Definition.(The ideal)

Let R be a ring and $\emptyset \neq I \subseteq R$. then I is said to be an *ideal* of R if for all a, b \in I and r \in R:

1. $a - b \in I$ 2. $a \cdot r \in I$ and $r \cdot a \in I$

Remarks.

1. Every ideal is a subring.

```
<u>Proof</u>. Let \emptyset \neq I \subseteq R be an ideal of R and a, b \in I, then
```

- i. $a b \in I$ (I ideal)
- ii. Since $b \in I \subseteq R \rightarrow b \in R \rightarrow ab \in I$ and $ba \in I$ (I ideal).
- The converse of (1) is not true in general. For example: the ring of integers (Z, +, .) is a subring of (Q, +, .) which is not ideal, for that: if a = 2 and r = 1/3, then a.r = 2/3 ∉ Z.
- 3. Let R be a ring, then {0} and R are the trivial ideals in R.
- 4. Every ideals of the form n \mathbb{Z} is an ideal in \mathbb{Z} .
- 5. $\{0\}$ and \mathbb{Q} are the only ideals in \mathbb{Q} .
- 6. Let R be a ring with identity 1 and I be an ideal of R. If $1 \in I$, then I = R.

<u>Proof</u>. Suppose that $1 \in I \rightarrow$ for all $r \in R$, $1.r \in I \rightarrow R \subseteq I$. But $I \subseteq R \rightarrow I = R$

7. Let R be a ring and I be an ideal of R. If I contain an invertible element, then R = I.

<u>Proof</u>. Let $a \in I$ has inverse say $b \to 1 = a \cdot b \in I \to 1 \in I \to I = R$.

8. If F is field, then the trivial ideals in R are only ideals in R.
 Proof. H . W.

Definition. Let I be an ideal in a ring R. Then $\frac{R}{I}$ is a ring and is said to be *quotient ring* of R by I, where $\frac{R}{I} = \{r + I \mid r \in R\}$

Define

 $(r_1 + I) \bigoplus (r_2 + I) = (r_1 + r_2) + I$

 $(r_1 + I) \odot (r_2 + I) = r_1 \cdot r_2 + I$

Note that \oplus is well defined where I is a subring of R.

To prove \bigcirc is well defined: let r_1 , a_1 , r_2 , $a_2 \in \mathbb{R}$ such that

 $r_1 + I = a_1 + I \longrightarrow r_1 \text{ - } a_1 \in I$

 $r_2+I=a_2+I \longrightarrow r_2-a_2 \in I$

: I is an ideal of R \rightarrow r₁ (r₂ - a₂) \in I and (r₁ - a₁) a₂ \in I

 $\therefore r_1 (r_2 - a_2) + (r_1 - a_1) a_2 \in I$

$$\therefore r_1r_2 - a_1a_2 \in I \rightarrow r_1r_2 + I = a_1a_2 + I$$

 \therefore \bigcirc is well defined.

We can prove that $(\frac{R}{I}, \bigoplus, \bigcirc)$ is a quotient ring of R by I (H.W.)

Remarks.

- 1. Let R be a ring with identity, then $\frac{R}{I}$ is a ring with identity.
- 2. If R is a commutative ring, then so is $\frac{R}{I}$.
- 3. If R is an integral domain, then that not necessary $\frac{R}{I}$ is an integral domain. For example: the ring of integers Z is an

integral domain while $\frac{\mathbb{Z}}{4\mathbb{Z}} \cong \mathbb{Z}_4$ is not integral domain since $\overline{2} \cdot \overline{2} = \overline{0}$ in \mathbb{Z}_4 but $\overline{2} \neq \overline{0}$ in \mathbb{Z}_4 .

Definition. Let R be a ring and S be a nonempty subset of R. A set (S) (or $\langle S \rangle$):

 $(S) = \cap \{ I | I \text{ is an ideal of } R \text{ containing } S \}$

is called set *generated by the set S*.

