

$$\therefore$$
 (R*, .) is group

Examples.

- Let X be a nonempty set and P(X) denote the collection of all subset of X. then each of (P(X), ∪,∩) and (P(X), ∩,∪) is not ring (because neither (P(X), ∩) nor (P(X), ∪) form group(prove that?)).
- 2. Let X be a nonempty set and (R, +, .) be an arbitrary ring. Let map(X, R) be the set of all mapping from X into R

$$map(X, R) = \{f | f: X \to R\}$$

define for $a \in X$:

$$(f+g) (a) = f(a) + g(a)$$

 $(f.g) (a) = f(a) \cdot g(a)$

then, (map(X, R), +, .) is a ring with 1.

Proof.

- a) map(X, R) = \emptyset ($\exists 0 : X \rightarrow R$ such that 0(a) = 0 for all $a \in R$).
- b) 0 is zero map (additive identity)
- c) 1 is the constant map (if R has 1, then f(a) = 1 for all $a \in R$).
- d) -f is the additive inverse map of (f + (-f)(x) = 0(x))
- 3. Let $R = C[0,1] = \{f: [0,1] \rightarrow R | f \text{ is continuous} \}$ then (R, +, .) = (C[0, 1], +, .) is a ring.

Proof.

- a) (R, +) is an abelian group (prove ?)
- b) Distributive lows

$$f.(g+h)] (x) = [f.g + f.h](x)$$

= (f.g)(x) + (f.h)(x)
= f(x) g(x) + f(x) h(x)
= g(x)f(x) + h(x). f(x)
= [g.f + h.f](x)
= [(g+h)f](x)

 \therefore (R, +, .) is a ring

4. The ordered triple $(\mathbb{Z}_n, +_n, \cdot_n)$ forms a commutative ring with identity 1. <u>Proof.</u> for all $\bar{a}, \bar{b} \in \mathbb{Z}_n = \{\bar{0}, \bar{1}, \dots, \bar{n-1}\}$

Firstly, $\overline{a} +_n \overline{b} = [a] +_n [b] = [a+b] = \overline{a+b}$

 \overline{a}_{n} $\overline{b} = [a]_{n}[b] = [a.b] = \overline{a.b}$

- a) $(\mathbb{Z}_n, +_n)$ is an abelian group (prove?)
- b) $(\mathbb{Z}_n, ..., n)$ is a semigroup (prove?)
- c) $(\bar{a} \cdot_n (\bar{b} +_n \bar{c})) = \dots = \bar{a} \cdot_n \bar{b} +_n \bar{a} \cdot_n \bar{c}$ also, $(\bar{b} +_n \bar{c}) \cdot_n \bar{a} = \dots = \bar{b} \cdot_n \bar{a} +_n \bar{c} \cdot_n \bar{a}$

For examples:

- $\mathbb{Z}_2=\{\overline{0},\overline{1}\}$
- $\mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}$

 $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$

<u>Definition</u>. The ring $((R_1 x R_2), \oplus, \otimes)$ is said to be direct product to the two rings R_1 and R_2 .

<u>Remark</u>. The ring R is commutative if and only if for all $a \in R$, $a = a^2$

Proof.
$$\Rightarrow$$
 a+b \in R, then
 $a + b = (a + b)^2 = a^2 + ab + ba + b^2$
 $= (a^2 + b^2) + ab + ba$
 $\Rightarrow ab + ba = 0 \rightarrow ab = -ba = (-ba)^2 = ba$
 $\Rightarrow ab = ba$
 $\Rightarrow R$ is a commutative ring

Definition. Let R be a ring, then R is said to be *Boolean* ring if $x^2 = x$ for all $x \in R$.

<u>**Remark</u>**. Every Boolean ring is a commutative ring. but the **converse is not true** in general.</u>

Homework. Give an example to show that the converse of the previous remark is not true in general

Definitions. Let R be a ring and a be element in R, then a is said to be:

- 1. **Idempotent** element if $a^2 = a$.
- 2. Nilpotent element if $a^n = 0$ for n > 0.
- 3. Unite element if $\exists b \in R$ such that ab = ba = 1.

Examples.

- 1. In \mathbb{Z} , \mathbb{Q} , \mathbb{R} the idempotent elements are only 1, 0.
- 2. In 2 \mathbb{Z} the idempotent element is 0
- 3. In \mathbb{Z} , \mathbb{Q} , \mathbb{R} , the nilpotent element is 0.
- 4. In \mathbb{Z} , the unites elements are 1, -1
- 5. In \mathbb{Q} , \mathbb{R} the unites elements are every nonzero element
- 6. $(P(X), \Delta, \cap)$ is a Boolean ring with identity \emptyset

SUBRINGS

Definition. (subring)

Let (R, +, .) be a ring and $\emptyset \neq S \subseteq R$. then (S, +, .) is said to be subring of R $(S \leq R)$ if (S, +, .) is ring itself.

<u>Remarks</u>.

1. If $S \le R$ such that R has 1, then it is not necessary that S has 1.

Example. $(2\mathbb{Z}, +, .)$ is a subring of the ring of integers $(\mathbb{Z}, +, .)$ and $(2\mathbb{Z}, +, .)$ is a ring without identity although $(\mathbb{Z}, +, .)$ has identity.

