<u>Certain Types of Ideals</u>

<u>Definition</u>. Let R be ring and I be an ideal of R, then I is said to be *maximal ideal* of R if it satisfy the following conditions:

- 1. $I \neq R$ (I is a proper ideal of R, $I \subsetneq R$)
- 2. If J is an ideal of R such that $J \supseteq I$, then J = R.

Example.

- 3Z is a maximal of Z.
 Proof. let N be an ideal of Z such that N ⊇ 3Z. → ∃ m∈ N, m∉ 3Z with gcd(m, 3) = 1. Let s, t ∈ Z such that ms + 3t = 1 →1 ∈ N → N = Z.
- 2. 4 \mathbb{Z} is not maximal of \mathbb{Z} . (4 $\mathbb{Z} \subsetneq 2\mathbb{Z} \subsetneq \mathbb{Z}$)

Question.

Find the maximal ideals of \mathbb{Z}_6 and \mathbb{Z}_{12} ?

<u>Theorem</u>. let n be a positive integer, then: $\langle n \rangle$ (the ideal generated by n) is maximal iff n is prime.

Proof. \Rightarrow) suppose n is not prime and <n> is maximal ideal of R.

 \rightarrow n = p₁p₂ (p₁ and p₂ are prime ideals of R).

 $\rightarrow \langle n \rangle \subset \langle p_1 \rangle \subset \mathbb{Z} \rightarrow \langle n \rangle$ is not maximal ideal of \mathbb{Z} C!

 \therefore n is prime number

⇐) suppose that n is prime and there is an ideal $I \subsetneq \mathbb{Z}$ such that $\langle n \rangle \subset I \longrightarrow \exists m \in I$ such that $m \notin \langle n \rangle \longrightarrow \gcd(m, n) = 1$ (n prime)

 \exists s, t $\in \mathbb{Z}$ such that sm + tn = 1 \rightarrow m \in I \rightarrow 1 \in I \rightarrow I = R.

 \therefore <n> is maximal ideal of R

<u>Theorem</u>. Let I be a proper ideal of a ring R, then I is maximal iff $\leq I$, $a \geq R$ for all $a \in R$ -I.

Proof. (I, a) = $\{i + ra \mid i \in I \text{ and } r \in R\}$

 \Rightarrow) Suppose that I is a maximal ideal and $a \in R$ and $a \notin I$. since $I \subsetneq <I$, $a \ge R$ and by hypothesis I is a maximal ideal $\rightarrow <I$, $a \ge R$ (by definition of maximal ideal)

⇐) Suppose that for all $a \in R$ and $a \notin I$, $\langle I, a \rangle = R$. Suppose that $I \subsetneq J \subsetneq R \rightarrow \exists x \in J$ and $x \notin I \rightarrow \langle I, x \rangle = R$ (by hypotheses)

But $\langle I, x \rangle \subsetneq R \longrightarrow R \subseteq J \longrightarrow J = R$

∴ I is maximal ideal

<u>Remark</u>. the maximal ideal of a ring R is not necessary unique.

Example. The ideals <2>, <3>, <5>, ... of the ring \mathbb{Z} are maximal ideals.

Zorn's lemma. If (S, \leq) is a partially ordered set with the property that every chain in S has an upper bound in S, then S possesses at least one maximal element.

Theorem. In a commutative ring with identity, each proper ideal is contained in a maximal ideal.

Proof. Let I be any proper ideal of R with r is commutative ring with identity 1.

Define a family a family of ideals of R by

 $F = \{J | I \subseteq J, J \text{ is a proper ideal of } R\}$

 $\mathbf{F}\neq \phi \; (\mathbf{I}\in \mathbf{F})$

Let $\{J_i\}_{i \in \Lambda}$ be an arbitrary chain of ideals in F and a, $b \in \bigcup_{i \in \Lambda} J_i$, $r \in \mathbb{R}$. $\exists j$ and k indexes for which $a \in J_i$, $b \in J_k$.

 \rightarrow we have a chain: either $J_i \subseteq J_k$ or $J_k \subseteq J_i$.