<u>Remarks</u>. Let R be a ring, then:

- 1. (S) $\neq \emptyset$ (S \leq (S))
- 2. (S) is an ideal of R (since the intersection of ideals is an ideals)
- 3. (S) is the smallest ideal contain S.
- 4. (S) = S if S is an ideal.
- 5. If S = {a₁, a₂, ..., a_n} is a finite set, then (S) is called *finitely generated ideal*. ((S) is f.g.)
- 6. If $S = \{a\}$, then (S) = (a) is said to be *principal ideal*.
- 7. If R is commutative ring with identity, then(a) = {ar| r ∈ R}
- 8. If (S) is finitely generated, then (S) may be not in general finite set. For example: let R = Z and S = {1}, then (S) = Z is finitely generated which is not finite set.

<u>Definition</u>. A ring R is called *principal ideal ring* (PIR) if every ideal of R is principal.

Definition. A PIR is said to be *principal ideal domain* (PID), if R is domain.

Remark.
$$\operatorname{PID} \xrightarrow[\leftrightarrow]{by \ definition} \\ \xrightarrow[\leftrightarrow]{example } \mathbb{Z}_6} \operatorname{PIR}$$

Examples.

1. Every ideal in \mathbb{Z} is principal.

<u>Proof</u>. To prove that $\mathbb{Z} = (n)$, let I be an ideal in \mathbb{Z} . If $I = \{0\}$, then I = (0) is principal. Suppose that $I \neq \{0\} \rightarrow \exists (0 \neq) m \in I$. Let n be the smallest positive integers in $I \rightarrow rn \in I$ (I is an ideal and $n \in I, r \in R$). Thus $(n) \subseteq I$.

Let $k \in I$ and $n \neq 0 \rightarrow By$ division algorithm, k = qn + r for $0 \leq r < n \rightarrow r = k - qn \in I \rightarrow r \in I \rightarrow r = 0$ (since r < n and n is the smallest positive integers) $\rightarrow k = qn \in (n) \rightarrow I \subseteq (n)$. By that I = (n).

2. The ring \mathbb{Z} is PID.

<u>**Proof**</u>. since \mathbb{Z} is an integral domain and every ideal of \mathbb{Z} principal of the form (n) = n \mathbb{Z} for n = 1,2,3,...

3. The ring \mathbb{Z}_6 is not PID.

<u>Proof.</u> The ring \mathbb{Z}_6 is commutative ring with identity and has nonzero divisor (**why?**) and so it's not integral domain. Therefore \mathbb{Z}_6 is not PID. But every ideal in \mathbb{Z}_6 is principal, so \mathbb{Z}_6 is PIR.

4. The ring \mathbb{Q} is PID.

<u>Proof</u>. The ring \mathbb{Q} is commutative ring with identity and has no nonzero divisor (**why?**) so \mathbb{Q} is integral domain. Now, \mathbb{Q} have only the trivial two ideals $\{0\}$ and \mathbb{Q} . Since $\{0\}=(0)$ and $\mathbb{Q}=(1) = \{r.1 | r \in \mathbb{Q}\}$. Hence \mathbb{Q} is PID.

Theorem Let R be a commutative ring with identity, then R is field if and only if R has no nontrivial ideals.

<u>Proof</u>. \Rightarrow) Suppose that R is field and we want to prove that R contains only two ideals {0} and R. Suppose that I be a nonzero ideal of R.

 $:: I \neq 0 \rightarrow \exists 0 \neq a \in I$

 $: R \text{ field} \rightarrow a \text{ has inverse element say } a^{-1}$

 $\therefore a^{-1}$. $a \in I \rightarrow 1 \in R \rightarrow I = R$.

 \Leftarrow) Suppose that R contains only two ideals {0} and R.

If $0 \neq a \in \mathbb{R}$, then the ideal generated by $a, (a) \neq 0 \rightarrow (a) = \mathbb{R}$.

 $= a \cdot r_0$ (R is commutative)

 \therefore r₀ . a = a . r₀ = 1 \rightarrow r₀ is the inverse element of a \rightarrow R is field.

Remarks.

1. Let I and J be two ideals of a ring R. Then

 $I + J = \{x + y \mid x \in I \text{ and } y \in J\}$

(is said to be *sum of two ideals*) is an ideal of R.

