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In this semester, we shall study the following four chapters

Chapter one: Definitions and Preliminaries.

Chapter two: Modules homomorphism

Chapter three: Sequences

Chapter four: Noetherian and Artinian modules

Chapter one (Definitions and Preliminaries.)

Definition. (Modules)

Let R be a ring. A (left) R-module is an additive abelian group M
together with a function f: R x M — M defined by: f(r,a)=ra such that
forallr,s ER and a,b € M :

l.t(a+b)=ra+rbh.

}(distributive laws)
2. (r+s)a=ra+sa.
3. r(sa) = (rs)a. (associative law )

If R has an identity element 1z and

4. lrpa=aforalla € M,
then M is said to be a unitary left R-module.
Remarks.

1. A (unitary) right R-module is defined similarly by a function
f:MxR—M denoted by (a,r) — ar and satisfying the obvious
analogues of (1)-(4).

2. If R is commutative, then every left R-module M can be given the
structure of a right R-module by defining ar =ra forr € R, a € M.
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3. Every module M over a commutative ring R is assumed to be both
a left and a right module with ar = ra for all r ER, a€ M.

4. We shall refer to left R-module by R- module. Also, in this course,
all R-modules are unitary.

Remarks.

1. If Oy is the additive identity element of M and Oy is the additive
identity element of a ring R (where M 1s an R-module ), then for
allreR,aeM:r0y=0y andOr a=0y.

2. (-r)a = -(ra) = r(-a) and n(ra) = r(na) forallr € R,a € M and n €
Z(ring of integers).

Examples.

1. Every commutative ring is an R-module.

Proof. Define f: R x R — R by f(ry, 1,) = i1, for all 1}, 1, ER.then
a. (ritr)r=rr+r1,r
b. r(r;+ 1p) =11+ 11,
C. (rir)r =1y( 151)

2. Every additive abelian group G is a unitary Z -module.

Proof. Define a: Z x G— G by: a(n, m) = nm for all n € Z and m
€G.
tea(n,m)=m+m++ -+ m=nm

n—times
since G is group and m € G, then there is —m €G such that
(hrmy=—m-m-—--—m

n—times
Now,
1. (n;+np)m =n;m + n,m
ii. n(m;+ my) = (my + my) + (my + my) + -+ (M + my)
n—times
= nm, + nm,

1i1.(n; ny)m = n;( nym)
also, since Z has identity element, then
iv. . m=m
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Proof. Define B: Z x Q — Q by:
B(m,%)=m%=% for all me Zand% € Q.
6. If Z,, is the group of integers modulo n, then Z, is Z-module.
Proof. define a: Z x Z, — Z, by: a(n, a) =na forall n€ Z, a € Z,.
7. Let A be an abelian group and
S= endr(A) = Homg(A, A)= {ff A— A; f is a group
homomorphism}
Define "+ " on S by: forall f, g € Sand a € A,
(frg)(a) = f(a) + g(a)
Then
1. (S, +) is an abelian group:
1. Sis closed under "+"
i1. 0(a) =0 (zero function 0 : A— A)
i1.(-f(a)) = -(f(a)) (additive inverse)

(f+ (-D)(a) = f(a) + -(f(a)) = 0
1v. "+'" 1s an associative operation

1v."+" is an abelian:

(frg)(a) = f(a) + g(a) = g(a) + f(a) = (g+)(a)
(S, +) is an abelian group

2. Define " . " on S by: forall f,g € Sand a € A,

f.g =fog and (fog)(a) = (f(g(a))
(S, +, .) is aring with identity I: A— A (where fol = lof = f)
3. Now, one can consider A as a unitary S-module:
witha:SxA — A, off,a)=fla) feSanda€e A
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3. Every ideal in a ring R is an R- module
4. Every vector space V over a field F is F-module.
5. If Q 1s the set of rational numbers, then Q is Z-module.
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9. The R-module M,, (R). let
M, (R) = the set of nxn matrices over R

:{( aij )nxn | IS R}
M, (R) 1s an additive abelian group under matrix addition. If ( a; )€
M, (R) and a€ R, then the operation a.(a;;) = (a.a;;) makes M, (R)
into an R-module. M, (R)is also a left R-module under the
operation a.(a;)= (a.ajj).
10. The Module R[X]. If R[X] is the set of all polynomials in X
with their coefficients in R,

Le R[X]={(ag.,a,... ,ay)| ;€ R, 1=1,2,...,n,}

then (R[X], +) is an additive abelian group under polynomial
addition  on R[X] is an R-module via the function R x R[X]— R[X]
defined by : a.(ap + x.a; +... +x".a,) = (a.a9) H(a.a;).x + ... + (a.a,).x"

Definition. Let R be a ring, A an R-module and B a nonempty subset of
A. B is a submodule of A provided that B is an additive subgroup of A
and b € B forallr € Rand b € B.

Remark. Let R be a ring, A an R-module and B a nonempty subset of
A. B is a submodule iff:

1. foralla,bEe B,atb €B
2. forallr € R and a € B, ra €B.
Another characterization for a submodule concept

Remark. A nonempty subset B of an R-module A a submodule iff: ax +
by € B, forall a,b € R and x, y € B.

Examples.

1. let M an R-module and x €M, the set
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8. If R is a ring, every abelian group can be consider as an R-module
with trivial module structure by defining ra =0 forallr € R and a € ‘



m
N

= -
i
Ry = {rx| r € R} is a submodule of M such that
a. 11X —nx =rx+(-rn)x ER,.
b. r1(rx) = (rir2)x
2. let R be a commutative ring with identity and S be a set. Consider
the set
X =R’= {f:S — R; fis a function}.
The two operation "+" and "." on X denoted by

A

Then (X, +) is an abelian group (H.W).

(f+g)(s) = f(s) + g(s) and (f.g)(s) =1f(s) . g(s) fors€Sandf, g€ X

The function a : R x X — X denoted by a(r, f) = rf since (rf)(s)=
r(f(s)) foralls € S, r € R and f € X, then X is an R-module(H. W)
And Y = {f: €X: f(s) = 0 for all but at most a finite number of s € S},
the Y is a submodule of an R-module X. (H.W)

3. Finite Sums of Submodules. If M,, M,, ....M,, are submodules of
an R-module M, then M|+ M+ ...+M, = {X;+ Xt ...+X,| X; EM;
for 1=1,2,...,n} 1s a submodule of M for each integer n>1.

4. If one take n=2 in (3) then

N+K={x+y [x €N, y €K}
1s a submodule of M for each submodule N and K of M
Proof. let w; , w, € N+K. Then
1. wi= X1+ y; and w, =X, +y, for X;, X, € N and yy, y, € K. Now,
Wit Wy = (X1t y1) + (X2 +y2) = (Xt Xa) + (Y1t y2) € NTK.
. let w=x+y € N+K, r € R. so, rw = r(x+y) =rx + ry € N+K.

5. let Ny; a € I(I 1s the index set), be a family of submodules of an R-
module M, then N ¢; N, 1s also a submodule of M.

Proof. H.W.
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