Suppose that $J_i \subseteq J_k \rightarrow a, b \in J_k$ but J_k ideal

 \rightarrow a-b \in J_k \subseteq $\bigcup_{i \in \Lambda} J_i \dots (1)$

and ar, ra $\in J_k \subseteq \bigcup_{i \in \Lambda} J_i \dots (2)$

by (1) and (2) $\bigcup_{i \in \Lambda} J_i$ is an ideal of R

1 ∉ $\bigcup_{i \in \Lambda} J_i$ (if not ∃ k indexes such that 1 ∈ J_k C! since J_k is proper) → $\bigcup_{i \in \Lambda} J_i$ is proper ideal of R and I⊆ $\bigcup_{i \in \Lambda} J_i \in F$.

By Zorn's lemma, F has maximal element $M \rightarrow M$ is proper ideal of R with $I \subseteq M$. now, to prove M is maximal ideal : suppose $\exists J \subseteq R$ such that $M \subset J \subseteq R$. Since M is maximal element of F. then $J \notin F$.

 \rightarrow J is improper \rightarrow J = R \rightarrow M is maximal ideal.

Remarks.

- 1. Let R be finitely generated ring. Then every proper ideal of R contained in a maximal ideal.
- 2. An element in a commutative ring with identity is invertible iff it belongs to no maximal ideal of R.
- 3. Example : the maximal ideals of \mathbb{Z}_6 are $\{\overline{0}, \overline{2}, \overline{4}\}$ and $\{\overline{0}, \overline{3}\}$. So $\overline{5}$ is an invertible element in \mathbb{Z}_6 .
- 4. The element $\overline{0}$ in \mathbb{Z}_4 is not invertible (why?)
- 5. The only maximal ideal in any field F is <0> Proof. Suppose that F field.
 - \rightarrow for all $0 \neq a \in F$ has inverse $\rightarrow a \notin I$ for a maximal ideal I

 \rightarrow I proper ideal. But F is field, hence the only ideals of R are

 $\{0\}$ and $F \rightarrow I = \{0\}$ is the only maximal ideal of R.

- 6. If R is a commutative ring with identity and has only one maximal ideal, then R is said to be *local ring*.
- 7. If a ring R have exactly one maximal ideal I, then the idempotent elements in R only 0 and 1.
 Proof. Suppose that R has only one maximal ideal (say I) and a an idempotent element in I such that a ≠ 0, 1.
 → a² = a → a²-a = 0 → a(a-1) = 0. Since a ≠ 0, 1 → a-1 ≠ 0

 $\rightarrow a^2 = a \rightarrow a^2 - a = 0 \rightarrow a(a-1) = 0$. Since $a \neq 0, 1 \rightarrow a-1 \neq 0$ then a and a-1 are zero divisors.

 \rightarrow Neither a nor a-1 invertible element(by: every zero divisor is not invertible) \rightarrow a and a-1 \in I(I maximal)

 \rightarrow a – (a-1) = 1 \in I(I ideal)

- \rightarrow I = R C! (I maximal) \rightarrow a = 0 and 1
- 8. The converse of (6) is not true in general: the only idempotent in the ring (Z,+, .) is 0, 1 but (Z, +, .) has an infinitely maximal ideal.
- 9. The ring \mathbb{Z}_4 is local ring while \mathbb{Z}_6 and \mathbb{Z} are not.
- 10. Let R be a commutative ring with identity and I be a proper ideal of R, then I is a maximal ideal iff the quotient ring $\frac{R}{I}$ is field.

<u>Definition</u>. Let R be a commutative ring with identity. The set

 $Rad(R) = \bigcap \{M | M \text{ is maximal ideal of } R\}$

is called *Jacobson radical* of a ring R.

Remarks.

- 1. If $Rad(R) = \{0\}$, then R is said to be ring without radical.
- 2. Rad(R) $\neq \emptyset$.
- 3. Rad(R) is an ideal.

4. Rad(R) is always exist (since any commutative ring with identity contains at least one maximal ideal).

Examples.

1.
$$\operatorname{Rad}(\mathbb{Z}_4) = \{\overline{0}, \overline{2}\}$$

2. $\operatorname{Rad}(\mathbb{Z}_6) = \{\overline{0}\}$
3. $\operatorname{Rad}(\mathbb{Z}_p) = \{\overline{0}\}$
4. $\operatorname{Rad}(\mathbb{Z}) = \cap \{| p \text{ is prime number}\}\ = \{\overline{0}\}$

Remarks.

