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Chapter four (Noetherian and Artinian modules)

Ascending and Descending chain condition

Definition. An R-module M is said to be satisfy the ascending chain

condition (resp. descending chain condition) if for every ascending
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(resp. descending) chain of submodules
M, SsM,sM;<...< M, < ...
(resp. M >M,>M;>...> M, >...)
there exists m € Z, such that M, = M,, whenever n > m.

Definition. A module which satisfies the ascending chain condition is
said to be Noetherian.

Definition. A module which satisfies the descending chain condition is
said to be Artinian.

Remark. A ring R is said to be Noetherian (Artinian) if it is Noetherian
(Artinian) as an R-module. i.e., if it satisfies a.c.c. (d.c.c.) on ideals.

Example. Every simple module is both Noetherian and Artinian.

Theorem 1. Let M be an R-module. Then the following statements are
equivalent:

1. M satisfies the ascending (descending) chain condition.

2. For any nonempty family {M},¢; of submodules of M, there
exist a maximal (minimal) element M, satisfies the maximal
condition (resp. minimal condition)

(i.e AM, € {Mg }4e; such that whenever M < Mg, then My = Mgp )
(resp. 1.e AMy € {Mg}4e; such that whenever Mg < M, then M=
Mp)

Proof. (1—2) consider the set

F = {Mi| M; <M}
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M3 € F such that M2 < M3.
Continuing in this way, we get
M <M, <M;< ...

A chain of submodules of M. if this sequence is an infinite, then it does
not satisfy the ACC. C!

~ F has maximal element

(2 — 1) suppose M satisfies the maximal condition for submodules, and
let

M <M, <M;< ...
be ascending chain of submodules of M.

Let H = {Mg}q4e; be a family of the submodules of M. Then H +#
@ and has maximal element M,,,. implies whenever n > m, M, = M,..

~ H satisfies the ascending chain condition.

Theorem 2. Let M be an R-module. Then the following statements are
equivalent:

1. M is Noetherian.
2. Every submodule of M is finitely generated.

Proof. (1 — 2) suppose M is Noetherian module and K be submodule of
M. Let F = {A] A is finitely generated submodule of K}

F # ¢ (the zero submodule of A is in F)
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Suppose F has no maximal element.
Let M, € F implies M, 1s not maximal element.
3 M, € F such that M; < M,. Since M, is not max. element, then there is
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contradiction with the maximalist of K,. Hence K, =K
~ K is a finitely generated
(2 — 1) suppose that every submodule of M is finitely generated.
Let K; <K, <Kj;<... be an ascending chain of submodules of M.
Put K = Uj2; K; — K is submodule of M.
— K is a finitely generated submodule of M
— K =Rk; + Rk, + ... +Rk,
— each Kj 1s in Kj's
— 3 m such that k;, ko, ...k, € K, Vn>m
= M is Noetherian module.
Examples.

o E
i
Since M is Noetherian module , so F has maximal element say K.
Hence K, is finitely generated submodule of K
1.e Ko=Rk; +Rk,+ ... +Rk,
Suppose Ko #K — 3 a € Kand a & Kj and so
K0+Ra=K0=Rk1 +Rk2+ +Rkn+Ra
« Ko+ Ra is a finitely generated submodule of K, then Ky + Ra € F is a
1. The Z- module Z is Noetherian module (every submodule of the
Z- module Z (= nZ cyclic) is finitely generated) which is not
Artinian (2Z > 4Z>8Z > ... >2"7Z> .... is a chain of ideals of Z
that does not terminate)
2. The ring of integers Z is Noetherian (every principal ideal ring is
Noetherian).
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3. Q 1s not Noetherian module (since the Z- module Q is not finitely
generated).

4. A division ring D is Artinian and Noetherian since the only right
or left ideals of D are 0 and D.

5. Every finite module is an Artinian module.

L
Remark. Every nonzero Artinian module contains a simple submodule.

