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1.1:Introduction: A differential equation is a mathematical

equation that relates some function with its derivatives.

The derivatives represent their rates of change, and the

equation defines a relationship between two variables.

The differential equations play an important role in many fields
such as engineering, physics, economics and biology. Now, Let
x be a number in the domain of the function f then we can

express the first derivative of the function f for x as follows:

_ ﬂ_df(x) .Y
If y=f(x)then =0Ty =f'(x),

where the symbols % and (...)" represent the first

derivative of the function.

1.2: Definitions

1.2.1: Differential equation

A differential equation is an equation involving derivatives or

differentials.

For example:-

4

dy
1-—(= =
(dx) Ty=x

d2y\’ d
2—x2(d—x)2,> +xd—3:+y=0
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4—y"" +20")%+y' = cosx

: az+azz_ 2,
ax ayz Y

6 0u+ 6u_3
xax yay “

1.2.2: Ordinary Differential Equation

Ordinary differential equation is a differential equation
involving only ordinary derivatives (i.e.) It has derivatives of
one or more dependent variables w.r.t. single independent

variable. Such as equations 1,2,3 and4
1.2.3: Partial Differential Equation

A Partial differential equation is a differential equation
involving partial derivatives (i.e.) It has derivatives of one or
more dependent variable w.r.t. more than one independent

variable.
For example the equations 5 and 6 are p.d.es
1.2.4: Order of a Differential Equation

The order of the highest order derivative in a differential

equation is called the order of a diff. eq.
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For example :-

(i) Equations (1) and (6) are of order one
(i1) Equations (2) and (5) are of order two
(iii) Equations (3) and (4) are of order three
1.2.5: Degree of Differential Equation

The degree of differential equation that is algebraic in its
derivatives is the algebraic degree of the highest derivative
shown in the equation (i.e.) when the equation is free from
radicals and fractions in the dependent variable and its

derivatives.

For example :-

(i) Equations (3),(4),(5) and (6) are of first degree
(if) Equation (2) is of the third degree

(iii) Equation (1) is of the fourth degree

Other examples:- Find the order and degree of the following

differential equations:

) - [

2—sin(y)=y" +x+3

Solution (1): This equation can be written as
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dzy 2/3 dy 1/2
(K) =(1+3)
6 6

dzy 2/3

-
dy\* _ (1+d_y)3
dx2) dx

Therefore, this equation is of second order and fourth degree.

Solution (2): It hasn't degree since it is not algebraic in its

derivatives.
1.2.6: Linear Differential Equation

The differential of any order shall be linear if the dependent
variable and all derivatives are of the first degree and are not

multiplied by each other and its general formula is
agy™ +a;y Y+t a1y +azy = f(x) (1)

Where ay, a4, ...,a, and f(x) are functions for x on the

interval a <x<b
An equation that is not linear is said to be nonlinear

For example:-

1-3y® 4+ 2y" =5sinx Linear

6Page Asmaa Abd and May Mohammed




Chapter one : SOME IMPORTANT BASICS OF DIFFERENTIAL EQUATIONS

2 4%y 2=0 Li
X3y = non — Linear
3 — ‘1@+8 = e* non — Linear
4—x%y" +2xy'+y=0 Linear
5—y®& +yy' +2x =0 non — Linear
1 .
6—y" + 5xy’ +;=Vx+ 1 non — Linear

1.2.7: Homogeneous Linear Differential Equation
Equation (1) is said to be homogeneous if f(x)=0
(i.e) apy™ +a;y® PV +-ta, 1y +a,y=0 .. (2)

Therefore, the equations (2) and (4) are homogeneous and (1),

(3), (5) and (6) are non-homogeneous.

Note: If ay,aq, ..., a, in equation (1) are constant then the
equation is said to be linear differential equation with constant

coefficients.
Exercises:

Find the order, degree, linear and homogeneity of the following

differential equations:
1-y"4+3y"—2y=0

2 _ (y///)3 1+ (y//)z 1+ Xy =X
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3-0)*+y* =

4=V =1+ ()

d? d
24 3 i’+4y=ex

> T w2 T3y

1.3: Solution of the Differential Equation

The Solution of the differential equation is a relation between

the variables of the equation and satisfies the following:
(i) Its empty of derivatives

(i) Satisfies the differential equation

(iii) Defined on a certain interval

Example (1): Is y(x) = Asin 2x + B cos 2x a solution of the
diff.eq.y" +4y =20 ..(3)

Sol. First, we must derive the function that given twice

y = Asin2x + B cos 2x .. (4)
y' = 2A cos 2x — 2B sin 2x ...(5)
y" = —4Asin 2x — 4B cos 2x .. (6)

Substituting (4), (6) in (3), we get

—4Asin2x — 4B cos 2x + 4(Asin 2x + B cos 2x)
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= —4Asin2x — 4B cos 2x + 4A sin 2x + 4B cos 2x

=0

Thus, the given function satisfies the eq. (3)

~ y(x) = Asin 2x + B cos 2x is a solution of (3)

Example (2): Prove that the function

y(x) =xInx —x ..(7)

isasolutionof xy'=x+y .. (8)

Sol. Deriving (7) w.r.t. X we get

y'(x) = xi +Inx—1

y'(x) =Inx ...(9)

Substituting (7),(9) in (8), we get

xlnx=x+xlnx —x

xInx =xlnx

Hence, the equation (7) is a solution of the diff. eq. (8).

1.3.1: General solution of the differential equation

The general solution of the differential equation is the

solution that is free of derivatives and contains a number of

arbitrary constants and their number is equal to the order of the

equation.
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Example (3): Find the general solution of the equation y""' = 0

Sol. Integrating both sides three times

[y""dx =0-dx ..(10)
y'=c . (11)
y =cx+c, .. (12)
C1 2
y=2x"+Cx +c3 ..(13)

Where c,, ¢, and c5 are arbitrary constants.

Note that, the number of the constants is equal to the order of

the equation.
1.3.2: The Particular Solution

It’s the solution that results after substituting the values of the

arbitrary constants in the general solution.

Example (4): write the particular solution of the equation

y'"" =0whenc; =2,¢c, =2,c3 =0.

Sol.: The solution of y""" =0 is y(x) = %xz + cyx + ¢35

( from Ex(3))

Sub. ¢y, c, and c3 in it
2
y(x) = Exz +2x+0

y(x) = x% + 2x
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Remark: A general solution is a set of solutions that represent
curves and are not intersected with each other called integral
curves while only one of them passes through a given point of
existence of these curves and at this point one real value is

determined for the arbitrary constant.

Example (5): Find the general solution and the particular

solution of the equation y' = x ..(14)

that passes through the point (1,2) and sketch the integral

Curves.

Sol.: Integrating (14) w.r.t. X we get

x2

y=7+c ...(15)

This is the general solution
To find the particular solution, substituting the point (1,2) in
(15)

2_1

2
=-+c —>c=§,theny=x—+
2 2 2

N W

.. (16)

And this is the particular solution
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1.4: Sinqular Solution of the Differential Equation

The singular solution is a solution that appears for some

differential eq. and doesn't belong to the general solution group.

Example (6): Find the general solution and the singular solution

of the equation 2y’ = 3y /3

Sol.: 2y’ = 3y1/3 - ZZ—Z = 3)/1/3

dy _3 .
ﬁ—zdx ,y¢0
y_1/3dy=§dx

integrating both sides.

3,35 =3
2y 3—2x+c

3 2c
Vy2=x+¢ where ¢; = —

y= (x+cl)3/2 ;v #0

this is the general solution.
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Now. If y = 0 , we note that its satisfying the diff. eq.
y'=0-2(0)=3(0)-0=0

Is a solution to the diff. eq. but it's not belong to the general

solution group, then y = 0 is a singular solution
Exercises:

1- Find the order, degree and linearity of the following

differential equations.

a—vy' +8xy?=0

b— () +xy =y?

c— \/W =3y +x

d—y® = \/7

e— (") 2=k +(G)D)2

2-Prove that every equation in the list K is a solution of the

differential egs. in the list H , where A,B,C are constants.

H K
1—xy' =x*+y y =x%+cx
2—vyy" — ()2 =y%Ilny Iny = Ae* + Be™™
3—xy' +y+xtyte¥ =0 y3=x3@e*+c);y#0
4—y"4+3y"+2y=0 y =Ae ™ + Be™?*
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5-2(y") —xy'+y=3 {y=ct+3
x=2t+c

3-Prove that all of the equations

i)y = 2e* (ii)y = 3x

(iii)y = Ae* + Bx ,A and B are constants.

Are solutions of the diff.eq. y"(1—x)+y'x—y =0

4- Find the value of A (if it exist) that makes y = Ax3 a solution
of the diff. egs.

a) x?y" + 6xy' +5y =0 ,b)x%y" + 6xy’ + 5y = x?

5- What are the values of the constant C that make y = e“* a

solution of the equation y"” + 5y' + 6y =0

6- Find the general solution and the singular solution of the

equation (y')? = 4y

1.5: Composition the Differential Equation from the General

Solution

In this subject we will discuss how to find the differential

equation if we know the general solution.

The method depends on the relationship of the number of
arbitrary constants in the General solution group and the order

of the differential equation, where the equation is derived by a
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number of equal times for a number of constant as shown in the

following examples.

Example (7): Find the diff. eq. that the general solution is

y = cyx + c,x3,where c;and c, are arbitrary constants.
Sol.: y = ¢;x + cyx3 ..(18)
Driving (18) twice, to get

y' = c; + 3cyx? ..(19)

14

Y= 6c,x o ¢y =2 ...(20)

6x
Sub. (20) in (19), we get

14

! 1 7
=0 =Y =Xy ..(21)

Sub. (20) and (21) in (18)

14

! 1 r
yz(y —2Y )x+)6l_xx3
! 1 144 1 14
=xy' —sx?y" +-x%y
!/ 1 144
= xy —gxzy ..(22)

And this is the required differential equation.

Example (8): Find the diff. eqg. that the general solution is
y =Ae* —x

Sol. y=A4e* —x ..(23)
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Driving (23), we get
y'=Ae*—1- Ae* =y +1 ..(24)
Sub. (24) in (23) we get
y=y' +1-x
y—y—x+1=0 .. (25)
Note that (25) is the differential eq.

Remark: There is another way to find the differential equation
from the general solution group by using some linear algebra
rules and finding the parameters of the arbitrary constants and

making it equal to zero.

Example (9) : Find the differential equation of Example (8)

using the (determinant method)

Sol. y=A4e* —x - Ae*—x—-y=0 ...(26)
y'=Ae* -1 -5 4e*—-1-y' =0 .. (27)

e* —x-—-y|_

e* —1—y"_0

e*(—1—-y)+(x+ye*=0
—e* —e*y' +xe* +ye* =0 (e*#0)
Then—-1—-y"+x+y=0 ..(28)

And this is the diff. eq.
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Example (10): Find the diff. eq. that the general solution is

y = c1x + c,x3using the determinant method

Sol. y=cix+c,x3 s cx+cx3—y=0 ..(29)
y' =c¢;+3cx% 5 ¢, +3c,x2—y' =0 ..(30)
y"=04+6cx 2 0+6c,x—y" =0 ..(31)

The det. is

x x3 -y
1 3x%2 —y'|=0
0 6x —y”
2 3 _ 3 —
D Sl Y 3f,+o‘x2 y,‘:o
6x —y 6x —y 3x4 -y

x(=3x2%y" + 6xy") — (=x3y" + 6xy) =0
=3x3y" +6x%y" + x3y" —6xy =0

[—2x3y" + 6x%y’ — 6xy = 0] + 6%

2.1
y

+xy'—y=0

+ xy’ ..(32)

And this is the same result in Ex.7 eq.(22)
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Exercises:

1- Find the differential equation of the following curves where

A, B and C are arbitrary constants.
a)y = Ax? + A? ¢)y = Asinx + Bcosx
b)y =Ax*+Bx+C d) y = Ae* cos(3x + B)

2- Find the differential equation in which the general solution is
the set of equations of the circles whose centers are located on

the line y = x and the radius of each is equal to 1.