- 1. Rad(R) is proper ideal of a ring R(if not: $1 \in R = Rad(R) \rightarrow 1 \in maximal ideal C!$
- Let R be a commutative ring with identity 1 and I be an ideal of R. Then I ⊆ Rad(R) if and only if each element in 1+I has invertible in R.
- 3. Let R is commutative ring with identity 1, then $a \in Rad(R)$ if and only if the element 1-ra invertible for each $r \in R$.
- 4. In a commutative ring with identity 1, the only idempotent element in Rad(R) is 0.

Proof. Let $a \in \text{Rad}(R)$ with $a^2 = a \longrightarrow a^2 - a = a(a - 1) = 0$

 \rightarrow 1- a invertible element $\rightarrow \exists b \in \mathbb{R}$ such that (1 - a)b = 1 $\rightarrow a = a(1-a)b = 0$. $b \rightarrow a = 0$.

5. Every nil ideal of R is contained in Rad(R).

Definition. Let R be a ring and P be an ideal of R. Then P is said to be *prime ideal* of R if whenever $a.b \in I$, either $a \in I$ or $b \in I$ for a, $b \in R$.

Examples.

- 1. $5\mathbb{Z}$ is prime ideal of \mathbb{Z} .
- 2. 4 \mathbb{Z} is not prime ideal of \mathbb{Z} (since $2.2 = 4 \in 4\mathbb{Z}$ while $2 \notin 4\mathbb{Z}$)
- 3. $6\mathbb{Z}$ is not prime ideal of $\mathbb{Z}(\text{why}?)$
- 4. In \mathbb{Z}_6 , the prime ideals are $\{\overline{0}, \overline{3}\}$ and $\{\overline{0}, \overline{2}, \overline{4}\}$

<u>H.W.</u> Find the prime ideals in \mathbb{Z} and \mathbb{Z}_{12} ?

Q / Is the zero ideal prime in any ring?

The answer of Q depends on the type of the ring. For example:

- 1. In \mathbb{Z}_6 , the <0> ideal is not prime. Since if $x = \overline{2}$ and $y = \overline{3}$ then $x.y = 0 \in <0>$ while neither x nor $y \in <0>$
- 2. By the same way, in \mathbb{Z}_4 , the <0> ideal is not prime.
- 3. In Z, the <0> ideal is prime(since if a.b = 0, either a ∈ <0> or b∈ <0>)
- In Z_p(p is prime), the <0> ideal is prime(since Z_p has nonzero divisor)

The following theorem answers about the above question:

<u>**Theorem</u>**. The zero ideal (0) is a prime in a commutative ring with identity R if and only if R is an integral domain.</u>

Proof. \Longrightarrow) Let a, b \in R such that a.b = 0 with a \neq 0 \rightarrow a \notin (0).

But (0) is prime ideal and a.b. $= 0 \in (0) \rightarrow b \in (0) \rightarrow b = 0$

 \rightarrow a is not zero divisor element \rightarrow R has no nonzero divisor element.

Since R is commutative ring with identity $1 \rightarrow R$ is an integral domain.

⇐) Suppose that R is an integral domain and a, b ∈ R such that a, b ∈ $(0) \rightarrow a.b = 0$. If a ∉ $(0) \rightarrow a \neq 0$. Since R is an integral domain, then b = 0 → b ∈ $(0) \rightarrow (0)$ is prime ideal.

<u>**Theorem</u>**. The prime ideals in \mathbb{Z} are only (0) and (p)(p is prime number).</u>

Proof. Since \mathbb{Z} is an integral domain, then (0) is prime ideal in \mathbb{Z} . Now, let p be a prime integers and n, m $\in \mathbb{Z}$ such that n.m \in (p)

 \rightarrow n.m. = rp \rightarrow p\ n.m \rightarrow p\n or p\m

 \rightarrow either n = r₁p \rightarrow n \in (p)

Or $m = r_2 p \rightarrow m \in (p)$

 \therefore (p) is prime ideal

Example. The ring $\mathbb{Z} \times \mathbb{Z} = \{(n,m) | n, m \in \mathbb{Z}\}$. Let $p = \mathbb{Z} \times \{0\}$ is an ideal in $\mathbb{Z} \times \mathbb{Z}$. Then (p) is prime ideal in the ring $\mathbb{Z} \times \mathbb{Z}$.

