Chapter four (Noetherian and Artinian modules)

Ascending and Descending chain condition

<u>Definition.</u> An R-module M is said to be satisfy the ascending chain condition (resp. descending chain condition) if for every ascending (resp. descending) chain of submodules

$$M_1 \leq M_2 \leq M_3 \leq \ldots \leq M_n \leq \ldots$$
 (resp.
$$M_1 \geq M_2 \geq M_3 \geq \ldots \geq M_n \geq \ldots)$$

there exists $m \in \mathbb{Z}_+$ such that $M_n = M_m$ whenever $n \ge m$.

<u>Definition</u>. A module which satisfies the ascending chain condition is said to be *Noetherian*.

<u>Definition</u>. A module which satisfies the descending chain condition is said to be *Artinian*.

Remark. A ring R is said to be *Noetherian* (*Artinian*) if it is *Noetherian* (*Artinian*) as an R-module. i.e., if it satisfies a.c.c. (d.c.c.) on ideals.

Example. Every simple module is both Noetherian and Artinian.

Theorem 1. Let M be an R-module. Then the following statements are equivalent:

- 1. M satisfies the ascending (descending) chain condition.
- 2. For any nonempty family $\{M_{\alpha}\}_{\alpha \in I}$ of submodules of M, there exist a maximal (minimal) element M_0 satisfies the maximal condition (resp. minimal condition)

 (i.e. $\exists M_0 \in \{M_{\alpha}\}_{\alpha \in I}$ such that whenever $M_0 \leq M_0$, then $M_0 = M_0$

(i.e $\exists M_0 \in \{M_\alpha\}_{\alpha \in I}$ such that whenever $M_0 \leq M_\beta$, then $M_0 = M_\beta$) (resp. i.e $\exists M_0 \in \{M_\alpha\}_{\alpha \in I}$ such that whenever $M_\beta \leq M_0$, then $M_0 = M_\beta$)

Proof. $(1\rightarrow 2)$ consider the set

$$\mathcal{F} = \{M_i | M_i \leq M\}$$

$$\mathcal{F} \neq \varphi$$

Suppose \mathcal{F} has no maximal element.

Let $M_1 \in \mathcal{F}$ implies M_1 is not maximal element.

 $\exists M_2 \in \mathcal{F}$ such that $M_1 \leq M_2$. Since M_2 is not max. element, then there is $M_3 \in \mathcal{F}$ such that $M_2 \leq M_3$.

Continuing in this way, we get

$$M_1 \le M_2 \le M_3 \le \dots$$

A chain of submodules of M. if this sequence is an infinite, then it does not satisfy the ACC. C!

 \therefore \mathcal{F} has maximal element

 $(2 \rightarrow 1)$ suppose M satisfies the maximal condition for submodules, and let

$$M_1 \le M_2 \le M_3 \le \dots$$

be ascending chain of submodules of M.

Let $\mathcal{H} = \{M_{\alpha}\}_{{\alpha} \in I}$ be a family of the submodules of M. Then $\mathcal{H} \neq \varphi$ and has maximal element M_m . implies whenever $n \geq m$, $M_m = M_n$.

 $\therefore \mathcal{H}$ satisfies the ascending chain condition.

Theorem 2. Let M be an R-module. Then the following statements are equivalent:

- 1. M is Noetherian.
- 2. Every submodule of M is finitely generated.

Proof. $(1 \rightarrow 2)$ suppose M is Noetherian module and K be submodule of M. Let $\mathcal{F} = \{A \mid A \text{ is finitely generated submodule of } K\}$

 $\mathcal{F} \neq \varphi$ (the zero submodule of A is in \mathcal{F})

Since M is Noetherian module, so \mathcal{F} has maximal element say K_0 .

Hence K₀ is finitely generated submodule of K

i.e
$$K_0 = Rk_1 + Rk_2 + ... + Rk_n$$

Suppose $K_0 \neq K \rightarrow \exists \ a \in K \ and \ a \notin K_0 \ and \ so$

$$K_0 + Ra = K_0 = Rk_1 + Rk_2 + ... + Rk_n + Ra$$

 $: K_0 + Ra$ is a finitely generated submodule of K, then $K_0 + Ra \in \mathcal{F}$ is a contradiction with the maximalist of K_0 . Hence $K_0 = K$

∴ K is a finitely generated

 $(2 \rightarrow 1)$ suppose that every submodule of M is finitely generated.

Let $K_1 \le K_2 \le K_3 \le ...$ be an ascending chain of submodules of M.

Put $K = \bigcup_{i=1}^{\infty} K_i \to K$ is submodule of M.

 \rightarrow K is a finitely generated submodule of M

$$\rightarrow$$
 K = Rk₁ + Rk₂ + ... + Rk_n

 \rightarrow each K_j is in K_i 's

 $\rightarrow \exists$ m such that $k_1, k_2, ..., k_r \in K_m \quad \forall n \ge m$

∴ M is Noetherian module.

Examples.

- 1. The \mathbb{Z} module \mathbb{Z} is Noetherian module (every submodule of the \mathbb{Z} module \mathbb{Z} (= $n\mathbb{Z}$ cyclic) is finitely generated) which is not Artinian ($2\mathbb{Z} > 4\mathbb{Z} > 8\mathbb{Z} > ... > 2^n \mathbb{Z} > ...$ is a chain of ideals of Z that does not terminate)
- 2. The ring of integers \mathbb{Z} is Noetherian (every principal ideal ring is Noetherian).

- 3. Q is not Noetherian module (since the \mathbb{Z} module Q is not finitely generated).
- 4. A division ring D is Artinian and Noetherian since the only right or left ideals of D are 0 and D.
- 5. Every finite module is an Artinian module.

