- 6. let N be a submodule of an R-module M and $\frac{M}{N} = \{m+N | m \in M\}$. clearly that $(\frac{M}{N}, +)$ is an abelian group where for each m, $m_1, m_2 \in M$, $r \in R$:
- i. $(m_1+N) + (m_2+N) = (m_1+m_2) + N$
- ii. and $r.(m_2+N) = (r. m_2)+ N.$ then $\frac{M}{N}$ is an R-module, which is called the *quotient module* of M by N.

Remark. (Modular Law).

There is one property of modules that is often useful. It is known as the modular law or as the modularity property of modules. If N , L and K are modules, then $N \cap (L+K) = (N \cap L) + (N \cap K)$.

If N , L and K are submodules of an R-module M and L \leq N, then $N \cap (L+K) = L + (N \cap K)$.

<u>Definition.</u> Let M be an R-module. If there exists $x_1, x_2, ..., x_n \in M$ such that $M = Rx_1 + Rx_2 + ... + Rx_n$. M is said to be *finitely generated* module. If $M = Rx = \langle x \rangle = \{rx \mid r \in R\}$ is said to be *cyclic* module.

Examples.

- 1. $\mathbb{Z}_n = \langle \overline{1} \rangle$ is cyclic \mathbb{Z} -module for all $n \in \mathbb{Z}$.
- 2. $n\mathbb{Z} = \langle n \rangle$ is cyclic \mathbb{Z} -module for all $n \in \mathbb{Z}$.
- 3. If F is any field, then the ring F[x,y] has the submodule(ideal) $\langle x,y \rangle$ which is not cyclic.
- 4. Q is not finitely generated Z-module.

Direct sums and products

Definition. Let R be a ring and $\{M_i | i \in I\}$ be an arbitrary (possibly infinite) of a nonempty family of R-modules. $\prod_{i \in I} M_i$ is the *direct product* of the abelian groups M_i , and $\bigoplus_{i \in I} M_i$ the *direct sum* of the of the abelian groups M_i , where

$$\prod_{i \in I} M_i = \{ f: I \rightarrow \bigcup_{i \in I} M_i | f(i) \in M_i, \text{ for all } i \in I \}$$

Define a binary operation "+" on the direct product (of modules) $\prod_{i \in I} M_i$ as follows: for each f,g $\in \prod_{i \in I} M_i$ (that is, f,g : I $\to \bigcup_{i \in I} M_i$ and f(i),g(i) $\in M_i$ for each i), then f+g : I $\to \bigcup_{i \in I} M_i$ is the function given by i \to f(i)+g(i).

i.e
$$(f+g)(i) = f(i)+g(i)$$
 for each $i \in I$.

Since each M_i is a module, $f(i)+g(i) \in M_i$ for every i, whence $f+g \in \prod_{i \in I} M_i$. So $(\prod_{i \in I} M_i, +)$ is an abelian group

Now, if $r \in R$ and $f \in \prod_{i \in I} M_i$, then $rf : I \to \bigcup_{i \in I} M_i$ as (rf)(i) = r(f(i)).

- 1. $\prod_{i \in I} M_i$ is an **R-module** with the action of R given by r(f(i)) = (rf(i)) (i.e define α : R $x \prod_{i \in I} M_i \rightarrow \prod_{i \in I} M_i$ by $\alpha(r,f) = rf$)
- 2. $\bigoplus_{i \in I} M_i$ is a **submodule** of $\prod_{i \in I} M_i$. (H.W.)

Remark. $\prod_{i \in I} M_i$ is called the (external) direct product of the family of R-modules $\{M_i | i \in I\}$ and $\bigoplus_{i \in I} M_i$ is (external) direct sum. If the index set is finite, say $i = \{1, 2, ..., n\}$, then the direct product and direct sum coincide and will be written $M_1 \bigoplus M_2 \bigoplus ... \bigoplus M_n$.

<u>Definition.</u> ((internal) direct sum) Let R be a ring and N, K submodules of an R-module M such that:

- 1. M = N + K
- 2. $N \cap K = 0$

Then N and K is said to be *direct summand* of M and $M = N \oplus K$ *internal direct sum* of N and K.

<u>Definition</u>. Let R be an integral domain. An element x of an R-module M ($x \in M$) is said to be *torsion* element of M if $\exists (0 \neq) r \in R$ with rx = 0.

Example.