Proof. let (n_1, m_1) , $(n_2, m_2) \in \mathbb{Z} \times \mathbb{Z}$ such that $(n_1, m_1).(n_2, m_2) = (n_1.n_1, m_1.m_2) \in \mathbb{Z} \times \{0\} \rightarrow m_1.m_2 = 0 \rightarrow \text{either } m_1 = 0 \text{ or } m_2 = 0$ (because (0) is prime ideal in \mathbb{Z}) $\rightarrow \text{either } (n_1, m_1) \in \mathbb{Z} \times \{0\}$ or $(n_2, m_2) \in \mathbb{Z} \times \{0\} \rightarrow \mathbb{Z} \times \{0\}$ is prime ideal.

<u>**Theorem</u>**. In a commutative ring with identity 1, every maximal ideal is a prime.</u>

Proof. let M be a maximal ideal in a ring R and $a.b \in R$ such that $a.b \in M$ with $a \notin M$. Now, $a \in R$ and $a \notin M$ with M is maximal ideal, then $(M, a) = R \rightarrow 1 \in (M, a) \rightarrow 1 = m + ra \rightarrow b = mb + rab \in M$

 \rightarrow b \in M \rightarrow M is a prime ideal in R.

<u>**Remark**</u>. Maximal ideal \rightarrow prime ideal

The converse of the previous theorem is not true in general. For example:

The ring $\mathbb{Z} \times \mathbb{Z} = \{(n,m) | n, m \in \mathbb{Z}\}$. Let $p = \mathbb{Z} \times \{0\}$ is an ideal in $\mathbb{Z} \times \mathbb{Z}$. Then (p) is prime ideal in the ring $\mathbb{Z} \times \mathbb{Z}$ (because , $\exists \mathbb{Z} \times 2\mathbb{Z} \subseteq \mathbb{Z} \times \mathbb{Z}$).

Q/ fined another example about: prime ideal \rightarrow maximal ideal.

<u>**Theorem</u>**. Let R be a commutative ring with 1. Let P be a proper ideal of R. Then P is prime ideal if and only if $\frac{R}{P}$ is an integral domain.</u>

Proof. \Rightarrow) since R is commutative ring with identity 1. So, $\frac{R}{p}$ is commutative ring with identity 1+P. Suppose that $\frac{R}{p}$ is not integral domain. i.e $\frac{R}{p}$ has zero divisor. Let a+P and b+P $\in \frac{R}{p}$ such that $(a+P) \neq P$ and $(b+P) \neq P$ with (a+P)(b+P) = P $\rightarrow (a+P)(b+P) = ab + P = P \rightarrow ab \in P$ since P is prime ideal \rightarrow either $a \in P \rightarrow a+P = P C$! or $b \in P \rightarrow b+P = P C$! $\frac{R}{p}$ has no zero divisors $\rightarrow \frac{R}{p}$ is an integral domain. \Leftrightarrow) Let a, b \in R such that a.b \in P and a \notin P. If a.b \in P \rightarrow ab +P = P. $\rightarrow (a+P)(b+P) = P$ but a $\notin P \rightarrow a+P \neq P$ and $\frac{R}{p}$ is an integral domain $\rightarrow b+P = P(\frac{R}{p}$ has no zero divisor) $\rightarrow b \in P \rightarrow P$ is prime ideal. <u>**Remark**</u>. From the theorem(every maximal ideal is prime but the converse is not true in general) the following theorem give the condition under which the converse is true.

<u>**Theorem</u>**. Let R be a principal ideal domain. A non trivial ideal P is prime if and only if P is maximal ideal.</u>

Proof. ⇒) H.W.

⇐) Let $0 \neq M$ be a prime ideal of PID R. Suppose $\exists N \subseteq R$ is an ideal of R such that $M \subsetneq N$. Since N is PID $\rightarrow N = (a)$ and M = (b) for some $a, b \in R$.

Now, $b \in M \subsetneq N \rightarrow b \in N \rightarrow b = ta$ for some $t \in R$. Since M is prime ideal and $b = ta \in M$.

 \rightarrow either t \in M = (b) \rightarrow t = sb for some s \in R

 \rightarrow b = sba = bsa \rightarrow 1 = sa (by cancellation law)

= as (R is commutative ring)

 \rightarrow a is invertible element. But a \in N \rightarrow N = R \rightarrow 0 \neq M is maximal ideal ring.

Remark. if the ideal is trivial, then the previous theorem is not true in general.

Example. Let $R = \mathbb{Z}$ is PID. Then (0) is trivial ideal and prime in \mathbb{Z} , but (0) is not maximal ideal in \mathbb{Z} .

