Integral Domain and Field

Definition. Let R be a ring and $0 \neq a \in R$, then a is said to be *zero divisor* if there is $0 \neq b \in R$ such that a.b. = 0.

Example. In a ring of integers modulo $6(\mathbb{Z}_6, +_6, ._6)$, $\overline{2}, \overline{3} = \overline{0}$ and $\overline{3}, \overline{4} = \overline{0}$, then $\overline{2}, \overline{3}, \overline{4}$ are zero divisors.

<u>Remarks</u>. In a ring R,

- 0≠ a ∈ R, then a is said to be *nonzero divisor* if ∄ 0≠b∈R such that a.b = 0.
- 2. 0, 1 are nonzero divisor.
- 3. Any invertible element in any ring R is nonzero divisor (any element in \mathbb{Z}_5 is invertible).

Proof 2. Let 1 be the identity element of (R, .) and suppose that 1 is zero divisor element in $R \rightarrow \exists \ 0 \neq b \in R$ such that 1.b = 0. But $1.b = 0 \rightarrow b = 0$ C!

∴1 is nonzero divisor.

(in the same way 0 is nonzero divisor)

Proof 3. Let a be invertible element in $R \to \exists a^{-1} \in R$ such that a. $a^{-1} = a^{-1} \cdot a = 1$. Suppose that a is zero divisor element in $R \to \exists 0 \neq b \in R$ such that $a \cdot b = 0 \to a^{-1} \cdot a \cdot b = a^{-1} \cdot 0$

 \rightarrow 1.b = 0 and by (1), 1 is nonzero divisor \rightarrow b = 0 C!

∴ a is nonzero divisor.

Theorem. A ring R has no zero divisors iff R satisfies the cancellation laws for multiplication (i.e for all a, b, $c \in R$ if ab = ac with $a \neq 0$, then b = c).

Proof. \Longrightarrow) Suppose that R has no zero divisors and ab = ac with $a \neq 0 \rightarrow ab - ac = 0 \rightarrow a(b - c) = 0$. Since R has no zero divisor, then $b - c = 0 \rightarrow b = c$.

⇐) Suppose that R satisfies the cancellation laws and $0 \neq a \in R$ such that $a.b = 0 = a.0 \rightarrow b = 0$.

Examples.

1. $(\mathbb{Z}_n, +_n, \cdot_n)$ has no zero divisor iff n is prime.

Proof. \Longrightarrow) suppose that \mathbb{Z}_n has no zero divisors

i.e. for all $0 \neq a, b \in \mathbb{Z}_n$ if $a, b \neq 0 \rightarrow a, b \neq n \rightarrow n$ is prime.

 \Leftarrow) suppose that \mathbb{Z}_n has zero divisors

i.e. $\exists 0 \neq a, b \in \mathbb{Z}_n$ such that $a.b = 0 \rightarrow a.b = kn$.

But n is prime $\rightarrow n \mid a.b \rightarrow$ either n \a or n \b \rightarrow either a=0 or b=0 C! (n cannot be decomposable with n>a and n>b) $\rightarrow \mathbb{Z}_n$ has no zero divisors.

2. $(\mathbb{Z}, +, .)$ has nonzero divisors (since for all a, b $\in \mathbb{Z}$, if a.b=0, then either a = 0 or b = 0).

Definition. A ring R is said to be *integral domain* if R is commutative ring with identity and has no zero divisors.

<u>H.W.</u> Every integral domain satisfies the cancellation laws.

Examples.

- 1. Each of \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Q}(\sqrt{2})$ is an integral domain.
- 2. The ring $\mathbb{Z}_p(p \text{ is prime})$ is an integral domain.

Proof. \Leftarrow) let p be a prime number. Then the ring \mathbb{Z}_p has no zero divisors and commutative ring with identity.

 $\therefore (\mathbb{Z}_p, +_p, \cdot_p)$ is an integral domain.

Suppose that \mathbb{Z}_p is an integral domain and p is not prime.

i.e. $p = p_1 \cdot p_2$ and $\mathbb{Z}_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}$ with $p = 0 \rightarrow p = p_1 \cdot p_2 = 0$. Since \mathbb{Z}_p is integral domain, then either $p_1=0$ and so $p=p_1$ or $p_2=0$ and so $p=p_2 \rightarrow p$ is prime.

- 3. \mathbb{Z}_e is no integral domain since it has no identity.
- 4. The commutative ring $\mathbb{Z}(i)$ with identity 1+0i is an integral domain.