3- Find the differential equation of the hyperbolaxy =c¢ ; c is

an arbitrary constant.

4- Find the differential equation for the set of all straight lines in

the plane.

5- Find the differential equation of the following parabolas
y? = 4p(x — h).

6- Find the differential equation for the set of all circles that

contact with y-axis in the origin point.
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1.6: Existence and Uniqueness of the Solution of the

differential equation.

Consider the ordinary differential equation % = f(x,y) with

the initial value y(x,) = y, where f is defined on the region
R={(x,y):|x—x0l <al|y—vyol <b, a&b > 0}

If £ and Z—f} are continuous on R then the equation g—z = f(x,y)

has unique continuous solution y = ®(x) passes from the point

(x9,y0) forall x,y in R

.e.

(ie) ae——-
( 1) If f is continuous near e
(x9,Vo)then the solution is S elo ToTERR

) exist "
2) If @ s continuous near 4& e ; '= N
N 2,5 LAL

\(xg, Vo) then the solution is unique

Example (11): Is the solution of the equation

L= 2% ,y(1) =3 ..(33)

dx =
Exist and unique at (1,3) ?

Sol.:

1) Z—z = 2x then f(x,y) = 2x
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Its clear that f is continuous at all x&y in xy- plane since
f(1,3) =2(1) =2 and

lim 2x=2(1)=2
x,y)—>(1,3)

liIn(x,y)—>(1,3) flx,y) = (
= f(1,3) = limg )3 f(x,y) =2 Al i) a5

then the solution is exist at (1,3)

2) Z—f} = (0 and its continuous too at all x&y in xy plane then the

solution is unique at (1,3) Integrating (33) to find the general
Sol.

dy

and this is the general solution where c is an arbitrary constant.
Sub. y(1)=3in (34), we gety(1)=124+c >3 =14+c—>c =2

~y = x* + 2 is the solution passes from (1,3) and its clear that

its unique.
) G383 O iMoo yg) £ V) B35 50 el (55 S Al

My )5 (g y0) F (X0 V) =
lim,_,, lim,_, f(x,y)=

limy_,, lim,_, f(x,y) =L ,wherelLisa constant
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Its clear that solution y = x? + 2 passes from the point (1,3)

and it’s the only one.

Example (12): consider xZ—Z =y discuss the existence and

uniqueness of solutions

Sol.

by _ Y
Yar =Y T T X - (35)
wfly) =2 ..(36)

1) Its clear that% is continuous at any point (a, b) where a # 0
So the solution is exist when a # 0

2) Z—f] = % and its also continuous at any point (a, b) where

a+0
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So the solution is unique when a # 0
Integrating eq. (35)

ﬂ_z_)dy_dx

T 7_7—>lny=lnx+lnc

»y=cx ..(37)

Eq. (37) is the general solution where c is an arbitrary constant.

= L
%rrﬁbt?—i&—(w, b)) (9,b) & ,_a_*_o'"\
5 ) 2

, ,

| gﬁ k
=5

The figure shows that no solution has passes from the point (0,b)

Remark: The point that does not satisfy the condition of

existence and uniqueness is called the (singular point).

Example (13): Does the following Initial value problem (I\VVP)
have a unique solution?

dy m

ay _ x . —
- = e*cosy ;v(0) = > ...(38)
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Sol: &= ex cosy = f(x,y) =e*cosy ...(39)

dx
(1) sub. (Og) in (39)
f(O,g = el cos% =0->f(x,y)=0 at (O’g)

And
lim ()05 flx,y) =

limx_>0 lim s ex Cosy = lim Eliquo ex cosy = 0
Y>3 Y-y
f(x,y) is continuous near (O, g)
of _ _ x

sub. (Og) we get

g—f] = —1 and its continuous near (0, g) Then there is a unique

solution at (Og)

Q=excosy—> 4y =e*dx — secydy = e*dx
dx cosy
In|[secy +tany| =e* + ¢ ... (40)

1 n
But In|secy + tany| = In m+tany and cos> =0

1

s =

1
™0
cos 7
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= there is no solution passes from (O, g) and exist in the general

solution group. (40) we must look for a solution in another way.

d
% ~0 at (o,g)

Integrating both sides

y(x)=c ..(41)

Sub. (o, g) > y(0)=c >Z=c sub.in (41) we get

y(x) = g and this is the unique solution passes through the
- T
point (0'5)

Example (14) : Does the following (1VP) Z—z = x,Jy—3

,y(=2) =28 .. (42)

Have a unique solution or not?

Sol. f(x,y)=x,y—3

It's clear that f is continuous near (-2,28) «uall & 2 4y ) jaiad) il

of
ay_z y-3

and it's continuous near (-2,28) also.

Then the diff. eg. has a unique solution :

ay _ day _
E—x,/y—S ﬁﬁ—xdx
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xZ
— 2 y—3=7+c ..(43)
Sub. (-2,28) in (43), we get

24/28 — =§+c 510=24c 5c=8,

2

Eq. (44) is the unique solution that passes through (-2,28).
Lo 5 3o LS (ppda i (paniai Agilas gl 5 0 g sl A yae ()):Adas Dl

L 9935 e Jadl s 3N GaadlAE -
BT PN PICPENPPREEN g i B | ERTIN PR S R P SR I CENA KT P

g

Exercises: Discuss the existence and uniqueness of solutions to

the following differential equations:

1-y' =x2+y%2 ; y(0)=0

2-y' = y? ; y(0) =1
3y =~  y(0) =1
y _y1/3 ’ y -
, 252 )2
4-y =# ; y(0)=0
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CHAPTER TWO

The Ordinary Differential Equation of the first order and first

degree

An ordinary differential equation of first order and first degree is written in one of

the following forms:

Al JIEY) gaals coks 381 ds jallg a9 Al (e Aaliie W1 Abialall Aaladll
M(x,y)dx + N(x,y)dy = 0
dy
or M(x,y) +N(x,y)a =0

dy
or - =f(xy)

Such that f, M, N does not contain derivative.

Although this kind of differential equations seems simple, there is no
general way of solving, but several methods depending on the type of the
equation. Therefore, the equations that can be solved directly divided into

several types, the most important ones are:
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dall Adle day )l a8 Y ) VI Ay o0 Adalall Vsl e g 5l 138 o) a2 )

4y ks Lela alag) (S (A1 c¥alaal) auitss @lld e 5 @il @ 55 casa (3 5k Bac Lail
(leaal gl il 32 M 5 il

2.1) Separable equation.

2.2) Homogenous equation.

2.3) Differential equation with linear coefficients.

2.4) Exact differential equation

2.5) integral factors.

2.6) Bernoulli’s equation

2.7) Ricatt’s Equation

2.8) The diff. eq. of the formf'(y) 2 + P()f (¥) = Q(x)

2.9) Equation that is solved using a suitable substitution.

Now let’s start:

2.1 Separable of Variables:

Definitionl: An equation in the form

dy _ gx) _
a = m or h(y)d y = g(X) dx

_______________________________________________________________________________________|
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is said to be separable or to have separable variable. And if both g and h

are differentiable, then:

]h(y)dy= fg(x)dx+c

. . ﬂ_ 5x ﬂ_ .
Ex 1 .Solve.a)dx— 1+e b) dx—sm(x)

a)dy = (1 + e>*)dx =>y=x+%esx+c

b)dy =sinxdx =2 y= —cosx+¢

Ex2:Solve: (1 +x¥)ydy+(y+3)dx=0

1

. 2 — _
Solution: [(1+x*) ydy + (y +3) dx = 0] * (1+x2)(y+3)

y ) dx
:"(y+3 W+ i)

_______________________________________________________________________________________|
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f 1—— dy+tan‘1x=c

3
=fdy— Imdy+tan‘1x=c

=y—-3ln|y+3| +tan"*x=c,c€R  (cisanarb.cons.)

Remark: 3%3 can be solved by two methods

_Qg%jﬁ@%&ﬂ%uy%@.%j&&@@g@
y+

1 24l shal) dacdll (1

y+3 y
143 Jadll (2

y _y+3-3 y+3 3 3

y+3  y+3  y+3 y+3 = y+3

Ex3:Solve y' =e*?

. d - _
Solution: d—i’=e".e Y =>dy=e*.eVdx

=eYdy=e*dx = feydy=fexdx

_______________________________________________________________________________________|
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= e = e* + ¢, (The general solution),(c is an arb. cons.)

Ex4:Solve xydy + 2yx*+4x*—y—2)dx=0

Solution: sl Jaant Jalaill ddaul o
- - _m
[xydy + (y +2)(2x% — 1)dx = 0] * 5T
y 2%°—1
=>y+2 dy + - dx =10

:f(l—)%)dy+ f(Zx—%) dx=f0

=y — 2In|y + 2| + x? — In|x| = ¢, (The general solution of O.D.E.)

Ex 5:Solve sin*xcosydx+sinysecxdy =0

2 :
Solution: —— dx + —= dy =0
cosy
sin? x —siny
= X+ dy =
1 —Cosy
COS X
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— Sin
:»fsinzxcosxdx+f 1ydy=fO
—cosy

Then the general solution is:

sin3 x

—In | cosy| = ¢, (Where c is an arb. cons.)

Ex 6 : Solve %+ e’y = e*y?

: d d
Solution: d—i:g"yz—exy:)d_i:eJC(yZ_y)
dy
= —————= =¥ dx
yy—-1)
i > (yl_ 5 dy ( We use the fraction law) (Al osla)

A+ B A(y-1)+By
y y-—1 yy—1)

= Ay—A+By =1

= (A+B)y =0 exiel(dc)
= A+B =0

_______________________________________________________________________________________|
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A=-B
From (2): A= —1

From(1):A+B=0— —1+B=0->-1= -B—B=1

1

Now, [ 55753

-1 1
dy = [(+ ;=D dy
= [—dy+ [ dy = ~Inly| +Inly — 1]

Then the general solution is:

—In|y| +Inly—1| =e* + ¢, (Where c is an arb. con.)

2.2 Homogenous differential equation

Definition2: The function f(x,y) is homogeneous function of degree n
if

fxty) =t f(xy) )

where t 1s a constant.

Definition3: The differential equation

_______________________________________________________________________________________|
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Chapter 2:The Ordinary differential equations of the first order and first degree

M(x,y)dx + N(x,y)dy =0 11

is called homogenous if M (x,y) and N(x, y) are homogeneous functions

of the same degree.

To solve the homogeneous differential equation:
M(x,y)dx + N(x,y)dy =0

Can be written in the form

— =f e (IID

Lety = % , then equation (III) becomes

dy
T f) e (V)

Since v = % , then y = vx, and so

dy = vdx + xdv

We substitute the above expression.

