Integral Domain and Field

Definition. Let R be a ring and $0 \neq a \in R$, then a is said to be *zero divisor* if there is $0 \neq b \in R$ such that a.b. = 0.

Example. In a ring of integers modulo $6(\mathbb{Z}_6, +_6, \cdot_6)$, $\overline{2}, \overline{3} = \overline{0}$ and $\overline{3}.\overline{4} = \overline{0}$, then $\overline{2}$, $\overline{3}$, $\overline{4}$ are zero divisors.

Remarks. In a ring R,

- 1. 0≠ a ∈ R, then a is said to be *nonzero divisor* if ∄ 0≠b∈R such that $a.b = 0$.
- 2. 0, 1 are nonzero divisor.
- 3. Any invertible element in any ring R is nonzero divisor (any element in \mathbb{Z}_5 is invertible).

Proof 2. Let 1 be the identity element of $(R, .)$ and suppose that 1 is zero divisor element in $R \rightarrow \exists 0 \neq b \in R$ such that $1.b = 0$. But $1.b = 0 \rightarrow b = 0$ C!

∴1 is nonzero divisor.

(in the same way 0 is nonzero divisor)

Proof 3. Let a be invertible element in $R \rightarrow \exists a^{-1} \in R$ such that a. $a^{-1} = a^{-1}.a = 1$. Suppose that a is zero divisor element in $R \to \exists 0 \neq 1$ $b \in R$ such that $a.b = 0 \rightarrow a^{-1}.a.b = a^{-1}.0$

 \rightarrow 1.b = 0 and by (1), 1 is nonzero divisor \rightarrow b = 0 C!

∴ a is nonzero divisor.

Theorem. A ring R has no zero divisors iff R satisfies the cancellation laws for multiplication (i.e for all a, b, c \in R if ab = ac with a≠0, then $b = c$).

Proof. \implies Suppose that R has no zero divisors and ab = ac with $a\neq 0 \rightarrow ab - ac = 0 \rightarrow a(b - c) = 0$. Since R has no zero divisor, then $b - c = 0 \rightarrow b = c$.

 \Leftarrow) Suppose that R satisfies the cancellation laws and 0≠a \in R such that $a.b = 0 = a.0 \rightarrow b = 0$.

Examples.

1. $(\mathbb{Z}_n, +_{n \cdot n})$ has no zero divisor iff n is prime.

Proof. \implies) suppose that \mathbb{Z}_n has no zero divisors

i.e. for all $0 \neq a,b \in \mathbb{Z}_n$ if $a.b \neq 0 \rightarrow a.b \neq n \rightarrow n$ is prime.

 \Leftarrow) suppose that \mathbb{Z}_n has zero divisors

i.e. \exists 0≠a,b $\in \mathbb{Z}_n$ such that $a.b = 0 \rightarrow a.b = kn$.

But n is prime \rightarrow n\a.b \rightarrow either n\a or n\b \rightarrow either a=0 or b=0 C! (n cannot be decomposable with n>a and n>b) $\rightarrow \mathbb{Z}_n$ has no zero divisors.

2. $(\mathbb{Z}, +, \cdot)$ has nonzero divisors (since for all a, $b \in \mathbb{Z}$, if a.b=0, then either $a = 0$ or $b = 0$).

Definition. A ring R is said to be *integral domain* if R is commutative ring with identity and has no zero divisors.

H.W. Every integral domain satisfies the cancellation laws.

Examples.

- 1. Each of $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}(\sqrt{2})$ is an integral domain.
- 2. The ring $\mathbb{Z}_n(p)$ is prime) is an integral domain.

Proof. \Leftarrow) let p be a prime number. Then the ring \mathbb{Z}_p has no zero divisors and commutative ring with identity.

 \therefore (\mathbb{Z}_p , + $_p$, \cdot_p) is an integral domain.

Suppose that \mathbb{Z}_n is an integral domain and p is not prime.

i.e. $p = p_1.p_2$ and $\mathbb{Z}_p = {\overline{0}, \overline{1}, ..., \overline{p-1}}$ with $p = 0 \rightarrow p = p_1.p_2 = 0$. Since \mathbb{Z}_p is integral domain, then either $p_1=0$ and so $p=p_1$ or $p_2=0$ and so $p=p_2 \rightarrow p$ is prime.

- 3. \mathbb{Z}_e is no integral domain since it has no identity.
- 4. The commutative ring $\mathbb{Z}(i)$ with identity 1+0i is an integral domain.