Proof. Let x = a + bi and y = c + di with $x \neq y \in \mathbb{Z}(i)$ such that $xy = 0 \rightarrow (a + bi)(c + di) = (ac - bd) + (ad + bc)i$

$$= 0$$
$$= 0 + 0i$$

 \rightarrow ac - bd = 0 \rightarrow ac = bd

and

 $ad + bc = 0 \rightarrow ad = bc \rightarrow d = \frac{-bc}{a} \rightarrow ac = b(\frac{-bc}{a}) \rightarrow a^{2}c = -b^{2}c \rightarrow (a^{2} + b^{2})c = 0 \rightarrow \text{either } a^{2} + b^{2} = 0 \text{ or } c = 0.$ If $c = 0 \rightarrow d = 0 \rightarrow y = c + di = 0 \rightarrow \mathbb{Z}(i)$ is an integral domain or $a^{2} + b^{2} = 0 \rightarrow a = b = 0 \rightarrow x = a + bi = 0 \rightarrow \mathbb{Z}(i)$ is an integral

domain.

5. The ring $M_2(\mathbb{Z})$ is not integral domain.

Proof. since $M_2(\mathbb{Z})$ is not commutative ring(why?) and one can find A, $B \in M_2(\mathbb{Z})$ such that AB = 0 with $A \neq 0$ and $B\neq 0$ ($\exists A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is zero divisor in the ring $M_2(\mathbb{Z})$ (prove that).

<u>H.W.</u> The subring of integral domain needed not integral domain.

Remarks.

Every nonzero nilpotent element is zero divisors.
 Proof. Let 0 ≠ a ∈ R be a nilpotent element and n be the smallest positive integer such that aⁿ = 0 → a^k = 0, ∀ k > n. Now, aⁿ = 0 → aⁿ = a . aⁿ⁻¹ = 0. But aⁿ⁻¹ ≠ 0 (since n-1 < n and n is the smallest integer with aⁿ = 0)
 ∴ ∀ a ≠ 0, ∃ b = aⁿ⁻¹ ≠ 0 such that a . b = a . aⁿ⁻¹ = 0.

∴ a is zero divisor

- The converse of (1) is not true in general; for example: in Z₆, the element 2̄ is zero divisor but 2̄ is not nilpotent element in Z₆ (since ≇ n∈ Z⁺ such that (2̄)ⁿ = 0).
- 3. The nilpotent element in an integral domain is zero.
 <u>Proof</u>. Suppose that a ≠ 0 is a nilpotent element in an integral domain R. ∴ a is zero divisors (by (1)). But R has no nonzero divisors → a = 0.
- 4. Let R be a ring with identity and a nilpotent in R, then 1+a has an inverse.

<u>Proof</u>. Let $0 \neq a$ be a nilpotent element in $\mathbb{R} \to \exists$ a smallest positive integer n such that $a^n = 0$. Now to prove 1 + a has inverse, must be find an element $b \in \mathbb{R}$ such that (1 + a)b = 1. Claim that $b = 1 - a + a^2 - ... + (-1)^{n-1} a^{n-1}$ satisfy (1 + a)b = 1.

$$(1+a)b = (1+a)(1-a+a^{2} - ... + (-1)^{n-1} a^{n-1})$$

=1-a+a^{2} - ...+(-1)^{n-1} a^{n-1} + a-a^{2} - ...+(-1)^{n-2} a^{n-1} + (-1)^{n-1} a^{n}
= 1 (since $a^{n} = 0 \rightarrow (-1)^{n-1} a^{n} = 0$)

 \therefore b is the inverse element of 1 + a

<u>Problems</u>. Prove the following:

- 1. The only idempotent element in an integral domain is 0, 1.
- 2. Let R be a ring and a an idempotent element in R, then $a^n = a$ for all $n \in R$.
- 3. A nonzero idempotent element cannot be nilpotent element.
- 4. The set of all nilpotent elements of a commutative ring is a subring in R.

Every nonzero element in \mathbb{Z}_n is either zero divisor or has inverse.

<u>**Definition**</u>. A commutative ring with identity (R, +, .) is said to be *field* if every nonzero element has inverse.

<u>Remark</u>. If (F, +, .) field, then :

- 1. (F, +, .) is an abelian group.
- 2. $(F^*, +, .)$ is an abelian group.
- 3. for all a, b, $c \in F$

a. (b + c) = ab + ac and (a + c) .a = ba + ca

<u>Theorem</u>. Every field is an integral domain.

Proof. Let F be a field and $0 \neq a \in F$ such that ab=0 with $b \neq 0$.

: F field \rightarrow a has inverse element say $a^{-1} \rightarrow a^{-1}(ab) = 0 \rightarrow 1.b = 0$ $\rightarrow b = 0$ C! ($b \neq 0$) \rightarrow F has no zero divisor. Farther more, F is commutative ring with identity \rightarrow F is integral domain

<u>Remark</u>. The converse of the previous theorem is not true in general as the following example.

Example. The ring $(\mathbb{Z}, +, .)$ is an integral domain which is not field since there is $a = 2 \in \mathbb{Z}$ has no inverse in \mathbb{Z} .