_______________________________________________________________________________________|
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Chapter 2:The Ordinary differential equations of the first order and first degree

The new equation is separable, we solve it and in the last we put v = %

to get the general solution.

Ex1:Solve xy?’dy— (x®*+y®)dx=0
Solution: M (x,y) = (x3 +y%)
N(x,y) = xy?
M(tx, ty) = (tx)® + (ty)® = t3x3 + t3y3
=t3(x3 + y3) = t3M(x, y), A dx ) (e dusilaia AN
N(ex, ty) =tz (ty)? =tx (t>9>%)
=t3(x y?) = t3 N(x,y), AUl s 53l (e dulacia 4l

So, M and N are both homogeneous, and have the same degree, so the

diff. eq. is homogeneous.
Lety=vx —>dy=vdx+xdv
(oo Joant Alalal) Asladl 4 (g sailly

xv?x?(vdx + xdv) — (x3 + v3x3)dx =0
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= x3v3dx + x*v2dv — x3dx — v3x3dx =0

= [x*v?dv — x3dx = 0] * o

1
=fv2dv—f;dx=f0

3

=>v In|x] =c¢
: -

3
When v = ii = X _ In|x| = ¢, (The general solution)

3x3

Ex2:Solve xydx+ (x2—2y*)dy=0

Solution: The equation is homogeneous (prove it), so

Letv = % —y=vx —>dy=vdx+xdv

x(vx) dx + (x? = 2v%x¥)(vdx +xdv) =0
= vx?dx + x*vdx + x3dv — 2v3x%dx — 2v*x3dv =0
= 2vx?dx — 2v3x%dx + x3(1 — 2v3)dv =0

= 2x*’(v—vdx +x3(1 - 2v¥)dv =0
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1
2 2 a3 31_2 2 =
= [2x%(v — v3)dx + x°( v4)dv 0]*x3(v—v3)
2x2 1 — 2v?
:—de+ 3 dv =10
x T
2 1 — 2v?
=% | — x+] = dv =20
x vV —v

1-2v2  1-20°
v—1v3 v -v?)

B 1 — 2v?
T v(1-v)(1+v)

A B C
=S4 —4— (%)

Al—=v>)+Bv(1+v)+cv(1—-7)
v(l-v)(1+v)

A — Av? + Bv + Bv? + Cv — Cv?
v(1 —v?)

—~A+B—C= —2 . (D
B+C =0 = {2)
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A=1 w (3)
By substituting (3) in (1), we get:
-1+4B-C= -2 —-B-(C= -1 .. (4)
Eq. (2) + Eq. (4):

B—-C= -1
B+C=0

9= —1 —=B=—
- 2

FromEq. (2) — C = %

So,A=1, B = %,andC=l

2
Substituting A,B,C in eq.(*), we get:

‘e duani o(*) Aiadl L3 4, B, C b s say

— 1
1-2v? 1 5
dv = (—+ + dv
fv—v3 ( 1—v 1+v)

=lnv-— %lnll—vl + %ln|1+v| =g
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1 i |
&~ 2In|x| + In|v| — 5111!1 —v|+ Elnll +v|=c

= 2 In|x| + In |¥| — %ln|1 —%I ik %ln|1 +%| = ¢, (The general sol.)

Ex 3 : Prove the following diff. eq. is homogeneous, then find the

general solution:

xdy — ydx = /x% + y? dx

Solution: We must prove the degree of

M(x,y)dx = N(x, y)dy
xdy = (y+/x? +y?)dx (1)

: M(tx, ty) = (ty + /()% + ()?)

= By +/t3 (22 + ¥7)
= ty + ty/x% + y?
= t(y +x%2+y?)

= tM(x,y).
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= M(x,y), sY ol e Auilaia

“ N(tx, ty) = tx

= N(x, ), s¥ 420 (e duilaia

Then the diff. eq. is homogeneous. Now, we find the general solution:

Let y = vx — dy = vdx + x dv , by substituting in the diff. eq.(1), we

get:

x (vdx + x dv) — vx dx =/ x%2 + v2x2dx

xvdx + x%dv — vxdx = x+/1 + v2dx

[x%dv = x {1+ v? dx]*

1+ v?
dx
\K1+v2 f
| ==
1+v2

Letv =tanf — dv = sec?6 do

J-seczede =fsec29 do = ISEC 0 do

I \/1+v2 V1+tanZ2 @ sec@
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Chapter 2:The Ordinary differential equations of the first order and first degree

= In|secd + tan 8| = In|v + V1 + v2| = In

2
2+ /1+”—2
X X

Then the general solution is:

2
%4_ 1+i’_2 =Inx + ¢ (cisan arb. cons.)

In

2.3 Differential Equation with Linear Coefficients (Equation that

reduce to homogen uation
These equations can be expressed as:

dy aix+biy+c

dx  ayx+ b,y +c, V)
Two lines:
a,x+b,y+c,=0,anda,x+ b,y+c, =0 we (V)
a) Intersect if Z—z * i—;, (Oladbliie Clasinal)
or: Intersect if z; Z; =0
b) Parallel if Z—: = i—: (s sie asitonall
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a, by

a, b, =0

or: Parallel if

Case (1): If the two lines that in (V) intersect , i.e. =2 b—l, we seek a

a; b,

translation of axes using the form:
¥x=%+h— dx =dx;
y=»tk—dy=dy
where (h, k) is the point of intersection
Then the substitution x = x; + h,y =y, + k (dx = dx4,dy = dy,)
transform equation (V') into the homogeneous equation.
Remark: First we find the intersection point.
Ex 1 : Solve the following O.D.E. :
2x—-3y+4)dx+ 3x—2y+1)dy=0

2x —3y+4=0 a; _ 2 by _ -3

Solution: 3x—2y+1=0] @ 3 'b; =2

2 3 ; . -
= * — —* The two lines are intersection.

ASMAA ABD AND MAY MOHAMMED



Chapter 2:The Ordinary differential equations of the first order and first degree

or: |§ :3| = 5 # 0 — The two lines intersect.

Now, we must find the intersection point:

2x —3y+4=0x(-3) (D
3x—2y+1=0 *(2) (2)

— 5y —10=0 — y = 2, [by substituting in Eq.(1)]
—2x—312)+4=0 —-x=1
s~ (h k) =(1,2) [ The intersection point]
let y=y,+2 —>dy=dy,
x=x;+1 —>dx =dx;
By substituting in the D.E., we get:

QCx1+1) -3 +2)+4)dx; + B(x1+1)—2(0y1 +2) 4+ 1)dy,
=

(2x1 — 3y1)dx; + (3x, — 2y,)dy; =0

The above equation is homogeneous
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Lety, =vx; — dy, =vdx; +x; dv
(2x; — 3vx,)dx, + (3x; — 2vx,)(vdxy + x,dv) =0
(2x; — 3vxy)dx; + 3xyvdx, + 3x2dv — 2v%x,dx; — 2vxZdv = 0

2x,dx, — 3vxidxy + 3xyvdx, + 3xZdv — 2v?x,dx, — 2vx2dv =0

[2x,(1 — v®)dx; + x?(3 — 2v)dv = 0] *

X1 (1 —v3)
2 3—2v
de1+1_v2dv—0
dxq 3—2v
2| —+ dv=]0
) ad+na—n" J’
3—2v A B _A—Av+B+Bv

e —v 0%9 -9 U+ill-v
_(A+B)+(B-Aw

1+v)A—-v)
A+B=3
B—A=-2
1 5
— B=-and A =-
2 2
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d;)c1

1
f((1+v) Lpav=|o

dxl f(1+) (fv) f“

4In|x;|+5In|1+v|—-In|]l —v| =¢

Inx{ +In(1+v)°—In(1—-v) =¢

(1+v)°
Inx{ +In———=¢
5
In(x7. ((1:2)) = ¢; (cq1san arb. cons.)

1+v)°5
4 L _ ey lete‘r = ¢
1-v
5
Y1 4 (1+z_i)
When v==—oxj.—5—=c
(X1 + 1)
X X15 G
H —
1 1 = Vi
X1

— (x, + 3"1)5 =C(xy —y1)
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Chapter 2:The Ordinary differential equations of the first order and first degree

—x—-14+y-2°=Cx—-1—-(y—2))

—(x+y-3P=Clx—-y+1), (The general solution)

Case (2): If the two lines that in (VI) are parallel ( i.e. ? = ? )then the
2 2

solution will be using the hypothesis z = ax + by as shown in the

following example
Ex 2 : Solve the following O.D.E. (x —y+ 2)dx = (x —y — 3)dy

Auhd e 13 Abialds Aalase Ll Bad
Solution:
H :ﬂ = -14+1=0

Ol sie Glagiioadl o3

x—y+2)dx—(x—y—3)dy=0
letz=x—y —dz=dx—dy > dy=dx—dz
—(z+2)dx—(z—3)dy =0

zdx+2dx— (z—3)(dx—dz) =0
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zdx + 2dx — zdx + zdz + 3dx — 3dz =0

dex+ f(z—S)dz=fO

Sx+ e 3
x+——-3z=c
2 VA
(x-y)?

5x + —-3(x—y) =c¢ (The general solution)

2
A gy (Ex 2 )@@led) JUall da (Say 1AM

x—y+2)dx=(x—-y—-3)dy

dy _ x-y+2
dx (x-y-3)

(1)

d : ; ;
Let z=x—1y.To solve for é, we differentiate z = x — y with

respect to (w.r.t.) x to obtain z—i =1- Z—z . and so % =, s z_i,
substitute into Eq. (1) yields:
. dz z+2 dz . zZ+2 -5
- = =1 - =
dx z-—3 dx z—3 z-3

2

= (z—3)dz = —5dx =r?—32=—5x+c

— (x—y)? 3 _ :
e (x—y) =—5x+¢ (The general solution)
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Examples:
1) Solve the O.D.E. (y* + y)dx — (x* — x)dy = 0
Solution:

dx dy
x2—x y4+y

J’ dx _J‘ dy _fo
x%2 —x yZ4y

(1) (2)

Use the method of fragmentation (partial) of the fractions. 23 4k sasi
s3sll

1 A B
(D)= —= =
x(x—=1) 2 x—1
1 Ax —A+Bx (A+B)x—A
— = =
x(x—1) x(x —1) x(x—1)
- A+B=0 - (D)
-A=1 o ((EE)
From: (ii) — A = —1, substitute in (i)
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Chapter 2:The Ordinary differential equations of the first order and first degree

-» —-1+B=0->B=1

(2) -

1 is
T A=1,and B = —1 (:Je! skl uin)
1 dy
[ [ [o
J’X(x— 1) yy+1)

f_1d+f1 f1d+fld fo
- — — | - —— =
xx a—1 yy y+1y

— —In|x| +In|x — 1| —In|y| + In|y + 1| = ¢, (The general solution)

2) Find the general solution of 2x%y' — y(2x+y) =0
(FLW.) (95 cad) ) dulaia Aaled)

V=20 Cus F(Z) 5300 Aalaal Jygais lig Ha1 skl Tuilaiall alaall Ja (S
x X

2xy +y?
221':2 2 b
Xy xyty -y %2
, Y 1yy?
Py =T Z(x)
y dy dv
Letv= —->y=vx—>dy =vdx +xdv > —=

= v+xa
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+ dv +1 2
= —_— —
v xdx v 2v
dv 1
B B B
xdx Zv
dv dx
— —_—= ] —
L o X
E'U
— _—=1n|x|+c
3 T= In|x| +c, (The general solution)

(3) Solve the following diff. eq. (x* + y*)dx — 2xydy = 0
aty(2) = 0.