Proof. Let $x = a + bi$ and $y = c + di$ with $x \neq y \in \mathbb{Z}(i)$ such that xy $= 0 \rightarrow (a + bi)(c + di) = (ac - bd) + (ad + bc)i$

$$
= 0
$$

$$
= 0 + 0i
$$

 \rightarrow ac - bd = 0 \rightarrow ac = bd

and

 $ad + bc = 0 \rightarrow ad = bc \rightarrow d = \frac{-bc}{a} \rightarrow ac = b(\frac{-bc}{a}) \rightarrow a^2c = -b^2c \rightarrow$ $(a^{2} + b^{2})c = 0 \rightarrow$ either $a^{2} + b^{2} = 0$ or $c = 0$. If $c = 0 \rightarrow d = 0 \rightarrow y = c + di = 0 \rightarrow \mathbb{Z}(i)$ is an integral domain or $a^2 + b^2 = 0 \rightarrow a = b = 0 \rightarrow x = a + bi = 0 \rightarrow \mathbb{Z}(i)$ is an integral

domain.

5. The ring $M_2(\mathbb{Z})$ is not integral domain.

Proof. since $M_2(\mathbb{Z})$ is not commutative ring(why?) and one can find A, B \in M₂(\mathbb{Z}) such that AB = 0 with A \neq 0 and B \neq 0 (\exists A = $\overline{ }$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is zero divisor in the ring M₂(Z) (prove that).

H.W. The subring of integral domain needed not integral domain.

Remarks.

1. Every nonzero nilpotent element is zero divisors. Proof. Let $0 \neq a \in R$ be a nilpotent element and n be the smallest positive integer such that $a^n = 0 \rightarrow a^k = 0$, $\forall k > n$. Now, $a^n = 0 \rightarrow a^n = a$. $a^{n-1} = 0$. But $a^{n-1} \neq 0$ (since n-1 $\leq n$ and n is the smallest integer with $a^n = 0$) ∴ \forall a ≠ 0, \exists b = a^{n-1} ≠ 0 such that a . b = a . a^{n-1} = 0.

∴ a is zero divisor

- 2. The converse of (1) is not true in general; for example: in \mathbb{Z}_6 , the element $\overline{2}$ is zero divisor but $\overline{2}$ is not nilpotent element in \mathbb{Z}_6 (since $\vec{\mathbb{Z}}$ n∈ \mathbb{Z}^+ such that $(\overline{2})^n = 0$).
- 3. The nilpotent element in an integral domain is zero. **Proof.** Suppose that $a \neq 0$ is a nilpotent element in an integral domain R. ∴ a is zero divisors (by (1)). But R has no nonzero $divisors \rightarrow a = 0.$
- 4. Let R be a ring with identity and a nilpotent in R, then 1+a has an inverse.

Proof. Let $0 \neq a$ be a nilpotent element in $R \rightarrow \exists a$ smallest positive integer n such that $a^n = 0$. Now to prove $1 + a$ has inverse, must be find an element $b \in R$ such that $(1 + a)b = 1$.

Claim that
$$
b = 1 - a + a^2 - ... + (-1)^{n-1} a^{n-1}
$$
 satisfy $(1 + a)b = 1$.
\n
$$
\therefore (1+a)b = (1 + a)(1 - a + a^2 - ... + (-1)^{n-1} a^{n-1})
$$
\n
$$
= 1 - a + a^2 - ... + (-1)^{n-1} a^{n-1} + a - a^2 - ... + (-1)^{n-2} a^{n-1} + (-1)^{n-1} a^n
$$
\n
$$
= 1 \quad \text{(since } a^n = 0 \rightarrow (-1)^{n-1} a^n = 0\text{)}
$$

 \therefore b is the inverse element of $1 + a$

Problems. Prove the following:

- 1. The only idempotent element in an integral domain is 0, 1.
- 2. Let R be a ring and a an idempotent element in R, then $a^n = a$ for all $n \in R$.
- 3. A nonzero idempotent element cannot be nilpotent element.
- 4. The set of all nilpotent elements of a commutative ring is a subring in R.

Every nonzero element in \mathbb{Z}_n is either zero divisor or has inverse.

Definition. A commutative ring with identity $(R, +, \cdot)$ is said to be *field* if every nonzero element has inverse.

Remark. If $(F, +, .)$ field, then :

- 1. $(F, +, .)$ is an abelian group.
- 2. $(F^*, +, .)$ is an abelian group.
- 3. for all $a, b, c \in F$ a. $(b + c) = ab + ac$ and $(a + c)$.a = ba + ca

Theorem. Every field is an integral domain.

Proof. Let F be a field and $0 \neq a \in F$ such that $ab=0$ with $b \neq 0$.

: F field \rightarrow a has inverse element say $a^{-1} \rightarrow a^{-1}(ab) = 0 \rightarrow 1.b = 0$ \rightarrow b = 0 C! (b \neq 0) \rightarrow F has no zero divisor. Farther more, F is commutative ring with identity \rightarrow F is integral domain

Remark. The converse of the previous theorem is not true in general as the following example.

