Definition. An ideal I of the ring R is said to be *semiprime* if and only if $I = \sqrt{I}$.

<u>Remark</u>. the definition of semiprime ideal means that :

An ideal I is semiprime if and only if $a^n \in I$, for some $n \in \mathbb{Z}_+$, then a $\in I$.

<u>**Theorem</u></u>. An ideal of a ring R is semiprime if and only if \frac{R}{I} has nonzero nilpotent elements.</u>**

Proof. \Rightarrow) Suppose that I is a semiprime ideal and a+I is a nilpotent element in $\frac{R}{I}$.

 $\rightarrow \exists n \in \mathbb{Z}_+$ such that $(a + I)^n = I$

 $\rightarrow a^n + I = I \rightarrow a^n \in I \rightarrow a \in \sqrt{I}$

But I is semiprime ideal $\rightarrow \sqrt{I} = I \rightarrow a \in I \rightarrow a + I$ is zero element in $\frac{R}{I}$

 $\therefore \frac{R}{I}$ has no nonzero nilpotent elements.

 \Leftarrow)Suppose that $\frac{R}{I}$ has no nonzero nilpotent elements and we want to prove I = \sqrt{I} . It's enough to prove $\sqrt{I} \subseteq I$ (it's always I $\subseteq \sqrt{I}$). Let $r \in \sqrt{I} \rightarrow \exists n \in \mathbb{Z}_+$ such that $r^n \in I \rightarrow r^n + I = (r + I)^n = I \rightarrow r + I$ is nilpotent element in $\frac{R}{I}$. But $\frac{R}{I}$ has no non zero nilpotent elements.

 \rightarrow r + I = I \rightarrow r \in I \rightarrow I = $\sqrt{I} \rightarrow$ I is semiprime ideal.

Theorem. Every prime ideal of a ring R is semiprime.

Proof. Let I be a prime ideal in a ring R. It's enough to prove $\sqrt{I} \subseteq I$ (it's always $I \subseteq \sqrt{I}$). Let $x \in \sqrt{I} \rightarrow \exists n \in \mathbb{Z}_+$ such that $x^n \in I$. Suppose that n is the smallest positive integers such that $x^n \in I$. Since $x^n = x \cdot x^{n-1} \in I$ and I prime ideal of $R \rightarrow$ either $x \in I$ or $x^{n-1} \in I$. But $x^{n-1} \notin I \rightarrow x \in I \rightarrow \sqrt{I} \subseteq I \rightarrow I$ is semiprime ideal $(I = \sqrt{I})$.

Definition. The prime radical ideal of a ring R, (denoted by Rad(R)) is the set:

$$\operatorname{Rad}_{P}(R) = \{P | P \text{ is a prime ideal of } R\}$$

<u>**Remark**</u>. If $\text{Rad}_P(R) = \{0\}$, we say that the ring R is without prime radical, or has zero prime radical.

Theorem. Let I be an ideal of R. Then the nil radical of I is:

$$\sqrt{I} = \cap \{ P | I \subseteq P, P \text{ is prime ideal} \}$$

Examples.

- 1. Nil $\mathbb{Z} = \operatorname{Rad}_{P}(\mathbb{Z}) = \bigcap \{P | I \subseteq P, I \subseteq P \text{ is prime ideal} \} = (0)$
- 2. $\operatorname{Rad}_{\mathbb{P}}(\mathbb{Z}_6) = (0)$
- 3. Let $R = \mathbb{Z}$ and $n \in \mathbb{Z}$ n > 1, then the ideal $(n) \subseteq (P) \leftrightarrow p$ divides $n \rightarrow$ the nil radical:

$$\sqrt{(n)} = \bigcap_{p \setminus n}(P) \text{ if } n = P_1^{K_1} \cdot P_2^{K_2} \dots P_m^{K_m} \text{ where } k_1, k_2,$$

..., $k_m \in \mathbb{Z}_+$ and p_1, p_2, \dots, p_m are distance prime integers.
$$\rightarrow \sqrt{(n)} = (P_1) \cap (P_2) \cap \dots (P_m)$$
$$= (P_1 \cdot P_2 \dots P_m)$$

H.W. Find $\operatorname{Rad}_{\mathbb{P}}(\mathbb{Z}_{18})$?

Definition. Let I be a proper ideal in a commutative ring with identity R, then I is said to be *primary ideal* if whenever $\mathbf{a}.\mathbf{b} \in \mathbf{I}$, and $\mathbf{a} \notin \mathbf{I}$, then $\mathbf{b}^n \in \mathbf{I}$ for some $n \in \mathbb{Z}_+$.