Proof. H.W.

2. Let I be a left ideal and J be a right ideal of a ring R. Then

 $IJ = \{\sum_{i=1}^{n} x_i y_i \mid x_i \in I \text{ and } y_i \in J\}$

(is said to be *product of* I and J) is an ideal in R.

Proof. H.W.

Remarks.

1. The sum of n-ideals $I_1, I_2, ..., I_n = \{\sum_{i=1}^n a_i \mid a_i \in I, i = 1, 2, ..., \}$ n is an ideal of R.

- 2. The product of n-ideals $I_1, I_2, ..., I_n = \{\sum_{i=1}^n a_{1i} a_{2i} ... a_{ni} \mid a_{ji} \in I_j, j = 1, 2, ..., n\}$ is an ideal of R.
- The intersection of two ideals of R is an ideal of R.
 <u>Proof.</u> H.W.
- 4. The union of two ideals of R is not necessary ideal of R in general.

Example. Let I = (2) and J = (3) are two principal ideals of \mathbb{Z} . Each of 3,2 \in I \cup J but 3 – 2 = 1 \notin I \cup J. Hence I \cup J is not ideal of \mathbb{Z} .

- 5. IJ \subseteq I \cap J
- 6. If $I^2 = I$, then I is said to be *idempotent ideal*.
- 7. If $I^n = 0$ for some $n \in \mathbb{Z}_+$, then I is said to be *nilpotent ideal*.
- 8. If I and J are both idempotents ideals of a ring R. Then I + J is an idempotent.
- 9. An ideal I of R is said to be *nil ideal* if every element in I is nilpotent.
- 10. Every nilpotent ideal is nil ideal.
- 11. R = I + J iff every element in R can be written in one way as x + y for $x \in I$ and $y \in J$

Definition. A ring R is said to be *direct sum of two ideals* I_1 , I_2 if:

1.
$$R = I_1 + I_2$$

2. $I_1 \cap I_2 = \{0\}$

and write $R = I_1 \bigoplus I_2$. In this case R is said to be *decomposable ring*.

Remark.

1. Let $I_1, I_2, ..., I_n$ be ideals of a ring R. If i. $R = I_1 + ... + I_n$ ii. $I_J \cap (I_1 + ... + I_{J-1} + I_{J+1} + ... + I_n) = \{0\}$ Then $R = I_1 \bigoplus \ldots \bigoplus I_n$

2. If R cannot be written as $I_1 \bigoplus I_2$, then R is said to be *indecomposable ring*.

Example.

- 1. \mathbb{Z} is an indecomposable ring.
- 2. $\mathbb{Z}_6 = I_1 \bigoplus I_2$ where $I_1 = \{\overline{0}, \overline{3}\}$ and $I_2 = \{\overline{0}, \overline{2}, \overline{4}\}.$

Ring Homomorphism

Definition.(Ring Homomorphism)

Let f: $R \rightarrow R'$ be function from a ring R into a ring R', then f is said to be *ring homomorphism* if : for all a, b \in R,

- 1. f(a + b) = f(a) + f(b)
- 2. $f(a \cdot b) = f(a) \cdot f(b)$

<u>Example</u>. let f: $\mathbb{Z} \to \mathbb{Q}$ defined by $f(n) = n, \forall n \in \mathbb{Z}$, then:

- 1. f(n + m) = n + m = f(n) + f(m)
- 2. f(n . m) = n . m = f(n) . f(m)∀ n, m ∈ Z ∴ f is a ring homomorphism

Definition. (kernel of f)

Let $f : R \to R'$ be a ring homomorphism. Then

1. The set

ker
$$f = \{x \in R | f(x) = 0\}$$

is said to be *kernel* of the homomorphism f

2. The set

$$\operatorname{Im} f = \{f(x) | x \in R\} = f(R)$$

is said to be *Image* of the homomorphism f and f is said to be onto if f(R) = R'.