1. Let $M = \mathbb{Z}_6$ as \mathbb{Z} -module. Then every element in \mathbb{Z}_6 is torsion:

 $\overline{3} \in \mathbb{Z}_6$, $\exists \ 2 \in \mathbb{Z}$ such that 2. $\overline{3} = \overline{0}$ $\overline{2} \in \mathbb{Z}_6$, $\exists \ 3 \in \mathbb{Z}$ such that 3. $\overline{2} = \overline{0}$ $\overline{1} \in \mathbb{Z}_6$, $\exists \ 6 \in \mathbb{Z}$ such that 6. $\overline{1} = \overline{0}$ $\overline{4} \in \mathbb{Z}_6$, $\exists \ 3 \in \mathbb{Z}$ such that 3. $\overline{4} = \overline{0}$ $\overline{5} \in \mathbb{Z}_6$, $\exists \ 6 \in \mathbb{Z}$ such that 6. $\overline{5} = \overline{0}$

- 2. Every element in \mathbb{Z}_n as \mathbb{Z} -module is torsion.
- 3. The only torsion element in M = Q as \mathbb{Z} -module is zero (if $(0 \neq) x \in Q$, then $\not\exists (0 \neq) r \in \mathbb{Z}$ such that rx = 0.

Remark. Let M be an R-module where R is an integral domain, then the set of all torsion elements of M, denoted by $\tau(M)$ is a submodule of M

$$(\tau(M) = \{x \in M \mid \exists (0 \neq) \ r \in R \text{ such that } rx = 0\})$$

Proof. 1. $\tau(M) \neq \varphi$ (0 $\in \tau(M)$)

2. if $x, y \in \tau(M)$, then $\exists (0 \neq) r_1, r_2 \in R$ such that $r_1 x = 0$ and $r_2 y = 0$. Since R is an integral domain, $r_1 \neq 0$ and $r_2 \neq 0$, so r_1 . $r_2 \neq 0$. Hence

$$r_1.r_2(x+y) = r_1.r_2 x + r_1.r_2y = r_2.r_1 x + r_1.r_2y = 0 + 0 = 0$$
. Thus $x+y \in \tau(M)$

3. let $(0\neq)$ $r \in R$ $w \in \tau(M)$, $\exists (0\neq)$ $r_1 \in R$ with $r_1w = 0$. Now, $r_1(rw) = 0$ implies $rw \in \tau(M)$.

 $\therefore \tau(M)$ is a submodule of M.

Remark. In general, If R is not integral domain, then $\tau(M)$ may not submodule of M in general.

<u>Definition.</u> Let M be a module over integral domain R. If $\tau(M) = 0$, Then M is said to be *torsion free* module. If $\tau(M) = M$, then M is said to be *torsion* module.

Examples. 1. The Z-module Q, is torsion free module.

2. The \mathbb{Z} -module \mathbb{Z}_n , is torsion module.

Remark. Let M be a module over an integral domain R, then $\frac{M}{\tau(M)}$ is torsion free R-module. (i.e $\tau(\frac{M}{\tau(M)}) = \tau(M)$)

Proof. Let
$$m+\tau(M) \in \tau(\frac{M}{\tau(M)}), \ \exists (0\neq) \ r \in R \text{ such that } r(m+\tau(M)) = \tau(M). \to rm + \tau(M) = \tau(M) \to rm \in \tau(M)$$

$$\rightarrow \exists (0 \neq) \text{ s} \in R \text{ such that s}(rm) = (sr)m = 0$$

$$:: \operatorname{sr} \neq 0 \to \operatorname{m} \in \tau(\operatorname{M}) \to \operatorname{m} + \tau(\operatorname{M}) = \tau(\operatorname{M}) \to \tau(\frac{\operatorname{M}}{\tau(\operatorname{M})}) = \tau(\operatorname{M}).$$

Exercises.

- 1. Every submodule of torsion module over integral domain is torsion module.
- 2. Every submodule of torsion free module over integral domain is torsion free module.

<u>Definition</u>. Let M be a module over an integral domain R. An element $x \in M$ is said to be *divisible* element if for each $(0 \neq)$ $r \in R$ $\exists y \in M$ such that ry = x.

Examples.

- 1. 0 is divisible element in every module M.
- 2. Every element in a Z-module Q is divisible element.
- 3. 0 is the only divisible element in $2\mathbb{Z}$ as \mathbb{Z} -module.

Remark. Let M be a module over an integral domain R. the set of all divisible element of M denoted by $\partial(M) = \{m \in M | \forall (0\neq) r \in R, \exists y \in M \text{ such that } m = ry\}$

<u>Definition</u>. Let M be a module over an integral domain R. M is said to be *divisible* module if $\partial(M) = M$.

Examples.

- 1. The \mathbb{Z} -module \mathbb{Z} is not divisible.
- 2. The module Q over the ring \mathbb{Z} is divisible.
- 3. The \mathbb{Z} -module \mathbb{Z}_n is not divisible.

Proposition. Let R be an integral domain and M be an R-module. Then:

- 1. ∂ (M) is a submodule of M.
- 2. If M is divisible module, then so is $\frac{M}{N}$ for all submodule N of M.
- 3. M is divisible module iff M = rM for all $0 \neq r \in R$.
- 4. If $M = M_1 \oplus M_2$, then $\partial(M) = \partial(M_1) \oplus \partial(M_2)$.