Solution:

o M(x,y) — x2 +y2

- M(tx, ty) = (tx)* + (ty)* = t*(x* + y*) = t?M(x,y)
“ N(x,y) = —2xy
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= N(tx, ty) = =2(tx)(ty) = =2t?xy = t2N(x,y)
(Aailaie lalaill ddaladll (3

[(x? + y?)dx — 2xydy = 0] + x?

(1 + (%)2) % — (2 GT:)) dy =0

—z = = —_— —_
Letv—x—>y vx = dy vdx+xdv—>dx v+x

dy x*+y? dy x? 5 y?
— - =
dx 2xy dx 2xy 2xy

dy 1 «x 1y

N dv_l(l)_l_l
V¥ = 2\9) " 2Y

dv_ 1+1
*ax " w2V 77

dv 1 1
S X— = —— =
xdx 2v Zv

dv 1 1
iR = e
xdx Z(v a

ASMAA ABD AND MAY MOHAMMED



Chapter 2:The Ordinary differential equations of the first order and first degree

- —In|1 —v?| =In|x| + ¢

— —In |1 — i—E = In|x| + ¢, ( The general solution)

(Sal s 1palall Jall)

4) Solve: (x* — y*)dy — 2xydx =0, whenx =0,y =1
Solution: (The equation is homo. of degree 2) (‘=a!3)
Lety = vx » dy = vdx + xdv

(x? — v%x?)(vdx + xdv) — 2xvxdx = 0

(x%v — v3x¥)dx + (x3 — v2x3)dv — 2x%vdx = 0

(—v3x?% — x%v)dx + (x° — v?2x)dv =0
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1
2 (1,3 3(1 — p2 =
(—x?2(w3 +v))dx + x3(1 —v?)dv =0 *(v3+v)x3
—1 1 — P2
—fdxt — dv =20
X v34v
1 V.V
_1 — S — =
n|x|+J’v3+vdv fv(v2+1)dv ¢
—In|x| + [ v 1)dv——ln|1+vzl—c (%)
1 _A+Bv+C_A(v2+1)+Bv2+cv
v(v2+1) v v?+1 v(v?+1)

AW+ 1D +Bv*+Cv  (A+BwP+cv+A4A
B v(v?2+1) v(v?+1)

- A+B=0 ..(1)
c =0 sl Z)
A =1 - (3)

Sub. 3)in(1)» B= -1

o [cavse [ =

dv ——lnll +v?| =In|x| +¢
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i) 1
In|v| — §1n|1 + v2| —Elnll +v?|=In|x| +¢

In|v| — In|1 +v?| =In|x| +¢

In =lnx+c

v2 +1

v

1+v2—lnx=c

In

v

n——— =
nx(1+172)

C

v —
x(1+v2)

eC

When v = %
X
)
X
x(1+ (%)2

Whenx =0andy=1-1=e° -5c=In1=0

g LM g &

=@" —3—,

e =e em=ec(7‘hegen.sol.)

y

) y? =1,(since e® =1) (The particular sol.) (o=l )

ASMAA ABD AND MAY MOHAMMED



Chapter 2:The Ordinary differential equations of the first order and first degree

5) Find the general solution of O.D.E.
2x+y—1)dx+(x+y—2)dy=0
Solution:
(Aekd CDlalae 1 Alaalis Alalea L) Badl)
i }I 20> (bblite glaiiudl o)
el AL ) Haiad oy (Y
2x+y+1=0 s (1)

X+y—2=10 .. (2)

Eg(l)—E¢gR)>2+1=0-2%x=—1
From:Eq.2):—2+y—-1=0-y=3

& (h k) = (—1,3) [ The intersection point]
Letx=x,—1->dx=dx,
Lety=y;,+3->dy=dy;

Sub of O.D.E.—
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Q-1+ @1 +3)—Ddx; + (g —D+y;,+3-2)dy;, =0
(2x1 + y1)dxy + (x; +y1)dy; =0 ()
duailaie Alalal) Aaladll Canval oY)

Letv = %—) Y1 = vxy = dy; = vdx; + x1dv
1

Sub. in (*) -
(2% + vxq)dx; + (X1 + vx1)(vdxy + x,dv) = 0
2x,dx; + vx dx, + x,vdx, + x2dv + vixdx; + vxidv =0

x1(2+2v+v)dx; +x2(1+v)dv =0
1d % 2(1+v) J _JO
J’xl 1 f2(2+2v+v2) V=

1
In|x | +§ln|2 +2v+v?=c

1 Y1, Vi
ln]x1|+§ln 2+2(x—1)+E =cC
1 y—3  (y—3)?
In|x + 1| +§ln 2+2(x+ 1) + ot D" ¢, (The general sol.)
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6) Find the general solution of
(4x+2y+3)dx+(6x+3y—2)dy =0
(The Differential Eq. with linear coefficients)
4x+2y+3=0-22x+y)+3=0
6x+3y—2=0-32x+y)—2=0
let z=2x+y—>dz=2dx+dy > dy=dz—2dx
dlalall dlaleally iy g2illy OV o 8
) s ediall aladiuly L)) sie Clagituall ol CLEYL o giie Sl I

xUalae—
ydalas

Niie,
L]JYIM!LJ&A:m1=x;3Am & &tﬁ.“éiua.“@n;mzz

If my =my — OL)lsie Jlaiinl
If m; # m, » JbhblEa Jlesiull

v my =T= —2,m2=T= —2
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s my = m,, so the two lines are Parllel (k) s)
oz sy fag (Y
(2z43)dx+ (3z—2)(dz—2dx) =0
2zdx + 3dx + 3zdz — 6zdx — 2dz + 4dx = 0
—4zdx + 7dx + 3zdz — 2dz =0

(—4z+7)dx+ (3z—2)dz=0

(3z—-2)
x+mdz—0
3 4 13
== T _
dx + 4+4'—4z Z dz=10
13 nl—4z+ 7| =
X 42 1611 Z =cC

3 13
X — Z(Zx +7y)— Eln|—4(2x +y)+7|=¢, (The gen. sol.).

ASMAA ABD AND MAY MOHAMMED



Chapter 2:The Ordinary differential equations of the first order and first degree

2.4 Exact Differential Equation:

Theorem: If M and N have continuous partial derivative in a

rectangular region R then the equation
M(x,y)dx+N(x,y)dy =0

be an exact equation if

oM _ 0N

=T (el alil] Aol (oS5 <) o )

Ex 1: Determine whether the following equations are exact or not:
i. 2x2 +5)dx+3ydy =0

iil. xcosydx+ycosxdy =0

iii. cosydx + (y? —xsiny)dy = 0

. a a oy
Sol. (i): = % =i = o it is exact

ox
e .. OM . aN :
Sol. (ii): - 5y, =~ xsiny, and 5 = ysinx
oM _ AN . .
— — # — - it is not exact

y 7 ox
____________________________________________________________________________________________|
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o oM : dN - a3
Sol. (iii): * 3, = —siny, and - = —siny — itis exact

Remark 1: An equation in the form
M(x)dx + N(y)dy =0
1S an exact equation.

For example: x?dx + sinydy = 0 is exact as follows:

aM ON =% &
vw—=0=—>itisexact
ay ax

Remark 2: Every separable eq.is an exact equation after separating its

variables (e i Jacd 3oy A3 Alslas & Juaill 316 Alslae (<)

Remark 3: The exact diff. eq. for the function f(x,y) is

d d
df(x,y) = édx—trd—idy

if we make it equal zero, we get the exact diff. eq.

The solution of this diff. eq. is f(x,y) = ¢, (g sl <l )
I
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Solution of the Exact Diff. Eq.

Through some examples, we will show here two methods to find the general

solution of the exact equation.
Al dplialadll Adabaall dad (48 Hha e 95 o g ALY A (4
mMethod 1: By using Remark 3

Ex2:Solve (x+2y)dx+ 2x+y)dy =0

¥ M N . ’
Solution: - Z—y =2 = ‘;—x — the diff. eq. is exact,

and hence its solution is f(x,y) = C

6x y mn ( ) ( )
aj
E': y ek ( ) ( )

We can use any of the above equations. to find F.
From (1): g—z =%y F= % x2+2xy+ h(®) .. (3) (& Jai)

And to find h(y), we use the fact that eq.(3) satisfied eq.(2), then:
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1
2x+h'(y) =2x+y > R'(y) =y = h() = 5¥*

Substituting in eq.(3), we get

1 2 1 2
F(x,y)=§x + 2xy + Ey

Then the solution is: x? + 4xy + y? = ¢

Ex3: Solve (2xy —3x%)dx + (x* +2y)dy =0

: oM aN ; .
Solution: e 2% = I the dif f. eq. is exact,

and hence its solution is f(x,y) = ¢

6F_2 — 3x2 (1) M

ryeh Xy — 3x (M)

dF

@—x + 2y s (2) (N)

From (1): F(x,y) = x*y —x3 + h(y) (2 Ay JalS)
oF

N = — = x2 ! =x2472
3y x“+h'(y) =x"+2y

- h'(y) =2y - h(y) =y?
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Then F(x, y) = x2y — x3 + y2,

and the general solution is: x2y — x3 + y2 = ¢

Ex 4: Solve (1 + xy?)dx + (x’y +y)dy =0

iz 2L =By = TN ; '
Solution: - 9 2xy = o the dif f.eq.is exact,
oF
—=1 2 = (1 M
—=1+xy O )
oF
— = 2 s (2 N
By ¥ Oty (2) (N)
From (1): F(x,y) = x + %xzyz + h(y) (2 Apailly JalS)

1
X’y +h' () =x*y+y->h@)=y->h(@y) = §y2

And the general solution is: 2x + x%2y? +y? =¢

Ex 5: Solve the initial-value problem

3xty+1

dx—J%dy= 0, y2)=1
I
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Chapter 2:The Ordinary differential equations of the first order and first degree

Solution: we can rewrite the equation as following

Bx?+y VDdx —xy 2dy =0

oM

dy y

oN .

e -y

Z—f = g—: — the dif f.eq.is exact,

oF 5 .

— = B - (A M
—=32"+y ®» o
oF "

— = —Xy N (7 N

5 = % @
From (2): F(x,y) = xy ' + g(x) (y Al dalss)

Then: g—i =y 30" (%) = 3x% + y*

- g(x) = x3,then F(x,y) = xy~! + x3
And the general solution is: xy~1 + x3 = c.
When y(2)=1, we get :
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Chapter 2:The Ordinary differential equations of the first order and first degree

201422 =¢c=¢=10
Sub. in the general solution above, we get:
xy~1+x3=10

And this is the particular solution

L day bl (yadle

Sy y J aptaal Al paa® Sus F(Xy) oo diasid x JLa LSy M =%¢¢3-1
h(y)
h(y) Ul ded Je Jpasll N o lpsluisy J Al F(xy) @2
pldl Jall Je Jiaad e F(x,y) dalas A h(y) uass.3
lgusds dagill Lo Joaniy N =g—;@saﬁl (Saribada
METHOD 2: We choose a point (a,b) that it is within the domain of the

function and satisfies M(x,y) and N(x,y) and we substitute in the

following:
y

F(x,y) = fM(t,y)dt+jN(a, t)dt =c
a b
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We find this integral to obtain the general solution of the diff. eq.