Remark. Every nonzero Artinian module contains a simple submodule.

Proof. let $0 \neq M$ be an Artinian module.

If M is a simple module, then we are done.

If not, $\exists 0 \neq M_1$ submodule of M. If M_1 is a simple, then we are done.

If not, $\exists 0 \neq M_2$ submodule of M_1 . If M_2 is a simple, then we are done.

If not, $\exists 0 \neq M_3$ submodule of M_2 . If M_3 is a simple, then we are done.

So there is a descending chain

$$M \ge M_1 \ge M_2 \ge M_3 \ge \dots$$

of submodules of M. Since M is an Artinian module, then the family $\{M_i\}_{i\in I}$ of the chain has minimal element and this element is the simple submodule.

Proposition. Let $0 \to N \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{N} \to 0$ be a short exact sequence of R-modules and module homomorphism. Then M is Noetherian (resp. Artinian) iff both N (Artinian) and $\frac{M}{N}$ are Noetherian (Artinian) (resp. Artinian).

Proof.→)Suppose that M is a Noetherian module and N submodule of M. So every submodule of N is a submodule of M. so N is Noetherian. Let

$$\frac{M_1}{N} \le \frac{M_2}{N} \le \frac{M_3}{N} \le \dots$$

be an ascending chain of submodules of $\frac{M}{N}$, where

$$M_1 \leq M_2 \leq M_3 \leq \dots$$

is an ascending chain of submodules of M which contain N. But M Noetherian, $\exists m$ such that $M_n = M_m$ for all $n \ge m$.

$$\therefore \frac{M}{N}$$
 is Noetherian module.

←) Suppose that N and $\frac{M}{N}$ are Noetherian modules. Let

$$M_1 \le M_2 \le M_3 \le \dots$$

be an ascending chain of submodules of M. Then

$$M_1 \cap N \leq M_2 \cap N \leq M_3 \cap N \leq \dots$$

is an ascending chain of submodules of N, so there is an integer $m_1 \ge 1$ such that $M_n \cap N = M_{m_1} \cap N$ for all $n \ge m_1$. Also,

$$\frac{M_1+N}{N} \le \frac{M_2+N}{N} \le \frac{M_3+N}{N} \le \dots$$

is an ascending chain of submodules of $\frac{M}{N}$ and there is an integer $m_2 \ge 1$ such that $\frac{M_n + N}{N} = \frac{M_{m_2} + N}{N}$ for all $n \ge m_2$. Let $m = \max.\{m_1, m_2\}$. Then for all $n \ge m$,

$$M_n \cap N = M_m \cap N$$
 and $\frac{M_n + N}{N} = \frac{M_m + N}{N}$

If $n \ge m$ and $x \in M_n$, then $x + N \in \frac{M_n + N}{N} = \frac{M_m + N}{N}$, so there is a $y \in M_m$ such that x + N = y + N implies that $x - y \in N$ and since $M_m \le M_n$ we have $x - y \in M_n \cap N = M_m \cap N$ when $n \ge m$ If $x - y = z \in M_m \cap N$, then $x = y + z \in M_m$, so $M_n \le M_m$. Hence, $M_n = M_m$ whenever $n \ge m$, so M is Noetherian.

Remark. In general, if the sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is a short exact, then B is Noetherian (Artinian) if and only if each of A and C is Noetherian (Artinian).

Example. Let M_1 and M_2 be R-modules. Then $M_1 \oplus M_2$ is Noetherian (Artinian) iff each of M_1 and M_2 is Noetherian (Artinian). (i.e every finite direct sum of Noetherian (Artinian)is Noetherian (Artinian)

(The proof is done using the short exact sequence

$$0 \to M_1 \stackrel{J_1}{\to} M_1 \bigoplus M_2 \stackrel{\rho_2}{\to} M_2 \to 0)$$

Theorem. Let $\alpha: M \to M$ be an epimorphism. If M is Noetherian (Artinian), then so is M.

Proof. Since kerα is a submodule of M, then the sequence

$$0 \to ker\alpha \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{ker\alpha} \to 0$$

is a short exact sequence. By hypothesis, M is Noetherian, implies that $\frac{M}{ker\alpha}$ is Noetherian. But $\frac{M}{ker\alpha} \approx M$ (first isomorphism theorem) and $\frac{M}{ker\alpha}$ is Noetherian, so M is a Noetherian.

Theorem. The following are equivalent for a ring R.

- 1. R is right Noetherian.
- 2. Every finitely generated R-module is Noetherian.

Proof.(1 \rightarrow 2) let M be a finite generated over a Noetherian ring R.

 $\exists x_1, x_2, ..., x_n \in M$ such that $M = Rx_1 + Rx_2 + ... + Rx_n$. since R is Noetherian, then so is the finite direct sum of copies of R. Define

$$\alpha: R^{(n)} \to M \ by: \alpha(r_1, r_2, ..., r_n) = r_n x_1 + r_n x_2 + ... + r_n x_n.$$

It's clear that α is a well-define, homomorphism and onto. So, $Im\alpha = M$ is Noetherian.

 $(2 \rightarrow 1)$ Since R = <1>, so R is finitely generated and hence R is Noetherian.

References

- 1. P.E. Bland, "Rings and Their modules", New York, 2011.
- 2. T.W. Hungerford, "Algebra", New York, 2000.
- 3. D.M. Burton, "Abstract and linear algebra", London, 1972.
- 4. M.F. Atiyah, "Introduction to Commutative Algebra", University of Oxford, 1969.