3. if f is injective, surjective and homomorphism, then is said to be isomorphism (and written $M \approx N$) .

Examples.

1.
$$2 \mathbb{Z}_{\mathbb{Z}} \approx 3 \mathbb{Z}_{\mathbb{Z}}$$
.

Proof. Define g: $2 \mathbb{Z} \rightarrow 3\mathbb{Z}$ as g(2n) = 3n for all $n \in \mathbb{Z}$.

- i. g is well-define.
- ii. g is homomorphism: for 2n, $2n_1$, $2n_2 \in 2\mathbb{Z}$, $r \in \mathbb{Z}$

$$g(2n_1+\ 2n_2)=g(2(n_1+\ n_2))=3\ (n_1+n_2)=3\ n_1+\ 3n_2=g(2n_1)+g(2n_2)$$

$$g(r(2n)) = g(2rn) = 3rn = r(3n) = rg(2n)$$

iii. g is one – to – one. If $g(2n_1) = g(2n_2)$, then

$$\rightarrow$$
 3n₁ = 3n₂ \rightarrow n₁ = n₂ \rightarrow 2 n₁ = 2n₂.

iv. g is onto. for all $y = 3n \in 3 \mathbb{Z}$, there is $x = 2n \in 2 \mathbb{Z}$ such that g(2n) = 3n.

Hence $2 \mathbb{Z} \approx 3 \mathbb{Z}$ (i.e g is an isomorphism).

- 2. Let R be a ring and $\{ M_i \mid i \in I \}$ a family of submodules of an R-module M such that:
 - i. M is the sum of the family $\{ M_i | i \in I \}$

ii. for each
$$k \in I$$
, $M_k \cap \sum_{i \in I, i \neq k} M_i = 0$

Then
$$M \approx \bigoplus_{i \in I} M_i$$

(Hint : define
$$\beta$$
: $\bigoplus_{i \in I} M_i \to M$ by $\beta(f) = \sum_{i \in I} f(i)$)

- 3. Let $\{ M_i | i \in I \}$ be family of R-modules.
 - i. For each $k \in I$, the canonical projection $\rho_k : \prod_{i \in I} M_i \to M_k$ defined by $\rho_k(f) = f(k)$ is an R- module epimorphism.
 - ii. For each $k \in I$, the canonical injection $J_k: M_k \to \prod_{i \in I} M_i$ defined by for $x \in M_k$, $(J_k(x))i = \begin{cases} x & \text{if } i = k \\ 0 & \text{otherwise}(i \neq k) \end{cases}$

is an R-module monomorphism.

iii.
$$\rho_k \text{ oJ}_k = I_{M_k}$$
.

Proof. ρ_k oJ_k: $M_k \to M_k$ with $(\rho_k$ oJ_k) $(x) = \rho_k$ $(J_k(x)) = J_k(x)(k) = x$ iv. J_k o $\rho_k \neq I_{M_k}$.

4. Let K be a submodule of a module M. the function $\pi: M \to \frac{M}{K}$ defined by $\pi(x) = x+K$ for all $x \in M$, is an R-homomorphism and onto. This homomorphism is called the natural epimorphism.

Exercises. Prove:

- 1. If R is a ring, the map $R[x] \to R[x]$ given by $f \to f(x)$ (for example, $(x^2 + 1) \to x(x^2 + 1)$) is an R-module homomorphism, **but not** a ring homomorphism (prove that).
- 2. Hom(R, M) \approx M
- 3. for each $n \in \mathbb{Z}$, $\frac{\mathbb{Z}}{n\mathbb{Z}} \approx \mathbb{Z}_n$.

