Arithmetic of the Rational Numbers

لتعريف عمليتي الجمع والضرب في الأعداد النسبية، نحتاج إلى:

anor A

Lemma

Let $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$. Then:

1. $(ad + cb, bd) \sim (a'd' + c'b', b'd')$

2. (ac, bd) ~ (a'c', b'd')

Proof

Since $(a, b) \sim (a', b')$ and $(c, d) \sim (c', d')$, then:

ab' = a'b and cd' = c'd

Then: (ad + cb) (b'd') = abd'd' + cbb'd' = a'dbd' + c'bbd

= (a'd' + c'b')bd

=> (ad + cb, bd) ~ (a'd' + c'b', b'd')

Also:
$$(ac)(b'd') = (ab')(cd') = (a'b)(c'd) = (a'c')(bd)$$

So $(ac, bd) \sim (a'c', b'd')$

Theorem

∃ f, g: Q → Q such that for all x, y ∈ Q, if (a, b) ∈ x and (c, d) ∈ y: 1. f(x, y) = (ad + cb, bd)

2. g(x, y) = (ac, bd)

Definition (addition and multiplication in Q)

Let x, $y \in Q$, x = (a,b), y = (c,d), then:

1. The function f defined on Q by f(x,y) = [ad + cb, bd] is said to be "addition in Q".

Notation: f(x,y) = x + y

2. The function g is said to be "multiplication in Q", defined by g(x,y) = [ac, bd]

Notation: $g(x,y) = x \cdot y$

Example

Let $x = [1,2], y = [3,5] \in Q$ Then:

 $x + y = [1 \cdot 5 + 3 \cdot 2, 2 \cdot 5] = [11, 10]$

 $x * y = [1 \cdot 3, 2 \cdot 5] = [3, 10]$

Definition (Subtraction in Q)

Let x, $y \in Q$, x = (a,b), y = (c,d), then: x - y = x + (-y) = [a,b] + [-c,d] = [ad - cb, bd]

Remarks

1.0 = [0,1]

2. 1 = [1,1]

Example

Let x = [4,9], y = [6,13]

Ana diner his $x - y = [4 \cdot 13 - 6 \cdot 9, 9 \cdot 13] = [52 - 54, 117] = [-2, 117]$

Definition (Division and Inverse)

Let $x \in Q$, $y \in Q - \{0\}$, then:

$$1 \cdot \frac{x}{y} = \mathbf{x} \cdot \mathbf{y}^{-1}$$
$$2 \cdot \mathbf{x}^{-1} = \frac{1}{x}$$

Example

1. Let x = [3,4], y = [1,1]

• $\frac{1}{x} = [1,1] \cdot x^{-1} = [1,1] \cdot [4,3] = [4,3]$

•
$$\mathbf{x} \cdot \mathbf{x}^{-1} = [3,4] \cdot [4,3] = [12,12] = [1,1]$$

2.
$$x = [2,5]$$
 $y = [-3,11]$ then
 $\frac{x}{y} = y. x^{-1} = [-3, 11] . [5, 2]$
 $= [-15, 22]$

Remark: The set $V = \{x \in \mathbb{Q} \mid x \le 1\}$ has no least element.

Theorem: (\mathbb{Q}, \leq) is not well-ordered.

Proof:

 (\mathbb{Q}, \leq) is poset but \exists the set $V = \{x \in \mathbb{Q} \mid x \leq 1\}$ has no least element.

 \therefore (Q, \leq) is not well-ordered.

"Properties of Q"

1. \mathbb{Q} is Countable Proof.

رسم جدول للأعداد النسبية الموجبة في عدد من المتتابعات بدون تكرار

The set of all positive rational numbers is: {1, 1/2, 1/3, 2/3, 3, 1/4, 2/3, 5/2, 4, 1/3, ...}

∴ each rational number in {0, 1, -1, 1/2, -1/2, 2, -2, 1/3, -1/3, ...}

 \therefore \exists bijective f: $\mathbb{Q} \rightarrow \mathbb{N}$ such that:

- $0 \leftrightarrow 0$
- $1 \leftrightarrow 1$
- $-1 \leftrightarrow 2$
- $1/2 \leftrightarrow 3$
- $-1/2 \leftrightarrow 4$

•••

 $\therefore \mathbb{Q}$ is countable set.

2. Dense ordered (الترتيب الكثيف)

Definition: Let " \leq " be a partially ordered relation on the set A. Then " \leq " is said to be dense if and only if $(a, b \in A) \land (a < b) \rightarrow (\exists c \in A \text{ such that } a < c < b)$

Remark.

The relation " \leq " on \mathbb{Q} is dense. That is, $\forall p, q \in \mathbb{Q}$, $\exists r \in \mathbb{Q}$ such that p < r < q

7

sst.Prot.

Theorem: $\nexists x \in \mathbb{Q}$ such that $x^2 = 2$ Proof: Suppose that $x \in \mathbb{Q}$ such that $x^2 = 2$ $\Rightarrow x = a/b$; $a, b \in \mathbb{Z}$ and $b \neq 0$ $\Rightarrow x^2 = 2 \Rightarrow a^2 / b^2 = 2 \Rightarrow a^2 = 2b^2$ $\Rightarrow a^2$ is even $\Rightarrow a$ is even $\Rightarrow a = 2k$; $k \in \mathbb{Z}^+$ $\Rightarrow b^2 = 2k^2 \Rightarrow b^2$ even $\Rightarrow b$ is even $\Rightarrow b = 2t$; $t \in \mathbb{Z}$ $\Rightarrow x = a/b = 2k / 2t = k / t$ $\Rightarrow \exists k < a$ such that $x = k/t \in \mathbb{Q}!$ \Rightarrow contradiction $\Rightarrow \nexists x \in \mathbb{Q}$ such that $x^2 = 2$

8