Proof. let 0 # M be an Artinian module.

If M is a simple module, then we are done.

If not, 3 0# M, submodule of M. If M, is a simple, then we are done.

If not, 3 0# M, submodule of M. If M, is a simple, then we are done.

If not, 3 0# M; submodule of M,. If Mj; is a simple, then we are done.

So there is a descending chain

M>M;>2M,>M;3> ... |

of submodules of M. Since M is an Artinian module, then the family
{M;};¢; of the chain has minimal element and this element is the simple
submodule.

Proposition. Let 0 > N 5 M 5 % — Obe a short exact sequence of R-
modules and module homomorphism. Then M is Noetherian (resp.
Artinian) iff both N (Artinian) and % are Noetherian (Artinian) (resp.
Artinian).
Proof.—)Suppose that M is a Noetherian module and N submodule of M

. So every submodule of N is a submodule of M. so N is Noetherian. Let

M M M
Lo 23 <
N —~ N N —

: : M
be an ascending chain of submodules of ot where
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M, <M, <M;<...

is an ascending chain of submodules of M which contain N. But M
Noetherian, 3m such that M, = M,, for all n > m.

M . X
- 18 Noetherian module.

<) Suppose that N and % are Noetherian modules. Let

M sM,<M;<...
be an ascending chain of submodules of M. Then
M;AN<M, NN<M; NN<...

1s an ascending chain of submodules of N, so there 1s an integer m; > 1
such that M, N N = My, NN for all n > m;. Also,

M;+N M>+N Mo+N
1+ < 2t < 3+ <
N — N — N

: : : M : :
1s an ascending chain of submodules of 5 and there is an integer m, >1

Mp+N _ Mp,+N
N N
for alln>m,

such that

for all n > m,. Let m = max.{m;, m,}. Then

Mp+N _ Mp+N

M, N N=M,, NN and v

Mp+N M
Ifn>mandx € M,,thenx + N € ’;: = "I‘V+

such that x + N =y +N implies that x - y € N and since M, <M, we
havex-yE M, N N=M, ;N Nwhenn>mIfx-y=z€ M, NN, then
X =y+z € M,, so M, <M,,. Hence, M, = M, whenever n > m, so M is
Noetherian.

N :
,sothereisay € M,

: f :
Remark. In general, if the sequence 0 - A - B kA C — 01s a short
exact, then B is Noetherian (Artinian) if and only if each of A and C is
Noetherian (Artinian).
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Example. Let M; and M, be R-modules. Then M; @M, is Noetherian
(Artinian) iff each of M; and M, is Noetherian (Artinian). (i.e every
finite direct sum of Noetherian (Artinian)is Noetherian (Artinian)

(The proof is done using the short exact sequence

J
0 M, 3M®M, 3 M, - 0)

Theorem. Let o : M — M be an epimorphism. If M is Noetherian
(Artinian), then so is M.

Proof. Since kera is a submodule of M, then the sequence

0—>kera—l>ME> -0

kera

is a short exact sequence. By hypothesis, M is Noetherian, 1mphes that
™ _is Noetherian. But % ~ M(first isomorphism theorem) and — 1s

-
kera ‘
Noetherian, so M is a Noetherian.

Theorem. The following are equivalent for a ring R.

1. R is right Noetherian.
2. Every finitely generated R-module is Noetherian.

Proof.(1— 2) let M be a finite generated over a Noetherian ring R.

3 X, Xy, ..., X,€ M such that M = Rx;+ Rx,+ ...+ Rx,. since R is
Noetherian, then so is the finite direct sum of copies of R. Define

a:R™Y 5 Mby: oy, I, ..., Iy) = X+ TiXot ...+ IiXy.

It's clear that a 1s a well-define, homomorphism and onto. So, Ima =
is Noetherian.

(2 — 1)Since R = <1>, so R is finitely generated and hence R is
Noetherian.
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