Theorem. Let $f: M \to N$ be a homomorpism, then

- 1. **kernel of f** (kerf = $\{x \in M | f(x) = 0\}$) is a submodule of M.
- 2. *Image of f* (Imf= $\{n \in N | n = f(m) \text{ for some } m \in M\}$) is a submodule of N.
- 3. f is a monomorpism iff kerf = 0.
- 4. $f: M \rightarrow N$ is an R-module isomorphism if and only if there is A homomorphism $g: N \rightarrow M$ such that $gf = I_M$ and $fg = I_N$.

Proof. H.W.

Proposition. Let R be an integral domain and M be an R-module, then:

- 1. If $f: M \to M$ be a module homomorphism, then $f(\tau(M)) \le \tau(M)$.
- 2. If $M = M_1 \oplus M_2$, then $\tau(M) = \tau(M_1) \oplus \tau(M_2)$.

<u>Definition</u>. An R-module, M is called *simple* if $M \neq \{0\}$ and the only submodules of M are M and $\{0\}$

Proposition. Every simple module M is cyclic (i.e M = Rm for every nonzero $m \in M$).

Proof. Let M be a simple R-module and $m \in M$. Both Rm and

 $B = \{ c \in M | Rc = 0 \}$ are submodules of M. Since M is simple, then each of them is either 0 or M. But $RM \neq 0$ implies $B \neq M$. Consequently B = 0, whence Ra = M for all nonzero $m \in M$. Therefore M is cyclic

Remark. The converse is not true in general: that is a cyclic module need not be simple for example, the cyclic Z-module Z_6 .

Examples.

- 1. The \mathbb{Z} -module \mathbb{Z}_3 is simple.
- 2. The \mathbb{Z} -module \mathbb{Z}_p is simple for each prime integer's p.
- 3. The \mathbb{Z} -module \mathbb{Z}_4 is not simple, since the submodule $\{\overline{0}, \overline{2}\} \neq 0$ and $\{\overline{0}, \overline{2}\} \neq \mathbb{Z}_4$.
- 4. The \mathbb{Z} -module \mathbb{Z} is not simple.(why?)
- 5. Every division ring D is a simple ring and a simple D-module

Lemma. (Schur's lemma)

- 1. Every R-homomorphism from a simple R-module is either zero or monomorphism.
- 2. Every R-homomorphism into a simple R-module is either zero or epimorphism.
- 3. Every R-homomorphism from a simple R-module into simple R-module is either zero or isomorphism.

Proof 1. Let M be a simple module and f: $M \rightarrow N$ be an R-module homomorphism. Then kerf is a submodule of M. But M is simple.

So either $kerf = \{0\}$, implies f is one-to-one

or kerf = M, implies f is zero homomorphism.

Proof 2. Let N be a simple module and f: $M \rightarrow N$ be an R-module homomorphism. Then Imf is a submodule of N. But N is simple.

So either $Imf = \{0\}$, implies f zero homomorphism

or Imf = N, implies f is onto.

Proof 3. as a consequence to (1) and (2), the proof of (3) holds.

Examples. 1. An R-module homomorphism f: $\mathbb{Z}_4 \to \mathbb{Z}_5$ is zero.

2. An R-module homomorphism $f: \mathbb{Z}_3 \to \mathbb{Z}_5$ is zero.

Exercise. Let $M \neq \{0\}$ be an R-module. Prove that:

If N_1 , N_2 are submodules of M, with N_1 simple and $N_1 \cap N_2 \neq 0$, then $N_1 \leq N_2$

Remark. Let A, B be two simple R-module, then Hom(A, B) is either zero or for all $f \in Hom(A, B)$ is an isomorphism, where $Hom(A, B) = \{f: A \rightarrow B | f \text{ is homomorphism}\}$

Isomorphism theorems

<u>First isomorphism theorem.</u> Suppose f: $M \rightarrow N$ is an R-module homomorphism. Then $\frac{M}{kerf} \approx f(M)$.

Proof. Define h: $\frac{M}{kerf} \rightarrow f(M)$ by: h(m + kerf) = f(m) for all $m \in M$.

