1. g is well-define: suppose $m_1+k=m_2+K$ iff $m_1-m_2\in K\leq N$ iff $m_1+N=m_2+N$

∴ g is well defined

- 2. g is a homomorphism (prove)
- 3. g is an epimorphism (prove)

4. kerg = {m+K| g(m+k) = N}
={m+K| m+ N = N}
= {m+K| m∈ N}
=
$$\frac{N}{K}$$
 (where K ≤ N and m ∈ N)
∴ kerg = $\frac{N}{K}$

Then by the first isomorphism theorem, $\frac{\frac{M}{K}}{\frac{N}{K}} \approx \frac{M}{N}$.

Exercise. Let M be a cyclic R-module, say M=Rx. Prove that M \approx R/ann(x), where ann(x) = {r \in R | rx = 0}.

[Hint: Define the mapping f: $R \rightarrow M$ by f(r) = rx]

Chapter three (Sequence)

Short exact sequence

<u>Definition.</u> A sequence $M_1 \stackrel{f}{\rightarrow} M \stackrel{g}{\rightarrow} M_2$ of R-modules and R-module homomorphisms is said to be **exact** at M Im f = ker g while a sequence of the form

$$\partial: \quad \dots \to M_{n-1} \xrightarrow{f_{n-1}} M_n \xrightarrow{f_{n+1}} M_{n+1} \to \dots$$

 $n \in \mathbb{Z}$, is said to be an *exact sequence* if it is exact at M_n for each $n \in \mathbb{Z}$. A sequence such as

$$0 \to M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \to 0$$

that is exact at M_1 , at M and at M_2 is called a *short exact sequence*.

Remarks.

- 1. If an exact sequence $0 \to M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \to 0$ is short exact then
- i. f is a monomorphism
- ii. g is an epimorphism
- 2. A sequence $0 \to M_1 \xrightarrow{f} M$ is exact iff f is monomorphism
- 3. A sequence $M \stackrel{g}{\rightarrow} M_2 \rightarrow 0$ is exact iff g is epimorphism
- 4. If the composition(between two homomorphisms f and g) gof = 0, then Imf \leq kerg.

Examples.

- 1. If N is a submodule of M, then $0 \to N \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{N} \to 0$ is a short exact sequence, where i is the canonical injection and π is the natural epimorphism. for example: since kerf is a submodule of M, then $0 \to kerf \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{kerf} \to 0$ is a short exact sequence.
- 2. Consider the sequence

$$\mu \colon \quad 0 \to M_1 \overset{J_1}{\to} M_1 \oplus M_2 \overset{\rho_2}{\to} M_2 \to 0$$

$$\operatorname{Im} J_1 = M_1 \oplus \{0\} \quad ; \quad J_1(\mathbf{x}) = (\mathbf{x}, \, 0)$$

$$\ker \rho_2 = M_1 \oplus \{0\} \quad ; \quad \rho_2(\mathbf{x}, \, \mathbf{y}) = (0, \, \mathbf{y})$$
 for any $\mathbf{x} \in M_1$, $\mathbf{y} \in M_2$ and $(\mathbf{x}, \mathbf{y}) \in M_1 \oplus M_2$
$$J_1 \text{ is a monomorphism and } \rho_2 \text{ is an epimorphism}$$

$$\therefore \mu \text{ is short exact sequence}$$

3. The sequence $0 \to 2\mathbb{Z} \xrightarrow{i} \mathbb{Z} \xrightarrow{\pi} \frac{\mathbb{Z}}{2\mathbb{Z}} \to 0$ of \mathbb{Z} -modules is a short exact sequence

Remark. Commutative Diagrams

The following diagram

$$A \xrightarrow{f_1} B$$

$$g_1 \downarrow \qquad \downarrow g_2$$

$$C \xrightarrow{f_2} D$$

is said to be *commutative* if $g_2 of_1 = f_2 og_1$. Similarly, for a diagram of the form

$$A \xrightarrow{f} B$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \qquad g$$

$$C$$

is commutative if gof = h and we say that g **completes the diagram commutatively.**

Theorem. (The short five lemma). Let R be a ring and

$$0 \to A \xrightarrow{f_1} B \xrightarrow{g_1} C \to 0$$

$$\alpha \downarrow \beta \downarrow \gamma \downarrow$$

$$0 \to A \stackrel{f_2}{\to} B \stackrel{g_2}{\to} C \to 0$$

a commutative diagram of R-modules and R-module homomorphisms such that each row is a short exact sequence. Then

- 1. If α and γ are monomorphisms, then β is a monomorphism.
- 2. If α and γ are epimorphisms, then β is an epimorphism.
- 3. if α and γ are isomorphisms, then β is an isomorphism.

