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6. let N be a submodule of an R-module M and % = {m+N| meM}.

clearly that ( % ,+) 1s an abelian group where for each m, m;, m,€
M, reR:

i (m*N) + (mytN) = (m;+ myp) +N

i1. and r.(my+N) = (r. m,)+ N.
then % 1s an R-module, which is called the quotient module of M
by N.

Remark. (Modular Law).

There is one property of modules that is often useful. It is known as
the modular law or as the modularity property of modules. If N, L. and
K are modules, then NN(L+K) = (NNL)+(NNK).

If N, L and K are submodules of an R-module M and L <N, then
NN(L+K) =L + (NNK).

-
Definition. Let M be an R-module. If there exists x;, X, ...,X, € M such
that M= Rx;+ Rx,+ ...+Rx,. M is said to be finitely generated module.
If M = Rx=<x>= {rx | r € R} is said to be cyclic module.

Examples.

1. Z,=<1> is cyclic Z-module for all n € Z.

2. nZ =<n > is cyclic Z-module for all n € Z.

3. If F is any field, then the ring F[x,y] has the submodule(ideal)
<x,y> which is not cyclic.

4. Q is not finitely generated Z-module.

Direct sums and products

Definition. Let R be a ring and {M;| 1 €I } be an arbitrary (possibly
infinite) of a nonempty family of R-modules. [];¢; M; is the direct
product of the abelian groups M;, and @;¢; M; the direct sum of the of
the abelian groups M;, where
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Then N and K is said to be direct summand of M and M = N K
internal direct sum of N and K.

Definition. Let R be an integral domain. An element x of an R-module
M (x€ M) is said to be torsion element of M if 3(0#) r € R with rx = 0.

Example.
1. Let M = Zg4 as Z-module. Then every element in Zg is torsion:

7
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[lie; M; = {f: 1 = U;e; M;| (1) € M, for all i€ T}

Define a binary operation "+" on the direct product (of modules) [[;¢; M;
as follows: for each f,g € [[;; M; (thatis, f,g : I — U;¢; M; and (i),g(i)

€ M, for each 1), then f+g : [ = U;¢; M; is the function given by 1 —

f(D)+g().

1.e (f+g)(1) = f(1)+g(i) foreachi €l.
Since each M; is a module, f(i)+g(1) €M, for every 1, whence f+g €
[Tie; M;. So (I1;e; M; , +) is an abelian group
Now, ifre Rand f€ [];g; M;, thenrf: 1 - U;e; M; as (rf)(i) = r(f(i)).

1. [lie; M; is an R-module with the action of R given by r(f(i)) = (

rf(1)) (i.e define a: R x [[;e; M; — [lief M; by a(r,f) = rf)

2. @;c;M; is a submodule of [];¢; M;. (H.W.)
Remark. [[;e; M; is called the (external) direct product of the family of
R-modules {M;|1 €1 } and @;¢;M; is (external) direct sum. If the index
set is finite, say 1= { 1,2, ..., n}, then the direct product and direct sum
coincide and will be written M;@ M,® ... M,..
Definition. ((internal) direct sum) Let R be a ring and N, K submodules
of an R-module M such that:

I.M=N+K

2.NNK=0
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3 € Z, 3 2 € Z such that 2.
2 € Z, 3 3 € Z such that 3.
1€ Zs 36 €Zsuchthat6. 1
4 € 7s,33 € Zsuch that3.4=0
5€Z¢,36€Zsuchthat6.5=0
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2. Every element in Z, as Z-module is torsion.
3. The only torsion element in M = Q as Z-module is zero (if (0#) x€
Q, then A (0#) r € Z such that rx = 0.

Remark. Let M be an R-module where R is an integral domain, then the
set of all torsion elements of M, denoted by t(M) is a submodule of M

(t(M)= {x €M | 3(0#) r € R such that rx =0})
Proof. 1. T(M) # ¢ (0 € T(M))

2.1fx,y € t(M), then 3(0#) r;, r, € R such that r;x = 0 and r,y = 0.

L
Since R is an integral domain, r; # 0 and r, # 0, so r;. r, # 0. Hence

r1.0(X+y) =110 X + 1.0y =nh.a X+ 1.y =0+ 0=0. Thus x+y €
(M)

3. let (0#) r € R w € t(M), 3(0#) r; € R with r;w = 0. Now, r;(tw) =0
implies rw € ©(M).

=~ T(M) 1s a submodule of M.

Remark. In general, If R is not integral domain, then (M) may not
submodule of M in general.

Definition. Let M be a module over integral domain R. If 7(M) = 0,
Then M is said to be torsion free module. If (M) = M, then M is said to
be torsion module.

Examples. 1. The Z-module Q, is torsion free module.