<u>**Theorem</u></u>. The ideal (n) is primary in \mathbb{Z} if and only if n = p^k for some k \in \mathbb{Z}_+ and prime integers p.</u>**

<u>Remark</u>*. Every Prime ideal is primary.

Proof. obvious (put n = 1).

<u>Remark</u>. the converse of remark* is not true in general. For example

Example.

a. The ideal (4) is primary not prime ideal in the ring \mathbb{Z} .

Proof. 1. (4) is primary ideal:

Let a, b \in R, such that a.b \in (4) \rightarrow a.b = 4r for r \in Z.

$$\rightarrow 2^2 = 4 \setminus a.b \rightarrow 2 \setminus a.b$$

either $2 \setminus a \text{ or } 2 \setminus b$

if
$$2 a \rightarrow a = 2s \rightarrow a^2 = 4s^2 \in (4)$$
 for $s \in \mathbb{Z}$.

In the same way if $2\b$.

 \therefore (4) is primary ideal.

2. The ideal (4) is not prime:

Since $2.2 = 4 \in (4)$ but $2 \notin (4)$.

 \therefore (4) is not prime ideal.

b. The ideal (6) is not primary ideal in \mathbb{Z} .

Proof. Since $2.3 = 6 \in (6)$ but neither $2 \in (6)$ nor $3^n \in (6)$ for $n \in \mathbb{Z}_+$

(i.e: $2 \notin (6)$ and $\nexists n \in \mathbb{Z}_+$ such that $3^n \in (6)$).

 \therefore (6) is not primary ideal.

<u>Remark</u>. The following diagram gives the relation among the maxima, prime, semiprime and primary ideal

ximal idea ide primary

<u>**Theorem</u></u>. In a commutative ring R, on the ideal I is primary if and only if every zero divisor element of \frac{R}{T} is nilpotent element.</u>**

Proof. \Rightarrow) Let a+I (\neq I) be a zero divisor of $\frac{R}{I}$

 $\rightarrow \exists b+I \neq I \text{ such that } (a+I)(b+I) = I \rightarrow a.b+I = I$

→ a.b ∈ I but I is a primary ideal and b \notin I → aⁿ ∈ I for some n ∈ Z₊

 $\rightarrow a^n + I = I \rightarrow a^n + I = (a + I)^n = I$ for some $n \in Z_+$.

 \therefore a + I is nilpotent element.

 $\Leftarrow) \text{ Let } a.b \in I \text{ and } a \notin I \text{ for } a, b \in R \rightarrow a.b + I = I$

 \rightarrow (a + I)(b + I) = I \rightarrow a+I \neq I.

If $b + I = I \rightarrow b \in I \rightarrow I$ is primary ideal.

If $b+I \neq I \rightarrow b + I$ is zero divisor $\rightarrow b+I$ is nilpotent element.

 \rightarrow (b + I)ⁿ = I for some n $\in Z_+ \rightarrow b^n + I = I \rightarrow b^n \in I \rightarrow I$ is primary ideal

Examples.

a. The ideal (4) in \mathbb{Z} is primary which is not semiprime.

Proof.

1. The ideal (4) in \mathbb{Z} is primary: since $\frac{\mathbb{Z}}{(4)} \cong \mathbb{Z}_4$ has only zero divisor $\overline{2}$ and $\overline{2}$ is a nilpotent element in \mathbb{Z}_4 (by the previous theorem).

2. The ideal (4) in \mathbb{Z} is not semiprime: since $\frac{\mathbb{Z}}{(4)} \cong \mathbb{Z}_4$ has a nilpotent element $\overline{2} \neq 0$ (by the previous theorem).

b. The ideal (6) is semiprime which is not primary ideal in \mathbb{Z} :

1. The ideal (6) is not primary Since the zero divisor of $\frac{\mathbb{Z}}{(6)} \cong \mathbb{Z}_6$ are

 $\{\overline{2},\overline{3},\overline{4}\}$ which is not nilpotent elements

 \rightarrow (6) is not primary ideal.

2. The ideal (6) is semiprime: since $\frac{\mathbb{Z}}{(6)} \cong \mathbb{Z}_6$ has no non zero nilpotent elements.

Theorem. Let $f: \mathbb{R} \to \mathbb{R}'$ be an epimorphism, then:

- 1. If M is a maximal ideal of R such that kerf \subseteq M, then f(M) is maximal ideal of R'.
- If M' is a maximal ideal of R', then f⁻¹(M) is maximal ideal of R.
- 3. There is an isomorphism between the maximal ideals of R' and the maximal ideals of R which is contain kerf.