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Certain Types of Ideals

Definition. Let R be ring and I be an ideal of R, then I is said to be 
maximal ideal of R if it satisfy the following conditions:

1. I ≠ R (I is a proper ideal of R, I ⊊ R)
2. If J is an ideal of R such that J ⊋ I, then J = R.

Example.

1. 3ℤ is a maximal of ℤ.
Proof. let N be an ideal of ℤ such that N ⊇ 3ℤ.⟶ ∃ m∈ N, 
m∉ 3ℤ with gcd(m, 3) = 1. Let s, t ∈ ℤ such that ms + 3t = 1 ⟶1 ∈ N ⟶ N = ℤ.

2. 4ℤ is not maximal of ℤ. (4ℤ ⊊ 2ℤ ⊊ ℤ)

Question.

Find the maximal ideals of ℤ and ℤଵଶ?

Theorem. let n be a positive integer, then: <n> (the ideal generated 
by n) is maximal iff n is prime.

Proof. ⟹) suppose n is not prime and <n> is maximal ideal of R.⟶ n = p1p2 (p1 and p2 are prime ideals of R).⟶ <n> ⊂ <p1> ⊂ ℤ⟶ <n> is not maximal ideal of ℤ C!∴ n is prime number⟸) suppose that n is prime and there is an ideal I ⊊ ℤ such that 
<n>⊂ I ⟶ ∃ m ∈ I such that m ∉ <n>  ⟶ gcd (m, n) = 1 (n prime)∃ s, t ∈ ℤ such that sm + tn = 1 ⟶ m ∈ I ⟶ 1 ∈ I ⟶ I = R.∴ <n> is maximal ideal of R
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Theorem. Let I be a proper ideal of a ring R, then I is maximal iff <I, 
a> = R for all a ∈ R-I.

Proof. (I, a) = {i + ra |i ∈ I and r ∈ R}⟹) Suppose that I is a maximal ideal and a ∈ R and a ∉ I.  since I ⊊
<I, a> ⊆ R and by hypothesis I is a maximal ideal ⟶ <I, a >= R (by 
definition of maximal ideal)⟸) Suppose that for all a∈ R and a ∉ I, <I, a> = R. Suppose that I ⊊
J ⊊ R ⟶∃ x ∈ J and x ∉ I ⟶ <I, x> = R (by hypotheses)

But <I, x> ⊊ R ⟶ R ⊆ J ⟶ J = R ∴ I is maximal ideal

Remark. the maximal ideal of a ring R is not necessary unique.

Example. The ideals <2>, <3>, <5>, … of the ring ℤ are maximal 
ideals.

Zorn's lemma. If (S, ≤) is a partially ordered set with the property 
that every chain in S has an upper bound in S, then S possesses at 
least one maximal element.

Theorem. In a commutative ring with identity, each proper ideal is 
contained in a maximal ideal.

Proof. Let I be any proper ideal of R with r is commutative ring with 
identity 1.

Define a family a family of ideals of R by

F= {J| I ⊆ J, J is a proper ideal of R}

F ≠ ߶ (I ∈ F)
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Let {Ji}∈ஃ be an arbitrary chain of ideals in F and a, b ∈ ⋃ ∈ஃܬ , 
r ∈R. ∃ j and k indexes for which a ∈ Ji, b ∈ Jk. ⟶ we have a chain: either  Ji ⊆ Jk or Jk ⊆ Ji . 

Suppose that Ji ⊆ Jk ⟶ a, b ∈ Jk but Jk ideal ⟶ a-b ∈ Jk ⊆ ⋃ ∈ஃܬ …..(1)

and ar, ra ∈ Jk⊆ ⋃ ∈ஃܬ …(2)

by (1) and (2) ⋃ ∈ஃܬ is an ideal of R 

1 ∉ ⋃ ∈ஃܬ (if not ∃ k indexes such that 1 ∈ Jk C! since Jk is proper)→ ⋃ ∈ஃܬ is proper ideal of R and I⊆ ⋃ ∈ஃܬ ∈ F.

By Zorn's lemma , F has maximal element M ⟶ M is proper ideal of 
R with I ⊆ M. now, to prove M is maximal ideal : suppose ∃ J ⊆R 
such that M ⊂ J ⊆ R. Since M is maximal element of F. then J ∉ F.⟶ J is improper ⟶ J = R ⟶ M is maximal ideal.

Remarks.