2. The Z-module Z,, 1s torsion module.
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Remark. Let M be a module over an integral domain R, then %is

torsion free R-module. (i.e T(L) =1t(M))

(M)

Proof. Let m+ T(M) € r(%), 3(04) r € R such that r(m + T(M)) =

t(M). - rm + t(M) = (M) — rm € (M)

— 3(0#) s € R such that s(rm) = (sr)ym =0

A

v sr£0 — m € T(M) — m + (M) = 7(M) — r(%) = 7(M).

Exercises.

1. Every submodule of torsion module over integral domain is torsion
module.

2. Every submodule of torsion free module over integral domain is
torsion free module.

Definition. Let M be a module over an integral domain R. An element
XEM is said to be divisible element if for each (0#) r € R 3y € M such
that ry = x.

Examples.

1. 0 is divisible element in every module M.
2. Every element in a Z-module Q is divisible element.
3. 0 1s the only divisible element in 2Z as Z-module.

Remark. Let M be a module over an integral domain R. the set of all
divisible element of M denoted by dM)={m e M|V (0#) r€R,Ty €
M such that m = ry}

Definition. Let M be a module over an integral domain R. M is said to
be divisible module if d(M) = M.

Examples.

A ’ A
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1. d(M) is a submodule of M.
2. If M 1s divisible module, then so 1s % for all submodule N of M.

3. M is divisible module iff M = rM for all 0#r € R.
4. If M= M;®M,, then d(M) = d(M;)BI(M,).

Proof. 1. Let x,y € d(M), then

V 0£r € R, 3 x;EM such that x = rx;

V 0#r € R, 3 y,EM such that y =ry;

1) x +y=r(x;+y;), for all 0 # r€ R. implies x+y € d(M).

1) let x € (M) and 0 # s € R, then V 0# r € R, 3 yEM such that x =ry.
Since R is an integral domain, r # 0 and s #0, then rs # 0.

So sx = s(ry) = (sr)y. implies that sx € d(M).

~ 0(M) 1s a submodule of M

2. Letx+NE€E % where x € M. Since M is divisible and x € M, then for
V 0#r€R,3y € M such that x + N =ry +N = r(y+N).

% is divisible module

3. —)Suppose that M is divisible module. To prove M = Rm, must prove

-
|
1. The Z-module Z is not divisible.
2. The module Q over the ring Z is divisible.
3. The Z-module Z, 1s not divisible.
Proposition. Let R be an integral domain and M be an R-module. Then:
that: a.M<rM b.r-M <M
for that :
a. Let m € M. Since M = d(M) (M is divisible), so m € d(M).
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Forall 0 #r € R, 3 n € M such that m =m € rM. Hence M <rM.

b. Since M is a module then rM < M.
“~M=rM

<) Suppose that M =1M for all 0 #r € R. if m € M =M, then m =
for n € M and all 0 #r € R. implies that m € d(M). Thus M < 9(M).

letx € d(M), V 0#r €R, 3y € M such that x =ry. Thus d(M) < M.
Hence M = d(M). So M is divisible module.

Remark. Point (2) in the previous proposition means: the quotient of
divisible module is divisible.

Exercise. [s every submodule of divisible module divisible?

Definition. Let M be an R-module and x€EM. Then the set

1s said to be annihilator of the element x in R.
Remarks.
1. Let M be an R-module. Then the set
anng(M) = {r e R | tM =0}
={r€R|rm=0 for all m € M}
is said to be annihilator of the module M in R.

2. Let M be an R-module. If anng(M) = 0, then M 1is said to be
faithful module.

Examples.

1. The Z-module Z is faithful (anny;(Z) = 0)
2. The Z-module Q is faithful (anny;(Q) = 0)
3. The Z-module Z, is not faithful (anny(Ze) = 6 Z)

11 ‘
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Remark.

1. If N =0, then

bl
[
annZG({G’ §}) - {(_)a 29 Zl'}
anny({0, 3}) =2Z
. anny({0, 2, 4})=3Z
. anng, ({0, 2, 4}) = {0, 3}
. anny(Z,) = nZ
Definition. Let N and K be submodules of an R-module M. The set
(N: K)={r e R|rK <N}
1s an ideal of R which is called residual.
(0: K) = {r € R| rK = 0} = anng(K)
2. If N=0and K =M, then

(0: M) = {r € R| tM =0} = anng(M)

Chapter two (Module homomorphisms)

Definition. Let M and N be modules over a ring R . A function f: M —
N is an R-module homomorphism (simply homomorphism) provided
that forallx,y € Mandr€R:

1. f(xty) = f(x) + f(y)
2. f(rx) = rf(x).

If R is a field, then an R-module homomorphism is called a linear
transformation.

Remarks.

L
‘ ‘
1. if f is injective and homomorphism, then is said to be
monomorphism.
2. 1f f is surjective and homomorphism, then is said to be
epimorphism.
12
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