Ring Theory (3'rd class) Dr. Tamadher Arif

Definition.( The ideal)

Let R bearingand @ # I CR. then I is said to be an ideal of R if for
alla,b €Elandr € R:

l.a-bel
2.a.r€landr.a€l
Remarks.
1. Every ideal is a subring.
Proof. Let ® # 1 CR be an ideal of R and a, b € I, then
1. a—b €l (Iideal)
i1. SincebeEICR —-beER —ab€€landba €1 (Iideal).

2. The converse of (1) is not true in general. For example: the
ring of integers (Z, +, .) 1s a subring of (Q, +, .) which is not
1deal, for that: ifa=2 and r = 1/3, then a.r =2/3 ¢ Z.

3. Let R be aring, then {0} and R are the trivial ideals in R.

4. Every ideals of the form n Z is an ideal in Z.

5. {0} and Q are the only ideals in Q.

6. Let R be a ring with identity 1 and I be an ideal of R. If 1 € I,
then [ =R.

Proof. Suppose that 1 € [ - forallr € R, 1.r€l - R € 1. But I
CR—>I=R

7. Let R be a ring and I be an ideal of R. If I contain an invertible
element, then R = 1.

Proof. Leta €  hasinversesayb—1=a.b€el—1€l—1
=R.

8. If F is field, then the trivial ideals in R are only ideals in R.

Proof H. W.
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Definition. Let | be an ideal in a ring R. Then ? is a ring and 1s said
to be quotient ring of R by I, where §= {r+t1|r€R}
Define

r+DBr+ )= +1) +1

i +DOMm+D)=r.p+I1

Note that @ is well defined where I is a subring of R.

To prove © is well defined: let ry, a;, 1>, a, € R such that
rn+l=a,+l—-r-a €l

nt+tl=a,+l—-n—-a €l

vwlisanideal of R -1 (1rp-a)€land(r;—a)) a €1
~r(rn-a)+(rp—a))a €l

srnh—a @ €El-rnt+tl=aa, +1

~ @ 1s well defined.

We can prove that (?, @®,®) is a quotient ring of R by I (H.W.)

Remarks.

: oy : R. . o :
1. Let R be a ring with identity, then —1is aring with identity.
2. If R 1s a commutative ring, then so is ?.

: : : R .
3. If R is an integral domain, then that not necessary ~ 1s an

integral domain. For example: the ring of integers Z is an
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integral domain while % = 74 1s not integral domain since
zzzﬁan4butz¢ ﬁinZ4.

Definition. Let R be a ring and S be a nonempty subset of R. A set
(S) (or <S>):

(S)=n {I| I1is an ideal of R containing S}
is called set generated by the set S.

Remarks. Let R be a ring, then:

S)#=0(S<(9)
(S) 1s an 1deal of R (since the intersection of ideals is an ideals)
(S) is the smallest ideal contain S.
(S)=S if S is an ideal.
If S = {ay, a,, ..., a,} is a finite set, then (S) is called finitely
generated ideal. ((S) is f.g.)
. If S = {a}, then (S) = (a) is said to be principal ideal.
7. If R 1s commutative ring with identity, then

(a) = {ar|r € R}
8. If (S) is finitely generated, then (S) may be not in general finite
set. For example: let R = Z and S = {1}, then (S) = Z 1s finitely
generated which is not finite set.

A

N

Definition. A ring R is called principal ideal ring (PIR) if every
ideal of R 1s principal.

Definition. A PIR is said to be principal ideal domain (PID), if R is
domain.

Remark. pID Ly definition pip

+example Zg

20



Ring Theory (3'rd class) Dr. Tamadher Arif

Examples.

1. Every ideal in Z is principal.
Proof. To prove that Z = (n), let I be an ideal in Z. If I = {0},
then I = (0) is principal. Suppose that I # {0}—» I (0 #) m € L.
Let n be the smallest positive integers in I — rn € I (I is an ideal
and n€ I, r € R). Thus (n) € I.
Let k € I and n# 0 — By division algorithm, k =qn + rfor 0 < r
<n- r=k-gqn€l—->r€l—-r=0((since r <nandn is the
smallest positive integers) = k=qn €(n) = I € (n). By that
[=(n).

2. The ring Z is PID.
Proof. since Z is an integral domain and every ideal of Z
principal of the form (n) =nZ forn=1,2,3,...

3. The ring Z¢ is not PID.
Proof. The ring Zg is commutative ring with identity and has
nonzero divisor (why?) and so it's not integral domain.
Therefore Z¢ 1s not PID. But every ideal in Zg is principal, so
Z¢ 1s PIR.

4. The ring Q 1s PID.
Proof. The ring Q is commutative ring with identity and has no
nonzero divisor (why?) so Q is integral domain. Now, Q have
only the trivial two ideals {0} and Q. Since {0}= (0) and Q =
(1)={r.1|r€ Q}. Hence Q is PID.

