Definition. Let $x \in \mathbb{Q}$, then

- 1. x is said to be negative rational number if $-x \in \mathbb{Q}$, (i. e x > 0)(i.e. if x = (a, b) $\in \mathbb{Q}$ then $-x = (-a, b) \in \mathbb{Q}$)
- 2. if $x \neq 0$ and x = (a, b), then $x^{-1} = (b, a)$

Example.

1. x = (-3, 5) is negative rational number because $-(-3, 5) \in \mathbb{Q}^+$.

2. $x^{-1} = (-5, 3) = (5, -3)$

55.

Density of Rational Numbers

Remark:

The relation "<" on \mathbb{Q} is dense. That is:

 $\forall p, q \in \mathbb{Q}, \exists r \in \mathbb{Q} \text{ such that } p < r < q$

H.W.:

Give an example about density relation on another set.

Univercity of Baghdad College of science for wemen DR. Tamadher Arif

Important Axioms

1. Zoran's lemma:

let S be a partially ordered set. If every totally ordered subset of S has upper bound, then S contains a maximal element.

2. Axiom of choice

Let $\{y_{\alpha}\}_{\alpha \in I}$ be a nonempty family of sets then $\exists f: I \to \bigcup_{\alpha \in I} y_{\alpha}$ such that $f(x) \in y_{\alpha}$.

3. Division Algorithm

Theorem.

Let $a, b \in \mathbb{Z}$, b > 0, then $\exists ! q, r \in \mathbb{Z}$ such that a = bq + r for $0 \le r < b$ **Corollary.**

Let $a, b \in \mathbb{Z}$, $b \neq 0$, then $\exists ! q, r \in \mathbb{Z}$ such that a = bq + r for $0 \leq r < |b|$

Remark.

q = quotient, r = reminder

i.e

 $\begin{array}{c} b \\ \hline q & a \\ \hline aq \\ \hline r \end{array}$

Example.

- **1.** If b = -2 and a = -5, then $-5 = (-2) \cdot 3 + 1$
- **2.** b = 3 and a = 20, then 20 = 3. 6 + 2

H.W. Compute the quotients and the reminder r when

- 1. b = -7 and a = -2
- 2. b = -7 and a = 61,
- 3. b = 6 and a = 49

rational Numbers

Binary Operations (العمليات الثنائية)

Definition:

Let A be a nonempty set. A function
$$*: A \times A \rightarrow A$$
 is said to be a **binary operation** on A if:

 $\forall a, b \in A \Rightarrow a * b \in A$

i.e *: $(a, b) \rightarrow a^*b$

Definition

Let A be a nonempty set, and $B \subseteq A$. If * is a binary operation on A, then B is said to be a

closed subset with respect to * if and only if

$$\forall a, b \in B \Rightarrow a * b \in B$$

Remark:

If * is a binary operation on A, then A is closed under *

Examples:

1. Let $A = \mathbb{N}$ and * = "+"

 $(a, b) \in \mathbb{N} \times \mathbb{N} \Rightarrow a + b \in \mathbb{N}$

So "+" is a binary operation on \mathbb{N} , and \mathbb{N} is closed under "+"

- 2. The function "+" is also a binary operation on, \mathbb{Q} , and \mathbb{Z}
- 3. Let $A = \{-2, -1, 0, 1, 2\}$, and * = "+"

Then "+" is **not** a binary operation on A.

Because: If a = 2 and $b = 1 \Rightarrow a + b = 3 \notin A$, so A is not closed under "+"

Homework

- 1. Is the operation "-" a binary operation on \mathbb{N} ?
- 2. Let * be defined by the following table on the set $A = \{1, 2, 3\}$:

*	1	2	3
1	1	2	3
2	3	1	2
3	2	3	1

Is "*" a binary operation on A?

(الحقل) Field

Definition. Let A be the nonempty set and '+', ' \cdot ' be two binary operations on A.