The following theorem gives the necessary condition for the converse:

Theorem. Every finite integral domain is field.

Proof. Let (R, +, .) be a finite integral domain

Suppose that $R = \{a_1, a_2, ..., a_n\}$. Let $0 \neq a \in R$ be a fixed element, then consider the n product $aa_1, aa_2, ..., aa_n$: these product are distance. If not: $aa_i=aa_j$, by the cancellation law $a_i=a_j \rightarrow R = \{aa_1, aa_2, ..., aa_n\} \rightarrow \exists \ 1 \leq i \leq n$ such that $aa_i = 1$ and $a_ia = 1$ (R is commutative) $\rightarrow a^{-1} = a_i \rightarrow$ every nonzero element has inverse in R $\rightarrow (R, +, .)$ field.

Example. Each of \mathbb{Z}_p , \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Q}(\sqrt{p})$ (p is prime) is a field.

Definition. In a field (F, +, .) the nonempty subset A of F is said to be *subfield* if (E, +, .) is field.

Examples.

- 1. \mathbb{Q} is subfield of \mathbb{R} and \mathbb{C} .
- 2. \mathbb{R} is subfield of \mathbb{C} .
- 3. $\mathbb{Q}(\sqrt{p})$ is subfield of \mathbb{R} for all prime p.
- 4. $\mathbb{Q}(\sqrt{3})$ is not subfield of \mathbb{Q} .
- 5. \mathbb{Z}_3 is not subfield of \mathbb{Z}_5 (since \mathbb{Z}_5 has no proper subring).

<u>**Remark**</u>. If F_1 and F_2 are subfields of F, then $F_1 \cap F_2$ is subfield of F with $F_1, F_2 \neq F$.

Characteristic of the ring

Definition. let R be a ring. If there exist a positive integer n such that na=0 for all $a \in R$, then the smallest positive integers with this property is called *Characteristic of the ring R*. If no such positive integers exists, then is said to be *characteristic of zero* (i.e charR = 0).

Examples.

- 1. $\operatorname{char}(\mathbb{R}) = \operatorname{char}(\mathbb{Q}) = \operatorname{char}(\mathbb{Z}) = 0$
- 2. char(\mathbb{Z}_n) = n
- 3. char(\mathbb{Z}_6) = 6
- 4. char(P(X), Δ , \cap) = 2 (because 2A = A Δ A = (A-A)U(A-A) = Ø.

<u>Remarks</u>.

- 1. If char R = 0, then R is an infinite (for examples: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$).
- 2. If char R = n, then the characteristic for any subring of R is equal or less than n.
- 3. Characteristic for finite ring R divisible order R(i.e: char $R \setminus o(R)$).

<u>**Theorem</u></u>. Let R be a ring with identity then char R = n > 0 if and only if n is n the smallest positive integer such that n.1 = 0.</u>**

<u>Proof</u>. \Rightarrow) suppose that, char R = n, then na = 0, \forall a \in R.

Since $1 \in \mathbb{R} \to n.1 = 0$. Suppose that $\exists m \in \mathbb{Z}$ such that $0 \le m \le n$ with m.1 = 0.

 $\therefore \text{ m.a} = \text{m}(1. \text{ a}) = (\text{m.1}). \text{ a} = 0. \text{ A}, \forall \text{ a} \in \mathbb{R}.$

 \therefore m.a = 0

 $: 0 < m < n \text{ and } m.a = 0 \rightarrow \text{char } R = m \quad C! \text{ (char } R = n)$

 \therefore n is the smallest positive integer.

 \Leftarrow) Let $0 \neq a \in \mathbb{R}$. Since na = n(1.a) = (n.1). a = 0. a = 0.

 \therefore char R = n

Theorem. If R is an integral domain, then char R is either 0 or prime number.

<u>Proof</u>. Suppose that char R = n > 0 and to prove char R = prime number.

Suppose n is not prime \rightarrow char $R = n_1 n_2$ such that $1 < n_1 < n_2 < n$.

∴ R is ring with identity $\rightarrow n_1n_2$ is the smallest positive integer such that $(n_1n_2) \cdot 1 = 0 \rightarrow n \cdot 1 = (n_1n_2)(1 \cdot 1) = (n_1 \cdot 1)(n_2 \cdot 1) = 0$

 $: (n_1 \cdot 1)(n_2 \cdot 1) \in \mathbb{R}$

:: R is an integral domain $\rightarrow R$ has no zero divisors.

: either $n_1 \cdot 1 = 0$ or $n_2 \cdot 1 = 0$.

: either char $R = n_1$ or char $R = n_2$.

But $n_1 \le n$ and $n_2 \le n$ $C! \rightarrow n \neq n_1n_2$.

 \therefore n is prime number

<u>Corollary</u>. If R is a finite integral domain, then char R = p (p is prime number).

Example. char $\mathbb{Z}_p = p$ (p is prime number).