Theorem Let R be a commutative ring with identity, then R is field
if and only if R has no nontrivial ideals.

Proof. =) Suppose that R is field and we want to prove that R
contains only two ideals {0} and R. Suppose that I be a nonzero ideal
of R.
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w1#0— 30 #a€l
»* R field — a has inverse element say a”
~a'.a€l—>1€ER—-I=R
<) Suppose that R contains only two ideals {0} and R.
If 0 # a € R, then the ideal generated by a, (a) #0 — (a) =R.
~1€ER—>1€(a)—1=ry.a forsomeryE€R
=a.ry, (R 1scommutative)

nTg.a=a.ryo=1—rjis the inverse element of a — R 1is field.
Remarks.

1. Let I and J be two ideals of a ring R. Then
I[+J={x+ty|x€landy €]}
(is said to be sum of two ideals) is an ideal of R.
Proof. HW.

2. Let I be a left ideal and J be a right ideal of a ring R. Then
=121 %y | Xi €landy; € J}
(is said to be product of I and J) is an ideal in R.
Proof. HW.
Remarks.

1. The sum of n-ideals I}, I, ..., I,= D a; | €L i=1,2, ..,
n }is an ideal of R.

22



Ring Theory (3'rd class) | Dr. Tamadher Arif

2. The product of n-ideals I, I, ..., I, = {XI-; ay; ay; ... Ani | &
€l;,j=1,2,...,n }is an ideal of R.

3. The intersection of two ideals of R is an ideal of R.
Proof. H.W.

4. The union of two ideals of R is not necessary ideal of R in
general.
Example. Let [ = (2) and J = (3) are two principal ideals of Z.
Eachof3,2eTuJbut3—-2=1¢&1U]J. Hencel U Jis not ideal
of Z.

5.00c€Inl]

6. If I* =1, then I is said to be idempotent ideal.

7. If I" = 0 for some n € Z,, then I is said to be nilpotent ideal.

8. If I and J are both idempotents ideals of a ring R. Then I + J is
an idempotent.

9. An ideal I of R is said to be nil ideal if every element in I is
nilpotent.

10. Every nilpotent ideal is nil ideal.

11. R =1+ J iff every element in R can be written in one

wayasxtyforx€landy€J

Definition. A ring R is said to be direct sum of two ideals I, I, if:

1.
2.

R211+12
Ilﬂb:{O}

and write R =1; @ I,. In this case R is said to be decomposable ring.

Remark.

1.

LetI, I, ..., I, be ideals of a ring R. If
1. R211+ +In
11. IJﬂ(I] + ... +IJ_1 +IJ+] + ... +In): {0}
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ThenR=1,® ... B I,

2. If R cannot be written as I; €@ I,, then R is said to be
indecomposable ring.

Example.

1. Z is an indecomposable ring.
2. Ze¢ =1, ® 1, where I, = {0,3} and I, = {0, 2, 4}.

Ring Homomorphism
Definition.( Ring Homomorphism)

Let f: R —R' be function from a ring R into a ring R', then f is said to
be ring homomorphism if : for all a, b € R,

1. fla+b) = f(a) + f(b)
2. f(a. b) = f(a) . f(b)

Example. let f: Z — Q defined by f(n) =n, V n € Z, then:

1. f(n + m) =n+ m= f(n) + f(m)
2. f(n. m)=n.m=f(n) . f(m)
VnmeEZ
=~ f'1s a ring homomorphism

Definition. (kernel of f')

Let f: R — R'be a ring homomorphism. Then

1. The set
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ker f= {x €R | f(x) =0}
is said to be kernel of the homomorphism f
2. The set
Im f= {f(x)| x € R}=f(R)

is said to be Image of the homomorphism f and f is said to be onto if
f(R)=R".

Proposition. Let f: R — R' be a ring homomorphism, then:

ker fis an ideal in R.

Im f'is a subring of R.

If fis 1-1, then fis said to be monomorphism

ker f= {0} iff f is monomorphism.

If f is onto, then f'is said to be epimorphism

If fis 1-1 and onto, then fis said to be isomorphism

If f: R —R and f is an isomorphism, then f is said to be
automorphism

Nk W=

Proof 1.

1. Leta, b € ker f — f(a) =0 and f(b) = 0.
R isaring,thena—b €R
*+ f1s a ring homomorphism, then f(a - b) = f(a) — f(b) =0-0 =
0
~a—b€kerf
il. Letr € R and a € ker f, then f(a) = 0.
war € R(Risring) — f(ar)=1f(a) . r=0.r=0 — f(ar) =0
- ar € ker f
=~ ker fis an ideal of R.
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Proof 2. H.W.

Proof 4. H.W.

Examples.

1. Let f: Zs = 74, defined by f(x) = 5x for x€ Zs. Then f is not
ring homomorphism.
Proof. If x =2 and y = 4 € Zs, then f(x +y) = f(1) =5
While f(x) + f(y) = f(2) + f(4) =5(2) +5(4)=0+0=0
~f(x +y) # f(x) + f(y) — fis not ring homomorphism.