Theorem. Let R be a commutative ring with 1such that $a^2 = a$ for each $a \in R$. Then, a non trivial ideal I of R is prime if and only if I is maximal ideal of R.

Proof. \Leftarrow) H.W.

⇒) Let P be a prime ideal of a commutative ring with 1. To prove P is maximal ideal, suppose $\exists P \subsetneq K \rightarrow \exists x \in K$ -P. But R is Boolean ring (i.e. $a^2 = a$ for each $a \in R$) $\rightarrow x^2 = x \rightarrow x(x-1) = 0 \in P$ (0 \in P). But P is prime ideal and $x \notin P \rightarrow x-1 \in P \subsetneq K \rightarrow x-1 \in K$

 \rightarrow x- (x-1) = 1 \in K \rightarrow K = R \rightarrow P is maximal ideal.

Definition. A ring R is said to be regular if for each $a \in R$, $\exists b \in R$ such that aba = a.

<u>Remark</u>. If R is commutative ring, then R is regular if $a^2b = a$.

Example. The ring \mathbb{Z} is not regular.

Q/ find another example.

<u>**Theorem</u>**. let R be a commutative regular ring, then every prime ideal of R is maximal ideal.</u>

Proof. Let I be a prime ideal in R and $a \notin I$, $a \in R$. Since R is regular ring, $\exists b \in R$ such that $a^2b = a \rightarrow a^2b - a = a(ab - 1) = 0 \in I \rightarrow a(ab - 1) \in I$. But I is prime ideal and $a \notin I \rightarrow ab - 1 \in I$. Put $x = ab - 1 \in I$.

$$1 = ab - x = -x + ab \in (I, a) \rightarrow 1 \in (I, a) \rightarrow (I, a) = R.$$

 \rightarrow I is maximal ideal.

Definition. Let I be an ideal of a ring R. Then the nil radical of I(denoted by \sqrt{I}) is the set:

 $\sqrt{I} = \{ r \in \mathbb{R} | r^n \in \mathbb{I} \text{ for some } n \in \mathbb{Z}_+ \}$

- 1. \sqrt{I} is an ideal of R.(H.W. prove)
- 2. I $\subseteq \sqrt{I}$
- 3. $\sqrt{0} = \{ r \in \mathbb{R} | r^n = 0 \text{ for some } n \in \mathbb{Z}_+ \}$

= the set of all nilpotent element.

4. $\sqrt{0}$ is said to be nil radical of R.

Remarks. If I and J are two ideals of a ring R, then:

1.
$$\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$$

2. $\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}} \supseteq \sqrt{I} + \sqrt{J}$
3. $\sqrt{\sqrt{I}} = \sqrt{I}$
4. If $I^k \subseteq J$ for some $k \in \mathbb{Z}$, then $\sqrt{I} \subseteq \sqrt{J}$.

Proof. Let $x \in \sqrt{I} \cap \sqrt{J} \to x \in \sqrt{I}$ & $x \in \sqrt{J} \to \exists n \in \mathbb{Z}_+$ such that $x^n \in I$ & $\exists m \in \mathbb{Z}_+$ such that $x^m \in J$.

$$\rightarrow (x^{n})^{m} = x^{n} . x^{n} ... x^{n} \text{ (m-times)}$$

$$\rightarrow (x^{m})^{n} = x^{m} . x^{m} ... x^{m} \text{ (n-times)}$$

$$\rightarrow \exists nm \in \mathbb{Z}_{+} \text{ such that } x^{nm} = (x^{n})^{m} = (x^{m})^{n} \in I \cap J.$$

$$\rightarrow x \in \sqrt{I \cap J} \rightarrow \sqrt{I} \cap \sqrt{J} \subseteq \sqrt{I \cap J} ... (1)$$
Let $y \in \sqrt{I \cap J} \rightarrow \exists n \in \mathbb{Z}_{+} \text{ such that } y^{n} \in I \cap J \rightarrow y^{n} \in I \& y^{n} \in J$

$$\rightarrow y \in \sqrt{I} \cap \sqrt{J} \rightarrow \sqrt{I \cap J} \rightarrow \sqrt{I} \cap \sqrt{J} ... (2)$$

$$\rightarrow \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$$

H.W'S: prove the following

1. $\sqrt{IJ} = \sqrt{I} \cap \sqrt{J}$ 2. (2), (3), (4)