Ex 6: Solve (x + 2y)dx + 2x+y)dy =0

Solution: M(x,y) = x + 2y = g—f =2

N(x,y) = 2x + o _ 2
oM dN . .
5 e = the equation ts exact

Let (a,b)=(0,0),substituting in :
F(x,y) = [, M(t,y)dt + [} N(a,t)dt = ¢
- fo"M(t,y)dt + [N, t)dt = ¢

= [ (t+2y)dt + [Jedt = ¢

-Ge) B3

Ex 7: Solve the following diff. eq.
(¥? + xy? + 1dx + (x*y + 2xy + y)dy = 0

4
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Chapter 2:The Ordinary differential equations of the first order and first degree

Solution:

aM—Z + 2
3y y T axy

o _ 2xy + 2
% Xy T &y

aa_“; = g—: — the dif f. eq. is exact, let (a,b)=(0,0) ,we get:

X y
F(x,y) = f (y2+ty+1)dt+f tdt =1
0 0

1
=xy2+5x2y2+x+%y2 =

the solution is: 2xy? + x2y% + 2x + y% = c.

2
Ex 8: Solve 3x;+1dx —%dy =0 ,y2)=1

Solution:
3x?y+1 oM 2
M(x,y) = = — = —
y)=——=3="Y
-X JdN _ -2

N(xly)=y_2=)ax__y
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Then the equation is exact.
Let (a,b)=(0,1) ,sub. in

— (* y _
F(x,y) = [T M(t,y)dt + [} N(a,t)dt = c
= [, M(t,y)dt + [} N0, t)dt = ¢
_ (x3t%y+1 y _
= [ Tdt+f1 0.dt =c

0
= [7(3t? +%)dt =

=(#+5) lg=c

=x3 + 5 = c and this is the general solution
When y(2)=1, we get the following

23 +§ =c=c=10

Then the Particular solution is x> + 5 =10

H.W.: Solve the following equations by using two methods for the

exact Differential Equation:
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1. (x?4+1—4xy —2y®)dx — (2x> +4xy —y3 + 2)dy =0
2. ysec’xdx +tanxdy =0

3.cosydx + (y2 —xsiny)dy =0

4. e*y%dx + 2e*ydy = 0

2.5: Integral factors:

If the equation ( M (x, y)dx + N(x,y)dy = 0 ) is not exact, then we
multiply both sides by a factor I(x, y) that turns it into an exact, and this

factor is called the integral factor.
(Al N Ll sail J(x,y) @ Aolaall d sk o juay 258 ladie dali ye Alaladl calS 1)
el dale J(x,y) oo, ] Ak
s Asles S ALl e Aliladll g3 o JalSall Jale ddiliy 2

e Jsaall (e LS Allaall JS8 n (g a1 N Alilae o JalSEl) Jale il 3

N. | M(x,y)dx + N(x,y)dy I(x,y) el Jale Z iall (g g2l
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1 OMs 13
M,—N i 3 ¢ Al At .
i| 2 =f®= I(x) = e fex)ax SR e
4.alal)
ii| My—N, — el fdy
11 J'_M = f(y) = I(y)=e
2 ol da xmyn @ Alslaall i juza ueaa Jad g Aal Adalaal) s
My — Ny M N e
N ™ 5 o A
M ;4 Yk fy) | rstall Jalsl Jals A8l o slay
3 ydx—xdy )™y In> or = or 2 or:
y y X
Or: xdy—ydx Or: (ax* +bxy+cy’)™?
f {a+b(Z)+cD?}a
X X X
4| pydx+ qxdy e z = xPy1
5 ydx + xdy 1 Z=Xxy
6 1 1
pxdx + qydy 2= @¥* + ")
7| dy+Px)ydx [ = e/ P(X)dx z =y elpdx
or: dx+« (y)xdy
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1A L}n :KJ.JLMM L‘J_A.uljj I —_ ef‘xb’)d}’ Z = xef“()’)dy
dghal) Addlaally ¢ il

Now, we will explain each of these cases using examples
Case 1:

Multiplying the equation (M(x, y)dx + N(x,y)dy = 0) by I(x,y) we
get:

(I.M(x,y)dx+1.N(x,y)dy = 0), where I, M, N are functions of x
and y.

Deriving IM w.r.t. y and IN w.r.t. x

a(I M)

> =gy = [ My + 1M
a(I N)

S =N+ LN

_ 0aM) _ 3UN)

<) Jale 9 el
3y Froy (Jasdl dale o [ ol Jloely)

then I M, + I,M = I Ny + I,N
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> IMy, —Ne| =L, N—LLM ......... (*)
Now we have two cases
1. If I(x,y) = I(x), that is I is a function just for (x).

Then

_dl

L=—

I,=0  (kihx Jals st e

Sub. in (*), we get

dl
I[My —_— Nx] = N a
CTT TN W
My_Nx =
Let P(x) = ( function a lone for x)

e dmnt (L1 s
Inl = JP(x)dx

= I(x) = elPWax  [(x) = eﬂ@)dx ( SolSilI Lole)
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2. If I(x,y) = I(y), that is 1 is a function just for (y).Then

dl
I —

y=gy k=0 (dais y J s Julsdll Jale)

Sub. in (¥) we get:

I[M, — N,| =-L,M

Iy _ My—Ny

I~ -M

I(y) = el PO where P(y) = %_—;Vx ( function a lone for y)
My-Ny

S I(y) = el T ( SolSill Lale)

Ex1: Solve (3x3+2y)dx+(2x1n3x +3?x)dy=0
Sol.: M = 3x3 + 2y ,N=2xln3x+3?x
3
My=2  Ne=2+2In3x+2
3
My—Nx=—(21n3x+§)¢0
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~ The equation is not exact.

3
21 —
N x(21n3x+%) X

— I(x) = e-f_idx — e_lnx — eln.v_]; — i (d.a\Sﬂl d.nl.c)
(Al et = 8 Aokl (8l )
2 3
(3x2+?y)dx+(21n3x +;)dy=0

oM 2 0N

- = — The eq.i
3y x % he eq.is exact

(H.W. ) Al Alalaill dabeall Jag 2588 (Y

Ex2: Solve y(2x+ y)dx+ (3x* +4xy—y)dy =0
Sol: M =y (2x+y), N=3x*+4xy—y
M, =2x+2y, Ny=6x+4y

M,—N,= —4x—2y= —2Q2x+y) #0
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The equation is not exact.

We must find the integration factor.

My—Nx= —2(2x+y)= 2
—M —y(2x+y) vy

= ef%d:v — o2y — plny? — 2 (sl o)

(R e i JolSEH (g Al i e )
y3(2x + y)dx + y?(3x% + 4xy — y)dy = 0
M = 2xy3 +y* N =3x%y? + 4xy3 — y°

M, = 6xy? +4y3, N, = 6xy? + 4y3

Solution:
1. Integrating M(x.,y) for x: x d Al dalss
dF
M=—=2xy*+y*
3% xy- Tty
22
Foy) =2y +xy' +h() . ()

=x%y3 +xy* + h(y)
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2. Deriving for y: y J Aally i
oF
—=3x%y% + 4xy® + h'(y)
0y
dF ar .

3x%y? + 4xy3 + h'(y) = 3x%y? + 4xy® —y3

- h@)= -y
_y4 1
"hO) = == g

1
—>F=x2y3+xy4—zy4

The solution is : x%y3 + xy* —i yi=¢

Case (2): If the above two integration factors state are not exist.

Ui Lled Jamdia (Sl y I Ao Y x Nl Gad (1) JalSil Jale a3l inay
sl Jale 21 it

Suppose that the integrating factor I(x, y) = x™ y™, and we find the

value of m and that maxes the differential equation exact.
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Jel&all Jale u.‘s: d...a;_'\u_’n.m,n Fu.;ju.ll d}mj." oA Caagll Al
:gj‘m JE ta'l.‘_ﬂ'sﬁ.mi__! Sl T S e
Ex3: solve the diff. eq.

(x% + xyz)j—i -3xy+2y3=0

Sol: (Aabeall a3 Aladl A1)
(2y3 — 3xy)dx + (x* + xy*)dy = 0 v (%)
oM dN . .
Fr = 6y% —3x # S 2x +y?> - Thediff. eq. is not exact.
dal&ill Jale e G oY
oM 0N
9y ox _ 6y*—3x—2x—y° a3
M  —(2y3-3xy) )
And so
oM ON 5 3
dy Ox 6y*—3x—2x—y
N - %%+ xy* =10

Let I(x,y) = x™y™ is integrating factor
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(zxmyn+3 - 3xm+1yn+1)dx e (xm+2 yn S E xm+1 yn+2)dy =0

oM
— =2(n+3)x™y"*? —3(n + Dx™+y"

dy
= xMy"*[(2n + 6)y%? — (3n + 3)x]
dN
2 = (m+ 2yt (41 ) x Py
=xMyt[(m+ 2)x + (m + 1)y?]
, o oM OdN
Since it is exact » — = —
dy 0Ox

- xMy"[(2n+6)y* — Bn+3)x] = x™y"[(m + 2)x + (m + 1)y?]
- 2n+6)y?—Bn+3)x= (m+2)x+ (m+ 1)y?
(S alaall (6 slasiy (V) a 58)
m+2=—-3n—3 -m+1l=-3n—4 (D
m+1=2n+6 ->m+1=2n+6 (2)
rsle daasi (2) 5 (1) ctlabaall 8 gliay

- 2n+6= -3n—4
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- 5n= -10
n= —2
From(l) > m+1= -3(-2)—-4-m=1

w0 y) = xy?
2xy — 3x%2y Ddx + (x3y™ 2 + x¥)dy =0

oM
—_—=2 2,2
3y X+ 3%y

P
ax—x X"y

) o
Z—f = % — The eq. become exact. (Uall &y dalll daladl Ja)

Remark: Some integral factors can be deduced for certain amounts

of differential rule like cases 3-6 in the table.

diala d3iiie Jio dazslaill mlﬁoﬂﬁali.dlua,_d‘ A Jalsil) d.q]i.:.”a.u' Cu.ﬁ.&ll US‘:')
B 6-3 o Y A jelain g Laa pue g i)y e Jaals ddidie y i)y dand
dsaall

For example:
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y xdy-ydx ., . S ;
d (;) == this means (=) is an integral factor of xdy — ydx.

Case 3: When the left side of the equation is in the form xdy — ydx

or ydx — xdy:
Ex 4: Prove that the integral factor of xdy — ydx + f(x)dx = 0 is x>

Proof:

1
Lxdy —ydx+ f(x)dx = O]*F

dy — yd
xdy ;vx+f(x)dx

= {)
x2 x2

1 y i}
;dy— x—zdx+ x—zf(x)dx=0

1 y 1
Ff(x)—x—z)dx+;dy =0

oM | oN Bt
v —= ——=— - Exac
dy X2 0x

Then x ™2 is an integral factor of the equation above

And the general solution is:

ASMAA ABD AND MAY MOHAMMED



Chapter 2:The Ordinary differential equations of the first order and first degree

fd(%)+jxl2f(x) dx =0

L[S rwa
o o — f(x)dx=c
X :
And by the same way one can prove that (J%) is an integral factor of

xdy —ydx + f(y)dy = 0.

In general, we can convert xdy — ydx or ydx — xdy to exact diff. eq.

by dividing on one of the following:

2

x2, y2 , xy , x2+y%, x2-y% ,

And the general solution of this amounts is ax? + bxy + cy?