Proof 1.

To show that β is a monomorphism, must prove ker $\beta = 0$.

Let $b \in \ker \beta \to \beta(b) = 0 \to g_2(\beta(b)) = g_2(0) = 0$. Since the diagram is commutative, then:

$$\gamma \circ g_1(b) = \gamma(g_1(b)) = 0 \rightarrow g_1(b) \in \ker \gamma = \{0\} (\gamma \text{ is a monomorphism})$$

$$\rightarrow g_1(b) = 0 \rightarrow b \in \ker g_1 = \operatorname{Im} f_1 = f_1(A). \text{ There is a } \in A \text{ such that}$$

$$f_1(a) = b \to \beta(f_1(a)) = \beta(b).$$

Since

 $\beta \circ f_1 = f_2 \circ \alpha \rightarrow f_2 \circ \alpha(a) = \beta(b) \rightarrow f_2(\alpha(a)) = 0 \rightarrow \alpha(a) \in \ker f_1 = \{0\}(f_2 \text{ is a monomorphism}), so$

$$\alpha(a) = 0 \rightarrow a \in \text{ker}\alpha = \{0\} \ (\alpha \text{ is a monomorphism}) \rightarrow a = 0.$$

But
$$f_1(a)=b$$
 and $a=0 \to b=f_1(a)=f_1(0)=0 \to b=0$.

$$ker\beta = \{0\} \rightarrow \beta$$
 is a monomorphism

Proof 2.

Let $\acute{b}\in \acute{B}\to g_2(\acute{b})\in \acute{C}\to g_2(\acute{b})=\acute{c}$. Since γ is an epimorphism, there is $c\in C$ such that

$$\gamma(\mathbf{c}) = \dot{\mathbf{c}} \rightarrow g_2(\dot{\mathbf{b}}) = \gamma(\mathbf{c}).$$

But g_1 is an epimorphism, then there is $b \in B$ such that

$$g_1(b) = c \rightarrow g_2(b) = \gamma(c) = \gamma(g_1(b)) = \gamma \circ g_1(b) = g_2 \circ \beta(b)$$

SO

$$g_2(\acute{b}) = g_2(\beta(b)) \rightarrow g_2(\beta(b) - \acute{b}) = 0$$
 (g_2 is homomorphism).

and

$$\beta(b) - \hat{b} \in \ker g_2 = \operatorname{Im} f_2 \rightarrow \beta(b) - \hat{b} \in \operatorname{Im} f_2$$
.

There is $\dot{\alpha} \in A$ such that $f_2(\dot{\alpha}) = \beta(b) - \dot{b}$. But α is an epimorphism, there is $a \in A$ such that $\alpha(a) = \acute{a}$. Since $\beta \circ f_1 = f_2 \circ \alpha$ (the diagram is commutative).

Then

$$\beta(f_1(a)) = f_2(\alpha(a)) = f_2(\alpha) = \beta(b) - b$$

SO

$$\hat{b} = \beta(b) - \beta(f_1(a)) = \beta(b - f_1(a))$$
 (β is homomorphism)

i.e there is $b - f_1(a) \in B$ such that $\beta(b - f_1(a)) = \hat{b}$

Hence β is an epimorphism.

Proof 3. is an immediate consequence of (1) and (2).

 $A \xrightarrow{f} B \xrightarrow{g} C \to 0$ **Exercise.** Consider the following diagram: h D

where the row is exact and hof = 0. Prove that, there exact a unique homomorphism k: $C \rightarrow D$ such that kog = h.

Definition. Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a short exact sequence. This sequence is said to be *splits* if Imf is a direct summand of B.

(i.e there is $D \le B$ such that $B = Imf \oplus D$).

Example. The sequence $0 \to 2\mathbb{Z} \xrightarrow{i} \mathbb{Z} \xrightarrow{\pi} \frac{\mathbb{Z}}{2\mathbb{Z}} \to 0$ of \mathbb{Z} -modules and \mathbb{Z} homomorphism is a short exact sequence which is not split (where Imi = $2 \mathbb{Z}$ is not direct summand of \mathbb{Z}).