1. Let R be finitely generated ring. Then every proper ideal of R 
contained in a maximal ideal.

2. An element in a commutative ring with identity is invertible iff 
it belongs to no maximal ideal of R.

3. Example : the maximal ideals of ℤ are {0ത, 2, 4തതതതതത} and {0ത, 3ത}. So 5ത is an invertible element in ℤ.
4. The element 0ത in ℤସ is not invertible (why?)
5. The only maximal ideal in any field F is <0>

Proof.  Suppose that F field.⟶ for all 0≠ a ∈ F has inverse ⟶ a ∉ I for a maximal ideal I 
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⟶ I proper ideal. But F is field, hence the only ideals of R are 
{0} and F ⟶ I = {0} is the only maximal ideal of R.

6. If R is a commutative ring with identity and has only one 
maximal ideal, then R is said to be local ring.

7. If a ring R have exactly one maximal ideal I, then the 
idempotent elements in R only 0 and 1.
Proof. Suppose that R has only one maximal ideal (say I) and a 
an idempotent element in I such that a ≠ 0, 1.⟶ a2 = a ⟶ a2-a = 0 ⟶ a(a-1) = 0. Since a ≠ 0, 1 ⟶ a-1 ≠ 0
then a and a-1 are zero divisors. ⟶ Neither a nor a-1 invertible element(by: every zero divisor 
is not invertible) ⟶ a and a-1 ∈ I(I maximal)⟶ a – (a-1) = 1 ∈ I(I  ideal)⟶ I = R C! ( I maximal) ⟶ a = 0 and 1 

8. The converse of (6) is not true in general: the only idempotent 
in the ring (ℤ,+, .) is 0, 1 but (ℤ, +, .) has an infinitely maximal 
ideal.

9. The ring ℤସ is local ring while ℤ and ℤ are not.
10. Let R be a commutative ring with identity and I be a proper 

ideal of R, then I is a maximal ideal iff the quotient ring ோூ is field.

Definition. Let R be a commutative ring with identity. The set 

Rad(R) = ∩{M| M is maximal ideal of R}

is called Jacobson radical of a ring R.

Remarks. 

1. If Rad(R) = {0}, then R is said to be ring without radical.
2. Rad(R) ≠ ∅.
3. Rad(R) is an ideal.
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4. Rad(R) is always exist (since any commutative ring with 
identity contains at least one maximal ideal).

Examples. 

1. Rad(ℤସ) = {0ത, 2ത}
2. Rad(ℤ) = {0ത}
3. Rad(ℤ) = {0ത}  
4. Rad(ℤ)   = ∩ {<p>| p is prime number}

               ={0ത}

Remarks. 

1. Rad(R) is proper ideal of a ring R( if not: 1 ∈ R= Rad(R) ⟶ 1 ∈ maximal ideal C!)
2. Let R be a commutative ring with identity 1 and I be an ideal of 

R. Then I ⊆ Rad(R) if and only if each element in 1+I has 
invertible in R.

3. Let R is commutative ring with identity 1, then a ∈ Rad(R) if 
and only if the element 1-ra invertible for each r ∈ R.

4. In a commutative ring with identity 1, the only idempotent 
element in Rad(R) is 0.
Proof. Let a ∈ Rad(R) with a2 = a ⟶ a2 – a = a(a - 1) = 0 ⟶ 1- a invertible element ⟶∃ b ∈ R such that (1 - a)b = 1 ⟶a= a(1-a)b = 0 . b ⟶ a = 0.

5. Every nil ideal of R is contained in Rad(R).

Definition. Let R be a ring and P be an ideal of R. Then P is said to 
be prime ideal of R if whenever a.b ∈ I, either a ∈ I or b ∈ I for a, b ∈ R.
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Examples.

1. 5ℤ is prime ideal of ℤ.
2. 4ℤ is not prime ideal of ℤ(since 2.2 = 4 ∈ 4ℤ while 2 ∉ 4ℤ)
3. 6ℤ is not prime ideal of ℤ(why?)
4. In ℤ, the prime ideals are {0ത, 3ത} and {0ത, 2ത, 4ത}

H.W. Find the prime ideals in ℤ and ℤଵଶ?

Q / Is the zero ideal prime in any ring?

The answer of Q depends on the type of the ring. For example:

1. In ℤ, the <0> ideal is not prime. Since if x = 2ത and y = 3ത then 
x.y = 0 ∈ <0> while neither x nor y ∈ <0>

2. By the same way, in ℤସ, the <0> ideal is not prime.
3. In ℤ, the <0> ideal is prime(since if a.b = 0, either a ∈ <0> or 

b∈ <0>)
4. In ℤ(p is prime), the <0> ideal is prime(since ℤ has nonzero 

divisor) 

The following theorem answers about the above question:

Theorem. The zero ideal (0) is a prime in a commutative ring with 
identity R if and only if R is an integral domain.