Example. The ring $(\mathbb{Z}, +, \cdot)$ is an integral domain which is not field since there is $a = 2 \in \mathbb{Z}$ has no inverse in \mathbb{Z} .

 The following theorem gives the necessary condition for the converse:

Theorem. Every finite integral domain is field.

Proof. Let $(R, +, \cdot)$ be a finite integral domain

Suppose that $R = \{a_1, a_2, ..., a_n\}$. Let $0 \neq a \in R$ be a fixed element, then consider the n product aa₁, aa₂, ..., aa_n: these product are distance. If not: aa_i=aa_i, by the cancellation law $a_i=a_i \rightarrow R = \{aa_1, a_2, \ldots, a_n\}$ aa₂, …, aa_n} $\rightarrow \exists$ 1 \leq i \leq n such that aa_i = 1 and a_ia = 1 (R is commutative) $\rightarrow a^{-1} = a_i \rightarrow$ every nonzero element has inverse in R \rightarrow (R, +, .) field.

Example. Each of \mathbb{Z}_p , Q, R, C, Q(\sqrt{p}) (p is prime) is a field.

Definition. In a field $(F, +, \cdot)$ the nonempty subset A of F is said to be *subfield* if $(E, +, .)$ is field.

Examples.

- 1. Q is subfield of ℝ and ℂ.
- 2. ℝ is subfield of ℂ.
- 3. $\mathbb{Q}(\sqrt{p})$ is subfield of ℝ for all prime p.
- 4. $\mathbb{Q}(\sqrt{3})$ is not subfield of \mathbb{Q} .
- 5. \mathbb{Z}_3 is not subfield of \mathbb{Z}_5 (since \mathbb{Z}_5 has no proper subring).

Remark. If F₁ and F₂ are subfields of F, then $F_1 \cap F_2$ is subfield of F with $F_1, F_2 \neq F$.

Characteristic of the ring

Definition. let R be a ring. If there exist a positive integer n such that na=0 for all $a \in R$, then the smallest positive integers with this property is called *Characteristic of the ring R*. If no such positive integers exists, then is said to be *characteristic of zero* (i.e charR = 0).

Examples.

- 1. char(\mathbb{R}) = char(\mathbb{Q}) = char(\mathbb{Z}) = 0
- 2. char(\mathbb{Z}_n) = n
- 3. char(\mathbb{Z}_6) = 6
- 4. char(P(X), Δ , ∩) = 2 (because 2A = AΔA = (A-A)∪(A-A) = Ø.

Remarks.

- 1. If char $R = 0$, then R is an infinite (for examples: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$).
- 2. If char $R = n$, then the characteristic for any subring of R is equal or less than n.
- 3. Characteristic for finite ring R divisible order R(i.e: char R\ $o(R)$).

Theorem. Let R be a ring with identity then char $R = n > 0$ if and only if n is n the smallest positive integer such that $n = 0$.

Proof. \Rightarrow) suppose that, char R = n, then na = 0, \forall a \in R.

Since $1 \in \mathbb{R} \to \text{n.1} = 0$. Suppose that ∃ m $\in \mathbb{Z}$ such that $0 \leq \text{m} \leq \text{n}$ with $m.1 = 0$.

∴ m.a = m(1. a) = (m.1). a = 0. A, \forall a ∈ R.

 \therefore m.a = 0

: $0 \le m \le n$ and $m.a = 0 \rightarrow char R = m$ C! (char $R = n$)

∴ n is the smallest positive integer.

 \Leftarrow) Let 0 ≠ a ∈ R. Since na = n(1.a) = (n.1) . a = 0 . a = 0.

∴ char $R = n$

Theorem. If R is an integral domain, then char R is either 0 or prime number.

Proof. Suppose that char $R = n > 0$ and to prove char $R = prime$ number.

Suppose n is not prime \rightarrow char R = n_1n_2 such that $1 \le n_1 \le n_2 \le n$.

: R is ring with identity \rightarrow n₁n₂ is the smallest positive integer such that (n_1n_2) . $1 = 0 \rightarrow n$. $1 = (n_1n_2)(1 \cdot 1) = (n_1 \cdot 1)(n_2 \cdot 1) = 0$

 \therefore (n₁ . 1)(n₂ . 1) ∈ R

 $: R$ is an integral domain $\rightarrow R$ has no zero divisors.

 \therefore either $n_1 \cdot 1 = 0$ or $n_2 \cdot 1 = 0$.

∴ either char $R = n_1$ or char $R = n_2$.

But $n_1 < n$ and $n_2 < n$ C! $\rightarrow n \neq n_1 n_2$.

∴ n is prime number

Corollary. If R is a finite integral domain, then char $R = p$ (p is prime number).

Example. char \mathbb{Z}_p = p (p is prime number).