Theorem. Let R be a ring and

$$\mathcal{F}: \quad 0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

a short exact sequence of R-module homomorphisms. Then the following conditions are equivalent

- 1. \mathcal{F} splits.
- 2. f has a left inverse (i.e \exists h: B \rightarrow A homomorphism with hof = I_A).
- 3. g has a right inverse(i.e \exists k:C \rightarrow B a homomorphism with gok = I_C).

Proof. $(1 \rightarrow 2)$ since \mathcal{F} splits, then Imf is a direct summand of B.

(i.e. $\exists B_1 \leq B \text{ such that } B = Imf \bigoplus B_1$).

Define h: B \rightarrow A by h(x) = h(a₁+b₁) = a for x = a₁+b₁ \in Imf \oplus B₁.

where $a_1 \in \text{Imf}$ (i.e $\exists a \in A \text{ such that } f(a) = a_1$) and $b_1 \in B_1$.

- a. Since f is one-to-one, then h is well-define.
- b. h is a homomorphism
- c. let $w \in A$, hof(w) = h(f(w)) = h(f(w)+0) = w (by definition of h)

∴ h is a left inverse of f.

 $(2 \rightarrow 3)$ suppose f has a left inverse say h(i.e. hof = I_A).

Define k: C \rightarrow B by: k(y) = b - foh(b) where g(b) = y with b \in B₁.

a. k is well define:

let y, $y_1 \in C$ such that $y = y_1$ with g(b) = y and $g(b_1) = y_1$ for b, $b_1 \in B_1$.

Now,

$$g(b) = g(b_1) \rightarrow b_1 - b \in \ker g = \operatorname{Imf}$$

so, b_1 - $b \in Imf \rightarrow \exists a \in A \text{ such that } f(a) = b_1 - b$.

Then $h(f(a)) = h(b_1 - b)$. But $hof = I_A$,

so
$$a = hof(a) = h(f(a)) = h(b_1 - b) = h(b_1) - h(b)$$

$$: a = h(b_1) - h(b) \rightarrow f(a) = f(h(b_1)) - f(h(b)) = b_1 - b$$

$$\therefore b - f(h(b)) = b_1 - f(h(b_1)) \rightarrow k(y) = k(y_1) \rightarrow k \text{ is well define.}$$

- b. k is homomorphism (why?)
- c. $gok = I_C$ for that

let
$$y \in C$$
, gok $(y) = g(k(y)) = g(b-f\circ h(b))$ where $g(b) = y$.

$$\rightarrow$$
 gok(y) = g(b) + gofoh(b). But Im f = kerg. So, gof = 0.

$$\rightarrow$$
gok(y) = g(b) + 0 = y

$$\therefore$$
 gok = I_C

 $(3 \rightarrow 1)$ suppose that g has a right inverse say k: C \rightarrow B such that gok = I_C

Let $B_1 = \{b \in B | \log(b) = b\}$

- a. $B_1 \neq \varphi$ (0 \in B_1 where g(0) = k(g(0)) = k(0) = 0)
- b. B₁ is a submodule of B. (prove?)
- c. $B = Imf \oplus B_1$, for that:
 - i. Let $w = Imf \cap B_1 \rightarrow w = f(a) \in B_1$ for some $a \in A$ with $kog(w)=w \rightarrow k(g(f(a))) = k(0) = 0$. But k(g(f(a))) = k(g(w)) = w.

Thus w = 0 and so $Imf \cap B_1 = 0$.

ii. Let $b \in B \rightarrow b = b - \log(b) + \log(b)$.

Since kog(kog(b)) = kog(b), then $kog(b) \in B_1$ and g(b-kog(b)) = g(b) - gokog(b) = g(b) - Iog(b) = g(b) - g(b) = 0 (where $gok = I_C$).

 \rightarrow b-kog(b) \in kerg = Imf

 $b = b - \log(b) + \log(b) \in Imf + B_1$

 \therefore B = Imf \bigoplus B₁ \longrightarrow Imf is a direct summand of B which implies \mathcal{F} splits.

Exercise If the short exact sequence

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

splits, then $B \approx Imf \oplus Img$