Proof. 1. Let $x,y \in \partial(M)$, then

 $\forall \ 0 \neq r \in \mathbb{R}, \ \exists \ x_1 \in M \text{ such that } x = rx_1$

 $\forall \ 0 \neq r \in \mathbb{R}, \ \exists \ y_1 \in M \text{ such that } y = ry_1$

- i) $x + y = r(x_1 + y_1)$, for all $0 \neq r \in R$. implies $x + y \in \partial(M)$.
- ii) let $x \in \partial(M)$ and $0 \neq s \in R$, then $\forall 0 \neq r \in R$, $\exists y \in M$ such that x = ry. Since R is an integral domain, $r \neq 0$ and $s \neq 0$, then $rs \neq 0$.

So sx = s(ry) = (sr)y. implies that $sx \in \partial(M)$.

 $\partial (M)$ is a submodule of M

2. Let $x + N \in \frac{M}{N}$ where $x \in M$. Since M is divisible and $x \in M$, then for $\forall 0 \neq r \in R$, $\exists y \in M$ such that x + N = ry + N = r(y+N).

$$\therefore \frac{M}{N}$$
 is divisible module

3. \rightarrow)Suppose that M is divisible module. To prove M = Rm, must prove that: a. M \leq rM b. rM \leq M

for that:

a. Let $m \in M$. Since $M = \partial(M)$ (M is divisible), so $m \in \partial(M)$.

For all $0 \neq r \in \mathbb{R}$, $\exists n \in M$ such that $m = rn \in rM$. Hence $M \leq rM$.

b. Since M is a module then $rM \le M$.

$$\therefore M = rM$$

←) Suppose that M = rM for all $0 \neq r \in R$. if $m \in M = rM$, then m = rn for $n \in M$ and all $0 \neq r \in R$. implies that $m \in \partial(M)$. Thus $M \leq \partial(M)$.

let $x \in \partial(M)$, $\forall 0 \neq r \in R$, $\exists y \in M$ such that x = ry. Thus $\partial(M) \leq M$. Hence $M = \partial(M)$. So M is divisible module.

Remark. Point (2) in the previous proposition means: the quotient of divisible module is divisible.

Exercise. Is every submodule of divisible module divisible?

Definition. Let M be an R-module and $x \in M$. Then the set

$$\mathbf{ann_R}(\mathbf{x}) = \{ \mathbf{r} \in \mathbf{R} \mid \mathbf{r}\mathbf{x} = 0 \}$$

is said to be annihilator of the element x in R.

Remarks.

1. Let M be an R-module. Then the set

$$\mathbf{ann_R(M)} = \{ r \in R \mid rM = 0 \}$$
$$= \{ r \in R \mid rm = 0 \text{ for all } m \in M \}$$

is said to be annihilator of the module M in R.

2. Let M be an R-module. If $ann_R(M) = 0$, then M is said to be **faithful** module.

Examples.

- 1. The \mathbb{Z} -module \mathbb{Z} is faithful $(ann_{\mathbb{Z}}(\mathbb{Z}) = 0)$
- 2. The \mathbb{Z} -module Q is faithful $(ann_{\mathbb{Z}}(Q) = 0)$
- 3. The \mathbb{Z} -module \mathbb{Z}_n is not faithful $(ann_{\mathbb{Z}}(\mathbb{Z}_6) = 6 \mathbb{Z})$

- 4. $ann_{\mathbb{Z}_6}(\{\overline{0},\overline{3}\}) = \{\overline{0},\overline{2},\overline{4}\}$
- 5. $ann_{\mathbb{Z}}(\{\bar{0}, \bar{3}\}) = 2\mathbb{Z}$
- 6. $ann_{\mathbb{Z}}(\{\bar{0}, \bar{2}, \bar{4}\}) = 3\mathbb{Z}$
- 7. $ann_{\mathbb{Z}_6}(\{\bar{0}, \bar{2}, \bar{4}\}) = \{\bar{0}, \bar{3}\}$
- 8. $ann_{\mathbb{Z}}(\mathbb{Z}_n) = n\mathbb{Z}$

Definition. Let N and K be submodules of an R-module M. The set

$$(N: K) = \{r \in R | rK \le N\}$$

is an ideal of R which is called residual.

Remark.

1. If N = 0, then

$$(0: K) = \{r \in R | rK = 0\} = \operatorname{ann}_{R}(K)$$

2. If N = 0 and K = M, then

$$(0:M) = \{r \in R | rM = 0\} = ann_R(M)$$

Chapter two (Module homomorphisms)

<u>Definition.</u> Let M and N be modules over a ring R. A function $f: M \to N$ is an **R-module homomorphism** (simply homomorphism) provided that for all $x, y \in M$ and $r \in R$:

- 1. f(x+y) = f(x) + f(y)
- 2. f(rx) = rf(x).

If R is a field, then an R-module homomorphism is called a *linear* transformation.

Remarks.

- 1. if f is injective and homomorphism, then is said to be monomorphism.
- 2. if f is surjective and homomorphism, then is said to be epimorphism.