Proof. ⟹) Let a, b ∈ R such that a.b = 0 with a ≠ 0 → a ∉ (0).

But (0) is prime ideal and a.b. = 0 ∈ (0) → b ∈ (0) → b = 0→ a is not zero divisor element → R has no nonzero divisor element.

Since R is commutative ring with identity1→ R is an integral domain.
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⟸) Suppose that R is an integral domain and a, b ∈ R such that a, b ∈ (0) → a.b = 0. If a ∉ (0) → a ≠ 0. Since R is an integral domain, 
then b = 0 → b ∈ (0) → (0) is prime ideal.

Theorem. The prime ideals in ℤ are only (0) and (p)(p is prime 
number).

Proof. Since ℤ is an integral domain, then (0) is prime ideal in ℤ. 
Now, let p be a prime integers and n, m ∈ ℤ such that n.m ∈ (p)→ n.m. = rp → p\ n.m → p\n or p\m→ either n = r1p → n ∈ (p) 

Or       m = r2p → m ∈ (p)∴ (p) is prime ideal

Example. The ring ℤ x ℤ = {(n,m)| n, m ∈ ℤ}. Let p = ℤ x {0} is an 
ideal in ℤ x ℤ. Then (p) is prime ideal in the ring ℤ x ℤ.

Proof. let (n1, m1), (n2, m2) ∈ ℤ x ℤ such that (n1, m1).(n2, m2) = 
(n1.n1, m1.m2) ∈ ℤ x {0} → m1.m2 = 0 → either m1 = 0 or m2 = 
0(because (0) is prime ideal in ℤ) → either (n1, m1) ∈ ℤ x {0} or (n2, 
m2) ∈ ℤ x {0}→ ℤ x {0} is prime ideal.

Theorem. In a commutative ring with identity 1, every maximal 
ideal is a prime. 

Proof. let M be a maximal ideal in a ring R and a.b ∈ R such that 
a.b∈ M with a ∉ M. Now, a ∈ R and a ∉ M with M is maximal ideal, 
then (M, a) = R → 1 ∈ (M, a) → 1 = m + ra → b = mb + rab ∈ M → b ∈ M → M is a prime ideal in R.
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Remark.     Maximal ideal   →   prime ideal                                            

The converse of the previous theorem is not true in general. For 
example: 

The ring ℤ x ℤ = {(n,m)| n, m ∈ ℤ}. Let p = ℤ x {0} is an ideal in ℤ
x ℤ. Then (p) is prime ideal in the ring ℤ x ℤ (because , ∃ ℤ x 2ℤ⊊ ℤ x ℤ such that ℤ x {0}⊊ ℤ x 2ℤ ⊆ ℤ x ℤ).

Q/ fined another example about: prime ideal ↛ maximal ideal.

Theorem. Let R be a commutative ring with 1. Let P be a proper 
ideal of R. Then P is prime ideal if and only if ோ is an integral 
domain.

Proof. ⟹) since R is commutative ring with identity 1. So, ோ is 

commutative ring with identity 1+P. Suppose that ோ is not integral 

domain. i.e ோ has zero divisor. Let a+P and b+P ∈ ோ such that 

(a+P) ≠ P and (b+P) ≠ P with (a+P)(b+P) = P→ (a+P)(b+P) =ab + P= P → ab ∈ P since P is prime ideal→ either a ∈ P → a+P = P C!   or    b ∈ P → b+P = P C!ோ  has no zero divisors  → ோ is an integral domain.⇐) Let a, b ∈ R such that a.b ∈ P and a ∉ P. If a.b ∈ P → ab +P = P. → (a+P)(b+P) = P but a ∉ P → a+P ≠ P and ோ is an integral domain → b+P =P ( ோ has no zero divisor ) → b ∈ P → P is prime ideal.
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Remark. From the theorem(every maximal ideal is prime but the 
converse is not true in general) the following  theorem give the 
condition under which the converse is true. 

Theorem. Let R be a principal ideal domain. A non trivial ideal P is 
prime if and only if P is maximal ideal.