1. h is well define: Let m_1 + kerf, m_2 + kerf $\in \frac{M}{kerf}$ such that

$$m_1 + kerf = m_2 + kerf$$
 implies $m_1 - m_2 \in kerf$

and so

$$f(m_1 - m_2) = f(m_1) - f(m_2) = 0 \rightarrow f(m_1) = f(m_2)$$

Hence

$$h(m_1 + kerf) = h(m_2 + kerf)$$

∴ h is well define

2. h is a homomorphism since f is homomorphism.

3. h is a monomorphism: for that suppose that $h(m_1 + \text{kerf}) = h(m_2 + \text{kerf})$.

from definition of h, $f(m_1) = f(m_2)$ implies $f(m_1) - f(m_2) = f(m_1 - m_2) = 0$ so $m_1 - m_2 \in \ker f \rightarrow m_1 + \ker f = m_2 + \ker f$

4. h is an epimporphism: let y∈ f(m) ∈ f(M), \exists m + kerf ∈ $\frac{M}{kerf}$ such that h(m+ kerf) = f(m) = y

∴ h is an epimorphism

So h is an isomorphism and by this, $\frac{M}{kerf} \approx f(M)$

Remark. If f is an epimorphism, then $\frac{M}{kerf} \approx N$

<u>Second isomorphism theorem.</u> Let N and K be submodules of an R-module M, then $\frac{K+N}{N} \approx \frac{K}{N \cap K}$

Proof. Define $\alpha: K \to \frac{K+N}{N}$ by $\alpha(x) = x + N$ for each $x \in K$.

- 1. α is well-define (prove)
- 2. α is homomorphism (prove)
- 3. α is epimorphism (prove)

4.
$$\ker \alpha = \{ x \in K | \alpha(x) = 0 \}$$

=\{ $x \in K | x + N = N \}$
=\{ $x \in K | x \in N \}$
= $N \cap K$

Then by the first isomorphism theorem, $\frac{K}{N \cap K} \approx \frac{K+N}{N}$

<u>Third isomorphism theorem</u>. Let N, K be submodules of M, and $K \le$

N, then
$$\frac{\frac{M}{K}}{\frac{N}{K}} \approx \frac{M}{N}$$
.

Proof. Define g: $\frac{M}{K} \to \frac{M}{N}$ by :g(m + K) = m + N for all $m \in M$.

1. g is well-define: suppose $m_1+k=m_2+K$ iff $m_1-m_2\in K\leq N$ iff $m_1+N=m_2+N$

∴ g is well defined

- 2. g is a homomorphism (prove)
- 3. g is an epimorphism (prove)

4. kerg = {m+K| g(m+k) = N}
={m+K| m+ N = N}
= {m+K| m∈ N}
=
$$\frac{N}{K}$$
 (where K ≤ N and m ∈ N)
∴ kerg = $\frac{N}{K}$

Then by the first isomorphism theorem, $\frac{\frac{M}{K}}{\frac{N}{K}} \approx \frac{M}{N}$.

Exercise. Let M be a cyclic R-module, say M=Rx. Prove that M \approx R/ann(x), where ann(x) = {r \in R | rx = 0}.

[Hint: Define the mapping f: $R \rightarrow M$ by f(r) = rx]

Chapter three (Sequence)

Short exact sequence

<u>Definition.</u> A sequence $M_1 \stackrel{f}{\rightarrow} M \stackrel{g}{\rightarrow} M_2$ of R-modules and R-module homomorphisms is said to be **exact** at M Im f = ker g while a sequence of the form

$$\partial: \quad \dots \to M_{n-1} \xrightarrow{f_{n-1}} M_n \xrightarrow{f_{n+1}} M_{n+1} \to \dots$$

 $n \in \mathbb{Z}$, is said to be an *exact sequence* if it is exact at M_n for each $n \in \mathbb{Z}$. A sequence such as

$$0 \to M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \to 0$$