Ex 5: Prove that

P — is an integral factor of (xdy — ydx), set

a+0,b#0,c # 0 at the same time.

1 _ xdy—ydx
ax? 4+ bxy +cy?  ax? + bxy + cy?

xdy —ydx.
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xdy — vy dx
_ T A
y W y ¥)?
a+bz+c(5) a+bz+c(i)
Letz=z
X

dz o 1 oetoa
atbzicz® d f(z) o gl

Ex 6: Find the general solution of

xdy — ydx = x*y*dx

Sol: (—y — x4y2) dx+xdy =0
S e b

M N
M _ . o4 N _
e 1-—2x%y, = = il
aM __ dN ; ;
Vet ey The Diff. Eq. is not exact.

(=) & ol o pudai alal) Sl sl - JolSill Jole ) o lini LT
X

ae) = (%) ax
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Let z = %—) dz = x*z%dx

- [z"zdz=fx4dx

-1 x5+
5 = —

z 5 ¢

o 5
- —=—+4c (‘abdld;j'l)

y

y? o auis ) "l (Kan 1Al das A8k

xdy — yd
L’ ] Zy Z = xtdx

i

— [ d(_7x) =fx4dx

E 5
_>7"=x?+g (aladl Ja)

Ex 7: Find the general solution of
xdy — ydx = y3(x* + y*)dy

Sol:
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_ydx+ ?_C_yB(XZ _I_y22 dy=0
o N
W 4 W . 93
oM _ 0N , '
T The diff. eq. is not exact.
(xziyz) o sl o i pled) Jadl olagy 1 JalSi Jale (N Ui L3S
xdy —ydx
xZ _|_y2 =y dy
xdy — ydx
2
xyz =y°dy
1=
X
Y
d(%)
X = y3dy
¥
1+(3)
= 2 dz 3
Letz—x - f1+zz—fydy
1

- tan"lz= Zy‘* +c

1
5 IR = 2yt e (WD)
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Case 4: When the equation contains the term( pydx + qxdy)
first we know that
d(xPy?) = qxPy?7 M dy + pyixP~ldx (Gl cyadala)
= xP~1y97 (gxdy + pydx)
= xP~ 1y (pydx + qxdy)
(xP~ 1y 1) 8 (pydx + qxdy) /Sl JalSi ale (5SSl
(z = xPy9) o cwlial iy 5=l
Ex8: Find the general solution of

xdy — 3ydx = x*yldx

Sol:
_ — gl
xdy — 3ydx = x*y dx] o
pydx + qxdy
p=-3, q=1
Integrate factor is x~371yl=l = x~*
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— ~—3 — _ 3
Z=X "y — Z—x—3—> =Z.X

- dz=x"3dy — 3yx"*dx
By multiplying the end of equation by x_l‘*
(SolSil Jaley dbsleal) 6 4o o ucai)

x3dy — 3x"*ydx = y~tdx

dz
dx dx
- dz —_ —_— — dz = 3
y z-x
72 x2
zdz=x7dx - S =—+c
x=3v)2  x~2
( 23’) == +c¢, (The general solution)

Ex9: Find the general solution of
xdy — ydx = x*y3dx
Sol:

xdy — ydx = x?y3dx

a3
pydx + gxdy ] -
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Integrate factor is x 17!

z:x"l_‘y - 7z =

Ll

By multiplying the end of equation by xiz

xdy — ydx

—z = y3dx

d(2)= X dx (3 ke pusit 5 )
x/ x* '

Letz = % - dz=2x3z3dx

- fz_3d2=fx3dx

z2 xt
A
-1 x*
BT e
-1 x* .
- =T +c¢, (The general solution)

2(2y2

ASMAA ABD AND MAY MOHAMMED =



Chapter 2:The Ordinary differential equations of the first order and first degree

Ex 10: Find the general solution of

xdy + 2ydx = e*dx

[=xP-1ya-1 Jssall a4 el e

z=xPyl =x%y s culdl jayeil

Multiplying both sides by I=x ,we get:
x%dy + 2xydx = xe*dx
d(x%y) = xe*dx = dz = xe*dx

Integrating both sides, we get:

2= [xe*dx+¢
=xe*— [e*dx+c
=xe*—e*+c

Replacing z to get the following general solution:

x?y =xe*—e*+c
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Case 5: When the equation contains the term (xdy + ydx)

The integral factor in this case equal 1 this means that we just need some

math operations here.
Ex11: Solve  xdy + ydx = (5x — 2x%*y)dx

Sol: Letz=xy — dz=xdy+ ydx

- y=

substituting in the original equation Aglalall dalaally gy sailly

— dz = (Sx — 2x2 G)) dx

- dz = (5—22)xdx

- e[

1”5 " 1,
_) — — — P —
21] z—zx +cC

— —%ln|5 —2xy| = %xz +c¢ , (The general solution)

Ex12: Solve x? j—i +xy + J1—x2y2=0
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Sol: x2dy + xydx + /1 —x2y2%2dx =0

x(xdy +ydx) + /1 —x2y2dx =0

(xdy+ydx) dx
—-— = + —_—
1-x2y? x

=0

sin"!(xy) +In|x| = ¢,  (The general solution)

Case 6: When the equation contains the term (xdx+ydy)

The integral factor in this case equal 1 this means that we just need some

math operations here.

Ex13: Solve xdx + ydy = 3/x2 + y? y*dy

dx+yd
Sol: x\/;TJ;zy = 3y2dy

2xdx+2ydy

= 2
e

1
2

=[x +y?) 2(2xdx + 2ydy) = [ 3y*dy

Jx2 +y2 =93 + ¢ and this is the general solution

ASMAA ABD AND MAY MOHAMMED



Chapter 2:The Ordinary differential equations of the first order and first degree

Homework: Solve the following diff. equations
14) Solve xdx + ydy = y*(x* + y*)dy

15) xdx + ydy = (x* + y*)3(xdy — ydx)

Case 7: Linear Differential Equation:

We have defined the general form of linear differential equation of order

n to be:

dny dn—ly
a,(x) Fr a,-1(x) -1

d
oo o al(x)é = & ag(x)y = g(x)

We remind you, that linearity means that all coefficients are functions of

x only, and that y and its derivatives are raised to the first power.

Def: (Linear Differential Equation of First Order and First Degree)

A differential eq. of the form

d
GO HGEY =90, w@#0 . ()

is said to be a linear first order differential equation.
____________________________________________________________________________________________|
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Dividing by a4 (x), we get a standard form of a linear first- order

equation.

dy B
= T P(x)y = Q(x), ws (2)

is said to be a linear first-order differential equation of x.
And a differential eq. of the form

d
d—; +a)x = (), - @3

1s said to be a linear first-order differential equation of y.
To find solution of eq. (2), we can write it as:
[P(x)y — Q(x)]dx +dy = 0
We try to make it exact.
M=P(x)y —Q(x) , N=1
M, = P(x) , Ng={
M, —N,=P(x) #0
1.e. the equation is not exact, then
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I=1I(x)= oI ax _ [ P(x)dx
is integral factor.
Multiply the ends of diff. eq. by the integral factor to be exact:
el P@axp(x)ydx + el PMdxgy = ol PXax(x)dx
ie., d[e] P@axy] = o/ PIdx g (x)dx
And by integrating the two ends of the equation, we get:
el POIdx 3, = o P@AX 0(x)dx + ¢

We can simply the form of equation

I(x)y = fl(x)Q(x)dx +c

Similarly, we can conclude the solution of the linear diff. eq.

dx

2 T =)

18
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Mﬁx=j3@m@My+K

where I(y) = el 2V ig the integrate factor.

Ex16: Find the general solution of the following diff. eq.

dy
—= 4 2y =x°
xdx y=Xx

Sol.: We put the equation as z—i + P(x)y = Q(x)

dy . 2 .
g Ty =%
> P =2 , QW) =x

X

1) [P(x)dx = f%dx = Inx?

2 I(x) = ef PAx = pInx* — 42 (Integral Factor)

2) [ 1(x) Q(x)dx = [x*xdx = [xdx= ix“

Then the solution is :

Iy= [I(x) Q(x)dx + ¢

64
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=  ¥iy= %x‘* + ¢, (The general solution)

Ex17: Find the general solution of the following diff. eq.
(y+y¥)dx — (y* +2xy + x)dy =0

Sol.: We put the equation a 3—; +a(y)x=B()

Dividing the diff. eq. by y+y? ., we get:

dx (y*+2xy+x)
dy v+y3)

de 2y+1  y?
dy y+y2 ' y+y?

2y +1 y? y
=, B = > =
y+y y+y y+1

> aB) = -

2y+1 1

1
= (Integrate Factor)
yi+y

_ 1 _ 1 L
- Ix=[I1y)B(y)dy +c=> ey X = fy2+y 51
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Chapter 2:The Ordinary differential equations of the first order and first degree

ey ¥ = G

Then the general solution is :

1 1
— X = ——
ye+y y+1
d 3
Ex18: Solve: 2 Zy—x?
dx X

Sol.: I(X) = ef—%dx — 3_3 Inx _ i

x3
1 L o
- = y = fﬁ x“dx +c
1
- 13 = f— dx + ¢
X X
- Y = In|x| + ¢ (The general solution)
x3 : % '
Ex19: Solve: dx — 2xdy = e*’ dy
Sol.: S Z gy =
dy
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I(y) = el 28 = =%

— e‘zy.x=fe"23’.e43’dy+c
— e‘zy.x=fez~"’dy+c
1
— e . x= = e? +¢ (The gen. sol.).
Ex20: Solve: cosy = y'(cos*y — x)
d
Sol.: - ﬁcosy = cos?y — x
i + . X = cos
- — X =
dy cosy y

a(y) =secy , B(y)=cos(y)

I(y) — e[secydy — elnlsecy+tany| _ secy + tany

— 10y): &= f(secy+tany)cosydy+c

— I(y). x= f(1+siny)dy+c
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Chapter 2:The Ordinary differential equations of the first order and first degree

- I(y). x=y—cosy+c
- (secy+tany) . x = y—cosy+c

y—cosy+C
o
(secy +tany)

(The general sol.).