Then the mathematical system $(A, +, \cdot)$ is said to be a field if: \forall a, b, c \in A;

- 1. a + b = b + a
- 2. $\exists 0$ the identity element such that $\forall a \in A, a + 0 = 0 + a = a$
- 3. $\forall a \in A, \exists (-a) \in A$ such that a + (-a) = (-a) + a = 0
- 4. (a + b) + c = a + (b + c)
- 5. $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
- 6. $\forall a (\neq 0) \in A$, $\exists a^{-1} \in A$ such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$
- 7. \exists 1 the identity element such that $\forall a \in A, a \cdot 1 = 1 \cdot a = a$

8.
$$(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{c})$$

- 9. $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$
 - $(\mathbf{b} + \mathbf{c}) \cdot \mathbf{a} = \mathbf{b} \cdot \mathbf{a} + \mathbf{c} \cdot \mathbf{a}$

Theorem

The mathematical system (\mathbb{Q} , +, .) is a field (and it's said to be the field of rational numbers).

Theorem

If the algebraic system (A, +, ., <) is an ordered field, then the relation " < " is dense.

Proof. Let $a, b \in A$ such that a < b, then

 $\rightarrow a + b < b + b$

Ari

 $\rightarrow a + a < b + a = a + b$ $\rightarrow a + a < a + b < b + b$ $\rightarrow 2a < a + b < 2b$ $2 = 1 + 1 > 0 \rightarrow \frac{1}{2} > 0$ $\rightarrow a < \frac{a+b}{2} < b$ Anathor $\rightarrow \forall a, b \in A \text{ such that } a < b, \exists \frac{a+b}{2} \in A \text{ such that } a < \frac{a+b}{2} < b$ \therefore " < " is dense.

Remark. An order "<" in \mathbb{Z} is not dense.

Proof.

Let $x, y \in \mathbb{Z}$ such that x < y and y = x+1. We want to show $\nexists k \in \mathbb{Z}$ such that x < k < yIf $x < y \Rightarrow x < x + 1$, $\rightarrow \nexists k \in \mathbb{Z}$ such that $x < k < x + 1 \Rightarrow$ No such k exists Suppose $\exists p \in \mathbb{Z}$ such that k = x + p. Then $x < x + p < x + 1 \Rightarrow p < 1$ But $p \in \mathbb{Z} \Rightarrow p \le 0$ c! x < x + p < x + 1, since $x + p \le x$. Therefore, $\nexists k \in \mathbb{Z}$ such that x < k < y

: The order is not dense in \mathbb{Z} .

Archimedean field

Definition. An ordered field $(A, +, \cdot, <)$ is called Archimedean if for all $x, y \in A$ with $x > 0, \exists n \in \mathbb{N}$ such that $nx \ge y$

Theorem. $(\mathbb{Q}, +, \cdot, <)$ is Archimedean.

Proof. Let x, $y \in \mathbb{Q}$ such that 0 < x < y, then $\exists a, b, c, d \in \mathbb{Z}$ with $b \neq 0, d \neq 0$, such that x = 0

a/b, $y = c/d \Rightarrow 0 < \frac{a}{b} < \frac{c}{d}$

Multiply both sides by bd: $\Rightarrow 0 < ad < cb \Rightarrow \frac{ad}{bd} < \frac{cb}{db}$

Put:

p = ad, q = bc, r = bd

Then:

$$x = \frac{a}{b} = \frac{ad}{bd} = \frac{p}{r},$$
$$y = \frac{c}{d} = \frac{cb}{db} = \frac{q}{r}$$
$$\Rightarrow 0 < \frac{p}{r} < \frac{q}{r}$$

Now multiply both sides by r: \Rightarrow kx = k $\cdot \frac{p}{r}$

 $\Rightarrow \exists k \in \mathbb{N}$ such that $kx = k \cdot \frac{p}{r} \ge y = \frac{q}{r}$

 \Rightarrow kx \geq y

 \Rightarrow (Q, +, ·, <) is Archimedean.

14