In this semester, we shall study the following four chapters:

Chapter one: Definitions and Preliminaries.

Chapter two: Modules homomorphism

Chapter three: Sequences

Chapter four: Noetherian and Artinian modules

Chapter one (Definitions and Preliminaries.)

Definition. (Modules)

Let R be a ring. A (left) R-module is an additive abelian group M together with a function $f: R \times M \to M$ defined by: f(r,a)=ra such that for all $r,s \in R$ and $a,b \in M$:

1. r(a+b) = ra + rb.

}(distributive laws)

2. (r + s)a = ra + sa.

3. r(sa) = (rs)a.

(associative law)

If R has an identity element 1_R and

4. $1_R a = a$ for all $a \in M$,

then M is said to be a unitary left R-module.

Remarks.

- 1. A (unitary) right R-module is defined similarly by a function $f:MxR \rightarrow M$ denoted by $(a,r) \rightarrow ar$ and satisfying the obvious analogues of (1)-(4).
- 2. If R is commutative, then every left R-module M can be given the structure of a right R-module by defining ar = ra for $r \in R$, $a \in M$.

- 3. Every module M over a commutative ring R is assumed to be both a left and a right module with ar = ra for all $r \in R$, $a \in M$.
- 4. We shall refer to left R-module by R- module. Also, in this course, all R-modules are unitary.

Remarks.

- 1. If 0_M is the additive identity element of M and 0_R is the additive identity element of a ring R (where M is an R-module), then for all $r \in R$, $a \in M$: $r \cdot 0_M = 0_M$ and 0_R , $a = 0_M$.
- 2. (-r)a = -(ra) = r(-a) and n(ra) = r(na) for all $r \in R$, $a \in M$ and $n \in \mathbb{Z}$ (ring of integers).

Examples.

1. Every commutative ring is an R-module.

Proof. Define f: R x R \rightarrow R by $f(r_1, r_2) = r_1r_2$ for all $r_1, r_2 \in R$.then

a.
$$(r_1+r_2)r = r_1r + r_2r$$

b.
$$r(r_1 + r_2) = rr_1 + rr_2$$

c.
$$(r_1r_2)r = r_1(r_2r)$$

2. Every additive abelian group G is a unitary \mathbb{Z} -module.

Proof. Define α : $\mathbb{Z} \times G \rightarrow G$ by: $\alpha(n, m) = nm$ for all $n \in \mathbb{Z}$ and $m \in G$.

i.e
$$\alpha(n, m) = \underbrace{m + m + \dots + m}_{n-times} = nm$$

since G is group and $m \in G$, then there is $-m \in G$ such that

$$(-nm) = -\underbrace{m - m - \cdots - m}_{n - times}$$

Now,

i.
$$(n_1+n_2)m = n_1m + n_2m$$

ii.
$$n(m_1 + m_2) = \underbrace{(m_1 + m_2) + (m_1 + m_2) + \dots + (m_1 + m_2)}_{n-times}$$

= $nm_2 + nm_2$

iii.
$$(n_1 n_2)m = n_1(n_2m)$$

also, since Z has identity element, then

iv. 1.
$$m = m$$

- 3. Every ideal in a ring R is an R- module
- 4. Every vector space V over a field F is F-module.
- 5. If Q is the set of rational numbers, then Q is \mathbb{Z} -module.

Proof. Define β : $\mathbb{Z} \times Q \to Q$ by:

$$\beta(m, \frac{n}{t}) = m \frac{n}{t} = \frac{mn}{t}$$
 for all $m \in \mathbb{Z}$ and $\frac{n}{t} \in \mathbb{Q}$.

- 6. If \mathbb{Z}_n is the group of integers modulo n, then \mathbb{Z}_n is \mathbb{Z} -module. Proof. define $\alpha: \mathbb{Z} \times \mathbb{Z}_n \to \mathbb{Z}_n$ by: $\alpha(n, \bar{a}) = n\bar{a}$ for all $n \in \mathbb{Z}$, $\bar{a} \in \mathbb{Z}_n$.
- 7. Let A be an abelian group and

 $S= end_R(A) = Hom_R(A, A)= \{f: A \rightarrow A; f \text{ is a group homomorphism}\}$

Define " + " on S by: for all f, $g \in S$ and $a \in A$,

$$(f+g)(a) = f(a) + g(a)$$

Then

- 1. (S, +) is an abelian group:
 - i. S is closed under "+"
 - ii. 0(a) = 0

(zero function $0: A \rightarrow A$)

iii.(-f(a)) = -(f(a))