2.6. A nonlinear equation can be reduced to a linear

Equation of Bernoulli:

The diff. eq.
(A) j—z +Px)y=Qx)y", s.t. n# 0,1

is called Bernoulli’s equation, where n is any real number, Bernoulli’s

equation is nonlinear, and we can change it to linear as following:

1) By dividing on y™, we find that:

a3y i
Yyt Px)y ™ =0Q(x) - (1)

2) Suppose z = y'™™, the derivative parties for x, we get:

dy dz dy 1 dz
1— M= — Ry = 2
( )y dx dx . dx 1—n dx (2)
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(1) @) Wolas (A Y yia 52

1 dz
1-n dx

+P(x)z=0Q(x)

Multiplying by (1 — n), we get:

dz
Fr 1-nPx)z=010-n)0(x) .. (3)
Which is linear eq. in z, solving (3) for z.
Ex1: Find the solution of the equation
dy + 2xydx = xe **y3dx
Sol.:
Z—i’ +2xy = xe ¥’y (Jsix i)
_3 d - _
y 3d—i+2xy 2 = ye** e (%)
. d —3d 1d _3d L
let z=y 2> é:—z 3d—i—>—5£= 3d—i’ (% 2 uasd)
1dz _ —x2
— = +2xz=xe
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dz -
L _axz=—-2xe*?
dx

3

I'= ef_4xdx - | = e—2x2 (Ll.alSﬂ'l d..ql.s:)

z.I=[1.Q(x)dx+c

z.e 2" = 2 fxe“xze“zxzdx+c
=2 fxe“szdx +c

1 2
— _ o3
==-e +€
3

The solution is:

z.e X = L e 3% 4 ¢
3
-2 ,-2x2 1 —3x2
- y “.e ==§'€ +C
e—2x2 2
Y v =F e 3" 4 ¢ ( The general solution)

(B) The second formula of Bernoulli’s eq.
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dx -
Ty +9(y) x = h(y)x

rs) oY Asvall A8l &l ghadll il g

dx
Pl g(¥) x = h(y)x" * (x7")
— . 1-n [ -n dx
Let z=x —>d—(1 n)x —
(b Aalas A Aoladll J5a5 Wy 5)
Ex2: Solve j—; — 2yx = 6y%.e7 " &3
Sol.: Z—; —2yx = 6y2.e " x3 * (x2)
dx
x~3 .@— 2yx~2 = gy2.e 2V e (%)
— -2 _, 92 __ 5 -3dx  1dz  _3dx i i
Let g =% Ty X T Y Ty ( * ot vasn)
ldz
T 6y2.e”?"  x(-2)
e 2 o2  (aghadl
- E+4yz=—12y.e (= alaa)
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[=el/ Wy = 2v* (sl Jdle )

l.z= [Lh(y)dy+C
e2V' z = f e2Y’ —12y% e 2’dy + C

3
> e x~2 = —12 y? + C  (The general solution)

Ex3: Find the general sol. of

dy ( 1
—— 1+—) = —2e*y?
dx x)” ¥
_od '
Sol.: y zay—(l +;)y = —2e* e (%)
—1 _ 92 _ _—2dy | _dz__ 24y § o o
e z=y _)dx_ dx_) dx_y dx (¥t o2m)

dz (1+1) 2¢* 1
dx X z ¢ 1)
dz 1

dz 2\, - 90% (i Al
dx+(1+x)z 2e*  (dha liles)

1
I = ef(“z)dx - [ =e*Inx 51 = xeX (Jasill dale)
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z.l = fZex-Idx
- Fixe® = fZex - xe* dx

- z.xe* = J’ 2xe?* dx
———
a3 5s3 Jass

Letu = 2x —» du = 2dx

1
dv = e *dx - v = Eezx

'.'fudv= u.v

— fvdu —)foezxdx

u.dv
2x 2x 2x 1 2x
=xe“* — | e“*dx = xe“* — Ee

Hence, the general solution is:

X 1
* oX = p2% [ 4
49 e (x 2)+C

Exd4: Solve  ydx — 4xdy = y°dy = ydy
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Chapter 2:The Ordinary differential equations of the first order and first degree

dx 4
Sol.: = —— X =Y
oy y*=Y

4
= j e——;dy — e_4lny — y_'4 (d.alSi“ d..al.t:)
= Xy = fy"“ y°dy + C

- x.y"4=fydy+C

2
- x.y~t= y?+C, (The general sol.)

Ex5: Solve dx +§ xdy = 2x*y* dy

dx , 2 .
—t=x""=2 w (%
dy y ¥ ( )
—_ dz dx dz o dx )
LetZ= 1—)—_— _2—_)__= 2_ * ” .
o dy X dy dy o dy (* &t 02s)

dz 2
——+=z=2y?
iy "y Y
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2 _2 ;=292

5 5 (linear)

2
LetI = ol 77 = 1 (dasdidae)
¥

L o= (=292 L
572 =2y .yzdy+C
}%x*:f—z dy +C

1 -
vx —2y +C, (The general solution)

2.7. Ricatt’s Equation

d
% =P(x)y*>+Q(x)y + R(x) -« (1)

Such that P, Q, R are functions of x, then the Eq. (1) becomes linear
when P(x) = 0. So Eq. (1) becomes Bernolli when R(x) = 0.

SIS Aol Ja alagYs Akall Asbadl s i Aalae (e pe) GAS ) Alolaa ) LA

Y1 =y1(x) O &=y S5 Lala E\Aela-'\gl Cra Y

o sl aladiuly A ) Aslaal aladl Jall 55
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1
}’=}’1+E

dy dy;, 1ldz

dx dx z’dx

Substituting in Eq.(1),we get:

1 1 1
Py} + 2P0y~ + P(x) — + Q(0)y1 + Q(x) =+ R(x)

Remark: y, is a particular solution of the equation, and by multiplying

by z%we get:

1dz_2P 1 i il il
2dx Oy~ + P05+ 00) -

d
S é +(2P()y, + Q())z = —P(x)

(bl 8 LS Jadg 7 A Auha Ailas 8 5)
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Ex1: Find the general sol. of

14y _

2
xdx

(x—1DO?*—x)+2xy .. (»

Where y = x is particular solution.

; e g L&
Sol:Lety =x+- - —==1-——-=

Note: Eq. (*) is Ricatt’s eq. (Prove that (H.-W.))

2%* (1 — g j—i) =(x- 1)[(x + %)2 — x|+ 2x(x + %)

2 dx z
x*dz _2x*  x 2x 1 ,2x |, Z°
[ z2dx  z L3 z2 z z2 T z —2x2
dz 1 £ i
dx 2% ' 2x2
dx 2x%2 2x

Ix) =el®™ 5 (x)=e* (dSill dale)
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X ex
z.e* = —f(—— ?)dx+ C
(£ dx) J s JalSs pasnas

1
Letu = = dv = e*dx

ex
- z.ex=—[f—dx———fx2dx]+(}
1le”
% 7%= —pe—it €
2%
1 1
= e T — —_ — =
y=x+- =YX z T —x

Ex2: Find the general sol. of

p 5F

1
= x%y? — ty=— K da
Ir x‘y“+xy—3 s.t.y p (u= )

X
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Sol.:

dy , 1 3 g
—= — Y —— A0 dolaa
dx y +x X (o)

dx x2 z2dx
2( 1 1d2)_ 2(1_|_1)2+ (1+1) "
o x2 z2dx) X z - z
1 s 1+ + ) +1+ 3] (z%)
-] —-———= —_— 4 — 4 — _— *
z2 dx X X2 % 2 3
Zdz 2 2 2 2
- —X a=z +2xz+x“+z°+xz— 2z
dz 1
- —xza=zz+3xz+x2 *(—32
dz 3 1
— PR SRR S S
dx b4
dz 3 P I
- d—i—]—;z:l (AT'EAA.‘J&A) (L__'jd_,‘\.‘.AS.L‘.'I)
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2. 8: The diff. eq. of the formf’(y) % +Px)f(y) =Q(x)

Let:
FOZ+POF) =@ .. ()
Leiiie UR]

Such that P(x) & Q(x) are function of x.

To solve this equation we use ;s s2ill axiius Lld c¥aledl o g sl 138 Jal

the following substitution:

Letz = f(y) S |

Deriving for x ,we get L e Grant x J Jualatlly
dz _ o, ~dy o
Lo ppL (1) oy

§+ P(x)z = Q(x) (2 PFahadilaaay)

Ex1: Find the general sol. of

d
e2+e’ =x
dx
Sol.: Letz =¢¥ - j—i = eyj—y (‘LLL.aLQ_“ Aalad) uguaju)
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5 Ziz= (ks Ailas)

Ix)=eld S [(x)=e*

— ze* = [x.eXdx+c
- eYe* = xe* —e* 4+ ¢ (cisanarb. cons.)
And this is the general sol.

Ex2: Find the general sol. of
2v2 4Y 2 3 3 ,
3x(1—x%)y dx + (2x*—1)y’ =ax?, aisaconstant

Sol.: When we divide the eq. by x(1 — x2) , we get:

352 dy x 2x2 -1 . a_x2 e
dx  x(1—x?) (1 —x2)
Letz=y3% - z—i= 3y23—i
ole e ¢(*) Aaladl 3 oy sy
dz 2x%-—1 a x?

(Aaba dalay)

dx+x(1—x2)z= (1—x2)
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2_
2x°-1 die iy 1 1

[—/——= =
I(x) = e x(1-x2) " = xV1-x%2 = —0 0 — dalsll Jale
(x) xV1 — x? ( )

Then the general solution is:

Z 1 a x>
—=f . —dx +c
xV1 — x2 vl —x2 (1—x%2)

=q f;gdx+c
(1-x2)2

y? 1
3 —_—— =0 —+¢
xV1 — x2 V1 —x2

2.9) Equation that is solved using a suitable substitution.

oadll ALlG 5y g () Lol o dsialio iy g2ty (S0 dasald i (5 3] ) yuce AlLin
3 ) Ll gy ki L] dloles JG iy saill 038 (Siol dale 52005 s s
cling b Ulwall a (A g232 piar s o] uils iy g2 SS LS 5 aliall iliiay sailly
AGY) ALieY) 8 e WS | cawlid] g seidll N S par sl 4ihad g 5 jlga (A _sa]

Ex(1):Solve y =cos(x+Yy)
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Solution: Ana il 208 o g
letz=x+y—-dz=dx+dy >dy=dz—dx

dy dz — dx
_—— - ——
o cosz P coSz

- dz—dx =coszdx

- dz =coszdx + dx

— [dz = (cosz + 1)dx] - p———

dz

—  =dx
cosz+1

dz  cosz—1 q stcate: il olxaid
- . = dx conjucate: A
cosz+1 cosz—1 (conj e )

cosz—1

o 2—dz=dx
cosz—1
cosz—1

— .—Zdz=dx
— Sin- z

- —sin"?z(cosz—1)dz = dx

— (—sin~2 z) (cos z) dz + fSin_ZZdZ—fdx= J'O

b
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—sin"1z 5
—>—1+ cse*zdz=x= ¢
1
-»——cotz—x=—c
Sin z

Returning z in terms of x & y we get

m —cot(x + y) —x = ¢, (and this is the general solution)

Ex (2): Solve j—i =y*+2y+2

Solution:

y2+d23;+2=dx_) y2+2j};1+1=dx “’(y+g2+1=dx
stan"i(y+1)=x+c, (The general solution)

Ex(3):Solve Z2-3(3x+y)?=0

Sol:Letz=3x+y 2y=2z—3x 5dy=dz—3dx - j—i=%—3

Aainl) Aol (yiay il

dz
- —=3+43z*=0
dx
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— dz —3dx + 3z%dx =0
S dz—3(1—2z%)dx =0

dz

1— 22

—3dx =10

— tan ~z—8%x =0
- tan~'(3x +y)-3x =c¢, (The general solution)
Where c is an arb.cons.

Ex4: Solve tan?(x + y)dx—dy =0

: = = L. dy ay .. %2
Sol:Letz=x+y—> dz=dx+dy - g e b = S e e—(]

Aglialall dalaally oy il

2 _ 4y _
tan“(x +y) dx—O

d
- tanz(z)—d—i+1=0

dz
2 =
- tan“(z) +1 = Tx
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p dz
—_ —
*=1 + tan?(z)

d
— dx = i

sin? z
cos? z

. dx = dz

"~ cos2z +sin2z
cos? z

dz

1
cos?z

— dx =

dx = cos®z dz

1+ cos (22)
- dx = >

— dx = 5 [1+ cos(2z)]dz

1
- fdx = f > [dz + cos(2z)|dz

1 sin(2z)
= x—z Z+ > + €

—s

_1 sin(2(x+y))
x—z[(x+y)+ = ]+c,

(The general solution)
_____________________________________________________________________________________________________________________|
ASMAA ABD AND
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Applications of first order and first degree differential equations

CHAPTER THREE

Applications of first order and first degree differential
equations

The emergence and development of differential equations came from
physical application and most of the laws of nature were derived and proven
using differential equations, so in this chapter we will review some applications
of the equation of first order and first degree in different sciences.