2. Let R be a ring with identity and g: Z — R defined by g(n) =
n.1 for all n € Z. Then g is ring homomorphism(why?).

Remark. Let f: R — S be a ring homomorphism, then f(1y) = f(1g)
1S not necessary true.

Example.Define f:M, (Q) — M5 (Q) where ((cl Z ) —

a b 0
(c d O)
0O 0 O

0 0 0 0 O
Then f ( ) = [0 0 O |andfisaring homomorphism.
'@ 0 0 O
10 1 0 O 1 0 0
But f(o 1) = (0 1 O) + I3 (where I3 = (0 1 0))
0 0 O 0 0 1

Note that here f(A)f(l,) = f(a.l,) = f(A). So f(l,) seems to work like
the multiplicative identity on the range of f .

Remarks. Let f: R — R' be a ring homomorphism, then:

1. f(0)=0'
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2. f(-r) = (1)

3. If R and R' rings with identity 1 and 1' respectively, with f(R) =
R' then:

1. f(1)=1'(1.e f(1) is an identity of R")

ii. If a is invertible, then f(a™) = (f(a))™.

111.If [ is an ideal of R, then f(I) is an ideal of R'.

iv.If I' is an ideal of R', then f'(I') ={r € R| f(r) € I'} is an ideal of
R

Proof 3:

(1) Let f: R — R' be an epimorphism and 1 is the identity element of
R. Let x € R', then 3 a € R such that f(a) = x (f is an epimorphism).

Now,

x.f(1)=1(a) . f(1)=f(a. 1)=f(a) =x and {(1). x = (1) . f(a) = f(1.2)
=f(a) = x.

v x L f(1)=1(1) . x =x — f(1) 1is the identity element of R'.

(ii) Let a € R, then f(a™). f(a) = f(a'.a) = f(1) = 1' and f(a). fla™) =
fla.a™)=f(1) = 1. — f(a") is the inverse element of f(a) — f(a™) =
(f(a))".

(111). Let f: R — R' be a ring homomorphism and I be an ideal of R.
To prove that f(I) is an ideal in R":

Firstly, let x, y € f(I) — 3 a, b € I such that f(a) = x and f(b) =y.
Since I is an ideal of R, thena —b € [ — f(a - b) € f(I) — f(a) — f(b)
€ f(I) » x—y € f(I).

Secondly, let x € f(I) and r' € R, then 3 a € I, 3 r € R such that f(a)
= x and f(r)=r'. Since I an ideal in R — f(ar) = f(a) f(r) = x . r' € {(1).
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=~ f(I) is an ideal of R'.
(iv) (I = {r e R| f(r) € T'}.
Let a,b€ fl(I') —a€Randf(a) el'and b € R and f(b) € I'.

 Rring— a—-b €R — f(a-b)=1f(a) - f(b) — f(a) — f(b) € I' (I' is an
ideal of R") —> f(a-b) €' > a—b € £'(I).

Now, leta,be f'I'<R—a.beR — fa.b)=1f(a).f(b) € I' (I'is
an ideal of R") — f(a.b) €' > a.b e f'(I)

« f£'(I') is a subring of R.

Now, to prove f'(I') is an ideal, let c € R, a € f'(I') < R— f(a) € T
and ca €R (R is ring) — f(ca) = f(c) . f(a) € I'(I' is an ideal) — f{(ca)
€El'—>ca Efl(I').

By the same way, ac € 1(I').
«~ £1(I') is an ideal of R.

Definition. A ring homomorphism which is 1-1 and onto is said to be
iIsomorphism (R = R')

The Isomorphism Theorems

First Isomorphism Theorem. (F.I.Th.)

Let R and R' be two rings and f: R — R' be an epimorphism,

then—— = R'.
kerf

Proof. H.W.

Remark. If f is not epimorphism in F.I.Th., then k:;rf = f(R)
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Second Isomorphism Theorem. (S.1.Th.)

Let I and J be two ideals of a ring R, then % = %
Proof. H.W.
Third Isomorphism Theorem. (T.I.Th.)
o R
Let I and J be two ideals of a ring R, with/ € J, then = 7
1

Proof. H.W.

Theorem. Let f: K — K' be a ring homomorphism, with K, K' are
fields. Then either f1s one — to — one or f is zero function.

Proof. Since K 1s field and kerf is an 1deal in K. Then either kerf = 0,
so f1s one — to — one or kerf = K hence f = 0.

Remark. Let f: R — R' be a ring homomorphism, then % = 7.

Proof. Define g: % — Zn by g(x + n Z) = [x]. Then g is an

isomorphism.

(if x + nZ € ker g — [0] = g(x + nZ) = [x] — x€ [0] — x + nZ = nZ.

: . Z . :
Since nZ is the zero of — > gls monomorism)
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