<u>Proposition</u>. Let $f : R \rightarrow R'$ be a ring homomorphism, then:

- 1. ker f is an ideal in R.
- 2. Im f is a subring of R.
- 3. If f is 1-1, then f is said to be *monomorphism*
- 4. ker $f = \{0\}$ iff f is monomorphism.
- 5. If f is onto, then f is said to be *epimorphism*
- 6. If f is 1-1 and onto, then f is said to be *isomorphism*
- 7. If $f : R \rightarrow R$ and f is an isomorphism, then f is said to be *automorphism*

Proof 1.

i. Let a, b ∈ ker f → f(a) = 0 and f(b) = 0.
∴ R is a ring , then a - b ∈ R
∴ f is a ring homomorphism, then f(a - b) = f(a) - f(b) = 0 - 0 = 0
∴ a - b ∈ ker f
ii. Let r ∈ R and a ∈ ker f, then f(a) = 0.
∴ ar ∈ R (R is ring) → f(ar) = f(a) . r = 0 . r = 0 → f(ar) = 0
∴ ar ∈ ker f
∴ ker f is an ideal of R.

Proof 2. H.W.

Proof 4. H.W.

Examples.

1. Let f: $\mathbb{Z}_5 \to \mathbb{Z}_{10}$ defined by f(x) = 5x for $x \in \mathbb{Z}_5$. Then f is not ring homomorphism.

<u>Proof</u>. If $x = \overline{2}$ and $y = \overline{4} \in \mathbb{Z}_5$, then $f(x + y) = f(\overline{1}) = \overline{5}$ While $f(x) + f(y) = f(\overline{2}) + f(\overline{4}) = 5(\overline{2}) + 5(\overline{4}) = \overline{0} + \overline{0} = \overline{0}$ $\therefore f(x + y) \neq f(x) + f(y) \rightarrow f$ is not ring homomorphism.

2. Let R be a ring with identity and g: $\mathbb{Z} \to R$ defined by g(n) = n.1 for all $n \in \mathbb{Z}$. Then g is ring homomorphism(why?).

<u>**Remark</u>**. Let $f : \mathbb{R} \to S$ be a ring homomorphism, then $f(1_{\mathbb{R}}) = f(1_{S})$ is **not necessary true**.</u>

Example.Define $f:M_2(\mathbb{Q}) \to M_3(\mathbb{Q})$ where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \to \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Then $f\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and f is a ring homomorphism.But $f\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq I_3$ (where $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$)

Note that here $f(A)f(I_2) = f(a.I_2) = f(A)$. So $f(I_2)$ seems to work like the multiplicative identity on the range of f.

<u>Remarks</u>. Let $f : R \rightarrow R'$ be a ring homomorphism, then:

1. f(0) = 0'

- 2. f(-r) = -f(r)
- 3. If R and R' rings with identity 1 and 1' respectively, with f(R) = R' then:
- i. f(1) = 1' (i.e f(1) is an identity of R')
- ii. If a is invertible, then $f(a^{-1}) = (f(a))^{-1}$.
- iii. If I is an ideal of R, then f(I) is an ideal of R'.
- iv. If I' is an ideal of R', then $f^{-1}(I') = \{r \in R | f(r) \in I'\}$ is an ideal of R

Proof 3:

(i) Let f: $R \to R'$ be an epimorphism and 1 is the identity element of R. Let $x \in R'$, then $\exists a \in R$ such that f(a) = x (f is an epimorphism).

Now,

x. f(1) = f(a). $f(1) = f(a \cdot 1) = f(a) = x$ and f(1). x = f(1). f(a) = f(1.a) = f(a) = x.

 $\therefore x \cdot f(1) = f(1) \cdot x = x \rightarrow f(1) \text{ is the identity element of } R'.$

(ii) Let $a \in R$, then $f(a^{-1})$. $f(a) = f(a^{-1}.a) = f(1) = 1'$ and f(a). $f(a^{-1}) = f(a.a^{-1}) = f(1) = 1'$. $\rightarrow f(a^{-1})$ is the inverse element of $f(a) \rightarrow f(a^{-1}) = (f(a))^{-1}$.