Proof. ⇒) H.W.⟸) Let 0≠ M be a prime ideal of PID R. Suppose ∃ N ⊆ R is an 
ideal of R such that M ⊊ N. Since N is PID → N = (a) and M = (b) 
for some a, b ∈ R. 

Now, b ∈ M ⊊ N → b ∈ N → b = ta for some t ∈ R. Since M is prime 
ideal and b = ta ∈ M. → either t ∈ M = (b) → t = sb for some s ∈ R→ b = sba = bsa → 1 = sa (by cancellation law)

                                  = as (R is commutative ring)→ a is invertible element. But a ∈ N → N = R → 0 ≠ M is maximal 
ideal ring. 

Remark. if the ideal is trivial, then the previous theorem is not true in 
general.

Example. Let R = ℤ is PID. Then (0) is trivial ideal and prime in ℤ, 
but (0) is not maximal ideal in ℤ.

Theorem. Let R be a commutative ring with 1such that a2 = a for 
each a ∈ R. Then, a non trivial ideal I of R is prime if and only if I is 
maximal ideal of R.

Proof. ⟸) H.W.
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⇒) Let P be a prime ideal of a commutative ring with 1. To prove P 
is maximal ideal, suppose ∃ P ⊊ K → ∃ x ∈ K-P. But R is Boolean 
ring (i.e. a2 = a for each a ∈ R) → x2 = x → x(x-1) = 0 ∈ P (0 ∈P). But 
P is prime ideal and x ∉ P → x-1 ∈ P ⊊ K → x-1 ∈ K→ x- (x-1) = 1 ∈ K → K = R → P is maximal ideal.  

Definition. A ring R is said to be regular if for each a ∈ R, ∃ b ∈ R 
such that aba = a.

Remark. If R is commutative ring, then R is regular if a2b = a.

Example. The ring ℤ is not regular.

Q/ find another example.

Theorem. let R be a commutative regular ring, then every prime 
ideal of R is maximal ideal.

Proof. Let I be a prime ideal in R and a ∉ I, a ∈ R. Since R is regular 
ring, ∃ b ∈ R such that a2b = a → a2b – a = a(ab - 1) = 0 ∈ I → a(ab -
1) ∈ I. But I is prime ideal and a ∉ I → ab – 1 ∈ I. Put x = ab - 1∈ I.

1 = ab – x = -x + ab ∈ (I, a) → 1 ∈ (I, a) → (I, a) = R.→ I is maximal ideal.

Definition. Let I be an ideal of a ring R. Then the nil radical of 
I(denoted by √ܫ) is the set:√ܫ = {r ∈ R| rn ∈ I for some n ∈ ℤ+}

1. ܫ√ is an ideal of R.(H.W. prove)
2. I ⊆ ܫ√
3. √0 = {r ∈ R| rn = 0 for some n ∈ ℤ+}



Ring Theory (3'rd class) Dr. Tamadher Arif

40

             = the set of all nilpotent element.

4. √0 is said to be nil radical of R.

Remarks. If I and J are two ideals of a ring R, then:

1. ඥܬܫ = ඥܫ ∩ ܬ ܫ√ = ∩ ඥܬ
2. ඥܫ + ܬ = ට√ܫ + ඥܬ ⊇ ܬඥ +ܫ√
3. ඥ√ܫ ܫ√ =
4. If Ik ⊆ J for some k ∈ ℤ, then √ܫ ⊆ ඥܬ.

Proof. Let x ∈ ܫ√ ∩ ඥܬ → x ∈ ܫ√ & x ∈ ඥܬ → ∃ n∈ ℤ+ such that xn ∈
I & ∃ m ∈ ℤ+ such that xm ∈ J.→( xn)m = xn . xn … xn (m-times)→ ( xm)n = xm . xm … xm (n-times)→ ∃ nm ∈ ℤ+ such that xnm = ( xn)m = ( xm)n ∈ I∩ J.→ x∈ ඥܫ ∩ ܬ → ܫ√ ∩ ඥܬ ⊆ ඥܫ ∩ ܬ …(1) 

Let y ∈ ඥܫ ∩ ܬ → ∃ n ∈ ℤ+ such that yn ∈ I∩ J → yn ∈ I & yn∈ J→ y ∈ ܫ√ ∩ ඥܬ → ඥܫ ∩ ܬ → ܫ√ ∩ ඥܬ …(2)→ ඥܫ ∩ ܬ = ܫ√ ∩ ඥܬ
H.W'S: prove the following 

1. ඥܬܫ ܫ√ = ∩ ඥܬ
2. (2), (3), (4)