(additive inverse)

$$(f+(-f)(a) = f(a) + -(f(a)) = 0$$

iv. "+" is an associative operation

iv."+" is an abelian:

$$(f+g)(a) = f(a) + g(a) = g(a) + f(a) = (g+f)(a)$$

(S, +) is an abelian group

2. Define " . " on S by: for all f, $g \in S$ and $a \in A$,

$$f.g \equiv fog$$
 and $(fog)(a) = (f(g(a)))$

(S, +, .) is a ring with identity I: A \rightarrow A (where foI = Iof = f)

3. Now, one can consider A as a unitary S-module:

with
$$\alpha : S \times A \rightarrow A$$
, $\alpha(f, a) = f(a)$ $f \in S$ and $a \in A$

- 8. If R is a ring, every abelian group can be consider as an R-module with trivial module structure by defining ra =0 for all $r \in R$ and $a \in A$.
- 9. The R-module $M_{n.}(R)$. let

$$M_{n.}(R)$$
 = the set of nxn matrices over R
={ $(a_{ii})_{nxn} | a \in R$ }

 $M_n(R)$ is an additive abelian group under matrix addition. If $(a_{ij}) \in M_n(R)$ and $a \in R$, then the operation $a.(a_{ij}) = (a.a_{ij})$ makes $M_n(R)$ into an R-module. $M_n(R)$ is also a left R-module under the operation $a.(a_{ij}) = (a.a_{ii})$.

10. The Module R[X]. If R[X] is the set of all polynomials in X with their coefficients in R,

i.e
$$R[X] = \{(a_0, a_1, ..., a_n) | a_i \in R, i = 1, 2, ..., n, \}$$

then (R[X], +) is an additive abelian group under polynomial addition on R[X] is an R-module via the function $R \times R[X] \rightarrow R[X]$ defined by : $a.(a_0 + x.a_1 + ... + x^n.a_n) = (a.a_0) + (a.a_1).x + ... + (a.a_n).x^n$

<u>Definition.</u> Let R be a ring, A an R-module and B a nonempty subset of A. B is a *submodule* of A provided that B is an additive subgroup of A and $rb \in B$ for all $r \in R$ and $b \in B$.

Remark. Let R be a ring, A an R-module and B a nonempty subset of A. B is a submodule iff:

- 1. for all $a, b \in B$, $a+b \in B$
- 2. for all $r \in R$ and $a \in B$, ra $\in B$.

Another characterization for a submodule concept

Remark. A nonempty subset B of an R-module A a submodule iff: $ax + by \in B$, for all $a, b \in R$ and $x, y \in B$.

Examples.

1. let M an R-module and $x \in M$, the set

 $R_x = \{rx | r \in R\}$ is a submodule of M such that

a.
$$r_1x - r_2x = r_1x + (-r_2)x \in R_x$$
.

b.
$$r_1(r_2x) = (r_1r_2)x$$

2. let R be a commutative ring with identity and S be a set. Consider the set

$$X = R^s = \{f : S \rightarrow R; f \text{ is a function}\}.$$

The two operation "+" and "." on X denoted by

$$(f+g)(s) = f(s) + g(s)$$
 and $(f.g)(s) = f(s)$. $g(s)$ for $s \in S$ and $f, g \in X$

Then (X, +) is an abelian group (H.W).

The function $\alpha: R \times X \to X$ denoted by $\alpha(r, f) = rf$ since (rf)(s) = r(f(s)) for all $s \in S$, $r \in R$ and $f \in X$, then X is an R-module(H. W)

And $Y = \{f : \in X : f(s) = 0 \text{ for all but at most a finite number of } s \in S\}$, the Y is a submodule of an R-module X. (H.W)

- 3. *Finite Sums of Submodules*. If $M_1, M_2, ..., M_n$ are submodules of an R-module M, then $M_1 + M_2 + ... + M_n = \{x_1 + x_2 + ... + x_n | x_i \in M_i \text{ for } i=1,2,...,n\}$ is a submodule of M for each integer $n \ge 1$.
- 4. If one take n=2 in (3) then

$$N+K=\{x+y \mid x \in N, y \in K\}$$

is a submodule of M for each submodule N and K of M Proof. let w_1 , $w_2 \in N+K$. Then

i.
$$w_1 = x_1 + y_1$$
 and $w_2 = x_2 + y_2$ for $x_1, x_2 \in N$ and $y_1, y_2 \in K$. Now, $w_1 + w_2 = (x_1 + y_1) + (x_2 + y_2) = (x_1 + x_2) + (y_1 + y_2) \in N + K$.

ii. let
$$w = x + y \in N+K$$
, $r \in R$. so, $rw = r(x+y) = rx + ry \in N+K$.

5. let N_{α} ; $\alpha \in I(I \text{ is the index set})$, be a family of submodules of an R-module M, then $\bigcap_{\alpha \in I} N_{\alpha}$ is also a submodule of M. Proof. H.W.