(iii). Let f: $R \rightarrow R'$ be a ring homomorphism and I be an ideal of R. To prove that f(I) is an ideal in R':

Firstly, let x, y \in f(I) $\rightarrow \exists$ a, b \in I such that f(a) = x and f(b) = y. Since I is an ideal of R, then a – b \in I \rightarrow f(a - b) \in f(I) \rightarrow f(a) – f(b) \in f(I) \rightarrow x – y \in f(I).

Secondly, let $x \in f(I)$ and $r' \in R'$, then $\exists a \in I, \exists r \in R$ such that f(a) = x and f(r)=r'. Since I an ideal in $R \to f(ar) = f(a) f(r) = x \cdot r' \in f(I)$.

 \therefore f(I) is an ideal of R'.

(iv) $f^{-1}(I') = \{r \in R | f(r) \in I'\}.$

Let $a, b \in f^{-1}(I') \rightarrow a \in R$ and $f(a) \in I'$ and $b \in R$ and $f(b) \in I'$.

 $\therefore R \text{ ring} \rightarrow a - b \in R \rightarrow f(a - b) = f(a) - f(b) \rightarrow f(a) - f(b) \in I' (I' \text{ is an ideal of } R') \rightarrow f(a - b) \in I' \rightarrow a - b \in f^{-1}(I').$

Now, let $a, b \in f^{1}(I') \leq R \rightarrow a \cdot b \in R \rightarrow f(a \cdot b) = f(a) \cdot f(b) \in I'$ (I' is an ideal of R') $\rightarrow f(a \cdot b) \in I' \rightarrow a \cdot b \in f^{1}(I')$

 \therefore f¹(I') is a subring of R.

Now, to prove $f^{1}(I')$ is an ideal, let $c \in R$, $a \in f^{1}(I') \leq R \rightarrow f(a) \in I'$ and $ca \in R$ (R is ring) $\rightarrow f(ca) = f(c) \cdot f(a) \in I'(I' \text{ is an ideal}) \rightarrow f(ca) \in I' \rightarrow ca \in f^{1}(I').$

By the same way, ac $\in f^{1}(I')$.

 \therefore f⁻¹(I') is an ideal of R.

Definition. A ring homomorphism which is 1-1 and onto is said to be *isomorphism* ($R \cong R'$)

The Isomorphism Theorems

First Isomorphism Theorem. (F.I.Th.)

Let R and R' be two rings and f: $R \rightarrow R'$ be an epimorphism, then $\frac{R}{kerf} \cong R'$.

Proof. H.W.

<u>**Remark**</u>. If f is not epimorphism in F.I.Th., then $\frac{R}{kerf} \cong f(R)$

Second Isomorphism Theorem. (S.I.Th.)

Let I and J be two ideals of a ring R, then $\frac{I+J}{J} \cong \frac{I}{I \cap J}$

Proof. H.W.

Third Isomorphism Theorem. (T.I.Th.)

Let I and J be two ideals of a ring R, with $I \subseteq J$, then $\frac{\frac{R}{I}}{\frac{J}{I}} \cong \frac{R}{J}$.

Proof. H.W.

<u>**Theorem</u>**. Let f: $K \to K'$ be a ring homomorphism, with K, K' are fields. Then either f is one – to – one or f is zero function.</u>

Proof. Since K is field and kerf is an ideal in K. Then either kerf = 0, so f is one – to – one or kerf = K hence $f \equiv 0$.

<u>**Remark**</u>. Let f: $\mathbb{R} \to \mathbb{R}'$ be a ring homomorphism, then $\frac{\mathbb{Z}}{n\mathbb{Z}} \cong \mathbb{Z}_n$.

<u>Proof</u>. Define g: $\frac{\mathbb{Z}}{n\mathbb{Z}} \to \mathbb{Z}_n$ by $g(x + n \mathbb{Z}) = [x]$. Then g is an isomorphism.

(if $x + n\mathbb{Z} \in \ker g \to [0] = g(x + n\mathbb{Z}) = [x] \to x \in [0] \to x + n\mathbb{Z} = n\mathbb{Z}$. Since $n\mathbb{Z}$ is the zero of $\frac{\mathbb{Z}}{n\mathbb{Z}} \to g$ is monomorism)