- Both ring and one of its subrings possess identity but they are different.
 Example. the ring (Z₆, +₆, .₆) has 1 but the subring ({ 0, 2, 4}, +₄, .₄) of (Z₆, +₆, .₆) of Z₆has an identity 4.
- 3. Some subring has an identity, but the entire ring does not.
 <u>Example</u>. Th ring R = Z x 2Z has no identity while the subring s = Zx{0} is a subring of R with identity (1,0).

<u>**Theorem</u>**. A nonempty subset (S, +,.) of a ring R is said to be subring if and only if:</u>

- 1. $a-b \in S$
- 2. $a,b \in S$

for all $a,b, \in S$

<u>example</u>. The \mathbb{Z}_e forms a subring of integer ring . for that

$$2n-2m = 2(n-m) \in \mathbb{Z}e$$

 $2n.2m = 4(n.m) = 2(2n.m) = 2(2nm) \in \mathbb{Z}_{e}$

Examples.

- 1. If $R = (\mathbb{Z}, +, .)$ and $H_n = (n\mathbb{Z}, +, .)$, then H_n is a subring of R ($H_n \le R$) for all $n \in \mathbb{Z}^+$.
 - 2. If $R = (\mathbb{R}, +, .)$, then $\mathbb{Q}\sqrt{p}$, $\mathbb{Z}\sqrt{p}$, \mathbb{Z} , \mathbb{Q} , H_n are subrings of the ring R with the same binary operations "+" and "."(p prime number).
 - 3. For each ring R, there are two trivial subrings R and $\{0\}$.
 - 4. $2\mathbb{Z}_6$ is a subring of \mathbb{Z}_6 ($2\mathbb{Z}_6 \leq \mathbb{Z}_6$) and $n\mathbb{Z}_6 \leq \mathbb{Z}_6$.
 - 5. Each of

$$S = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Z} \right\} \text{ and } T = \left\{ \begin{pmatrix} n & 0 \\ m & l \end{pmatrix} \middle| n, m, l \in \mathbb{Z} \right\} \text{ subring of}$$
$$M_2(\mathbb{Z}) = \left\{ \begin{pmatrix} x & y \\ z & w \end{pmatrix} \middle| x, y, z, w \in \mathbb{Z} \right\} \text{ where}$$
$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} = \begin{pmatrix} ax & ay + bz \\ 0 & cz \end{pmatrix}.$$

<u>Theorem</u>. If S_1 , S_2 are subrings of R, then so is $S_1 \cap S_2$.

<u>Proof</u>. Suppose S_1 and S_2 are subrings of R. then $0 \in S_1 \land 0 \in S_2$, then $S_1 \cap S_2 \neq \emptyset$.

Now, for all x, $y \in S_1 \cap S_2 \rightarrow x$, $y \in S_1 \land x, y \in S_2$

- 1. x- y \in S₁ \land x-y \in S₂ \rightarrow x y \in S₁ \cap S₂
- 2. $x.y \in S_1 \land x.y \in S_2 \rightarrow x \ . \ y \in S_1 \cap S_2$

 \therefore S₁ \cap S₂ is a subring of R

<u>**Remark**</u>. If S_1 , S_2 are subrings of R, then not necessary $S_1 \cup S_2$ is a subring of R.

Example. 2Z, 3 Z subring of Z while $2\mathbb{Z} \cup 3\mathbb{Z} \leq \mathbb{Z}$ since $3, 2 \in 2\mathbb{Z} \cup 3\mathbb{Z}$ while $3-2 = 1 \notin 2\mathbb{Z} \cup 3\mathbb{Z}$.

Definition. Let R be a ring . A set

center R= { $x \in R$ | xr = rx, $\forall r \in R$ }

is said to be center of the ring R.

Remarks.

- 1. Cent(R) $\neq \emptyset$.
- 2. A ring R is commutative iff cent(R) = R.
- 3. Cent(R) is a subring of R.

Proof. H.W

<u>Definition</u>. let R be a ring and $a \in R$. the set

$$C(a) = \{ w \in R | wa = aw \}$$

Is called the centralizer of x.

Remarks.

- 1. $C(a) \neq \emptyset$ (a.a=a.a \rightarrow a \in C(a)).
- 2. C(a) is a subring of R.
- 3. Cent(R) = $\bigcap_{a \in R} C(a)$

Proof. 1. H.W.

Proof 2.

a. $C(a) \neq \emptyset$ and C(a) subset of R.

b. Let $x, y \in C(a)$, then xa = ax and ya = ay.

Then
$$(x-y)(a) = xa-ya = ax-ay = a(x - y) \rightarrow x-y \in C(a)$$

$$(xy)(a) = x(ya) = x(ay) = (xa)y = (ax)y = a(xy) \rightarrow xy \in C(a)$$

 \therefore C(a) is a subring of R

Examples.

- 1. Cent(\mathbb{Z}_4) = \mathbb{Z}_4
- 2. Cent(\mathbb{Z}_n) = \mathbb{Z}_n
- 3. Cent(\mathbb{Z}) = \mathbb{Z}

$$\therefore$$
 the ring \mathbb{Z}_n and \mathbb{Z} are commutative

<u>**H.W**</u>. find Cent($M_{22}(\mathbb{Z})$)?