Ol alina o) LS Al il il (o ela L gy ok g Abnlidl) cilalaall sk )
ez Uit Casw Jaadll 128 813 Alalsll cValeall aladiuly cn g i) deplal)
Aalise agle 3 s Aa )y s Al e Alialiil) oY alaall iyl

3.1: Geometrical applications dowaia iyl

Some relationships related to curve such us slope, tangent parts and
perpendicular are expressed using derivative. The relationship based on one of
these quantities forms a differential equation and by solving it we get the
equation of integration curves for that differential equation. In this section we
will deal with such relationships.

We know that the tangent slope (m;) to a given curve in any point (x,y) on a
function, let it be f(x,y) then

dy
= =f@y)
By solving this differential equation, we get the required equation.

Al dgaally laall ol ol daadl Jie Lo ister la® Al QBN (any e jun
Ailea Ao Jean Lelay g Zobialds Aalae alsi Gl oda (gaa) o a6 ) 28Dkl Culiiial)
MRl 238 Jia ma Jalati 8 g 3 j3dl) o288 Aolialdl) Alalaal) el JalSal) cilyiaia

flx,y) oSils Al g adle Axdly (x, y)Adaii ¥ Lo cpaial mposlaall i ¢ Ll o slaall (50
cade

ay
= =)

& glhaall Aaladd)l Je Jiass dlaleall sda Jaa g
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Applications of first order and first degree differential equations

Example 1:

Find the equation of the curve that passes through the point (3,4) and
its slope at any point (x,y) on itis equal to (— E)

dy

Where m, =
t dx

= -DE-D=c
Sub. (3,4) ineq. (4), we get
4-1)B-1)=c — Sub. In (4)

Eq. (5) is the required equation.

Example 2:
Find the function that equal to its derivative and satisfied with the point (1,3)
Solution:

Let the function equal y, then

Where k =e€
Sub. The point (1,3) in eqg. (3), we get
3=kel o> k=2 Sub. In eq. (3)

e
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Applications of first order and first degree differential equations

X -

y_e

Eq. (4) is the required eq.

3.1.1: Orthogonal Trajectories dalaial) &) jlesal)

When all the curves of one family of curves F(x,y,c;) = 0 intersect

orthogonally all the curves another family (x,y,c,) = 0, then the families are

said to be orthogonal trajectories i.e. m; = 7;—1
1

EX.: (@) - The family y = — %x + ¢, and y = 2x + ¢, are orthogonal
trajectories.

(b) - The families y = ¢;x3 and x? + 3y? = c, are orthogonal trajectories.

(c) - The families y = ¢, x through the origin of the family x? + y? = ¢,
of concentric circles are orthogonal trajectories.

( Prove the above cases)

Remark: eThere is a solution depended on the slopes on two orthogonal
trajectories at the point of intersection.

o If my = f(x,y) is the slope of F(x,y,c) =0 at (x,y) , then the

slope of orthogonal trajectories is m, = — ﬁ at the same point.
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Applications of first order and first degree differential equations

Example 3:

Find the orthogonal trajectories of concentric circles(JS) <l 3asia il 40) at the
origin x2 + y? = ¢?

Solution:

Baalaiall <l jlusal) Alan

dy_z _
== = Iny =Inx + Inc

3aaleiall il el Jias
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Applications of first order and first degree differential equations

Example 4:
Find the orthogonal trajectories of y2 = 4ax .

Solution:

2yy'x —y* _ o

1
—syi=—x+q

Where ¢, = —2¢;
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Applications of first order and first degree differential equations

3.1.2: The polar coordinate  Asuadl) cildlaay)

To find the orthogonal trajectories to the curves F(r,0,c) = 0

1) Form its diff. eq. in the form f (r, 9,2—;) =0 by eliminating c

I1)  Replacing in this diff. eq.z—; by

Remark: tanp =~ &

r

Example 5:
Find the orthogonal trajectory of r = a cos @ , where a is a constant
Solution:
r =acosb

Derive both sides of eq. (1) w.r.t. 6

dr .
— = —qasinf
ao

_r23y ar
Put (—r dr) instead of (de)

deo
= —rza=—asin6 =7

ao a sin@

— = “r=acosf
dr T

ae

= r— = tan6
dar

dr dae
el —_ =
r tan @

Integrating both sides , we get:

cos @

= In|r|={ df + In|c|

sin 6
In|r| = In|sin 8] + In|c]|
= r=csinf

Eq.(4) is the orthogonal trajectory of r = acos®
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Applications of first order and first degree differential equations

Example 6:

Find the orthogonal trajectory of 72 = a? cos @
Solution: 72 = a?cos6
Derive eq. (1) w.r.t. 6
Zr;i—; = —a?sin6

(= 2r)

dr 1 a?sin® dr
= = N

e  2° r a6

dr 1 .
— = —,r.tan® , since 1% =a?cos6

d
22 —rtanéd
de

- eyl . dr dr
1 oS0 Baalaiall Gl jloeall alalatl) Aaledd) B 2= e o —12 22 2
Os5S53 <l s ol — e dy —r — L=

do
—2r? — =rtan 6

r = c¢sin?(0)

Exercises:
Find the orthogonal trajectory of

y=x+e*+c

Xy =a

r=a(l—cosB)

r =a(2+ sin0)
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Applications of first order and first degree differential equations

3.2: Growth and Decay of population Ol JSlaaiaal g gal

The initial-value problem: % =kx , x(ty) = xo

Where k is constant of proportionality occurs in many physical theories
involving either growth or decay:

For example: in biology it is often observed that the rate at which certain
bacteria grow is proportional to the number of bacteria present at any time t:

Then if p(t) is the size of bacteria at t , then we can write:

PO = kp(t) and p(0) = po

Where k a positive constant and the sol. , then

dp(t)
p(t)

p(t) = poe™
Where p, = e€

= kdt - Inp(t) = kt + ¢ > p(t) = e*tt¢

Example (1):
If the rate of growth is proportional to the number of bacteria present if

this number at some times is (10)° bacteria and after one hour be %(10)6
bacteria. Find the number of bacteria after four hours.

Solution: Let p(t) is the number of bacteria, then :

PO = kp(t) - "”(” = kdt > Inp(t) = kt + ¢
> p(t) = poe* po=(10)° , p(1)=32(10)°
3 3
5(10)6 = (10)661'k = == k =1In (E)

p() = (10)%™2 = p(e) = (10)°(3/y)"

4
p(4) = (10)°. <3/2> = 5.0625 x 10° Bacteria
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Applications of first order and first degree differential equations

Example (2): Cane sugar dissolved in water, under certain conditions, turns
into dextrose at a rate proportional to the unconverted quantity at each moment.
If the amount of cane sugar dissolved at the beginning (t=0) was 75 grams, and
8 grams were transformed after 30 minutes. How much cane sugar turn into
after 90 minutes?

Lo\_)i:75‘$§(t=0 )\Amz\_ghﬁ\g:\g\ﬂ\)&J\@MM\SB&_M&&MM\
2381 90 L e 2y ualll S e Jgah oS | 4881 30 2y Sl & 8 lgia Iy
Solution:

Let the amount of cane sugar equal p, and the dextrose equal D,

When p, =75 ,p(30) =75—-8 =67, we get:

an(®) _ _ an(®) _ _
kp(t) - s kdt

- Inp(t) = —-kt+c

> p(t) = pee™™

- p(30) = poe”
— 67 = 7530k

30k

67
_ ln(7—5)

-30

-k

67
tln%/
30

p(t) = 75e

When t=90 - p(90) = 75e
p(90) = 75(22)°=53.468= 53.5 gr
DP=75- p (90)=75-53.5= 21.5 gr Jsiall Sl
Exercises:

1- If the population of a city doubles in 50 years, in how many years will the
population become three times the original number, if you know that the
rate of population increase is proportional to the number of population.
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Applications of first order and first degree differential equations

2- A herd of buffaloes has 1000 buffaloes in it, and the population is
growing exponentially. At time t=4 it has 2000 buffaloes. Write a formula
for the number of buffaloes at arbitrary time t.

3- A herd of elephants is growing exponentially. At time t=2 it has 1000
elephants in it, and at time t=4 it has 2000 elephants. Write a formula for
the number of elephants at arbitrary time t.

4- A colony of bacteria is growing exponentially. At time t=0 it has 10
bacteria in it, and at time t=4 it has 2000. At what time will it
havel00,000 bacteria?

5- A colony of ants is growing exponentially. At time t=0 it has 1000 ants in
it, and at time t=3 it has 3000. At what time will it have10,000 ants?

3.2: Cooling problem sl Jilewe

Physical information: Experiment show that the time rate of charge
dT /dt of the temperature T of a body is proportional to the difference between
T and T,,, (the temperature of the surrounding medium). This is called Newton's
low of cooling.

@ ol O A€ i asall 3l s da ) (Oded/ay 58) Bl pall (s o pilal e
_(M\SJ\J&J\:\.;JA)'&M\ ?m;ﬂ_jjnga.d\.laujl\B)\PX;JJJMW\BJ\)AZ\..AJJ

- . .o dT - - - . . - ” - -
@JJEM‘E’@M}\OJ‘F‘@JJTWL,t[JAJJ.\.Cem.AMbJ‘JA‘\éJJdMJ T(t) oS
1O sSs Ol 5yl (55 5 O 3l Apualy Sl daa il Al 5t (e 3 Apilly ansall B ) e

T = k(T = Tpy) ol alf Bl K
= k(T — Tp)
e Jians VA0 e dolialail) Aolaall o328 Jal
= kdt = In|T —T,,| =kt + ¢,

= T =T,+ce*
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Applications of first order and first degree differential equations

Example (1):

Suppose that you turn off the heat in your home at night 2 hours before
you go to bed, call this time ¢ = 0, if the temp. Tatt = 0 is 66 F and at time
you go to bed (t = 2) has dropped to 63°F , what temp. can you expect in the
morning, say 8 hours later (t = 10)? (of course, this process of cooling off will
depend on the outside temp. T,,, which we assume to be constant at 32°F ).

QiS¢ =0 ) de ) Odicbay a6l 2180 18 ol e 8 Al Glaha) @bl i yi

Gl (= 2) Ofiels oy o5 (Gdiebs a5l J8 gl) A =0 266 F 3, 5al 4a )0

e}\&\w&"_\\.c\.uSJug\cw\mwﬂd\o‘)“)ﬂ\%‘).l@u6gof: %ﬂﬁ)‘ﬂ\&;)d
(T = 32) 32°F (Ml g Ja) g lall sl sallda o of Wle (8 = 10)

Solution:
T(0) = 66 , T(2)=63 , T, =32
T =T, + ce® = T =32+cek
66 = 32 + cekt wt=0 = 66=32+c
= c¢=34
63 = 32 + 342k (whent = 2)
. 63—32
34
2k =1n(0.9118) = 2k =-0.0923 k = —0.04615

T(lO) =32+ 346—0.04—615><10 =32+ 346_0'4615
= 32+ 34(0.630) = 32+ 21.42 = 53 °F

e = e?k =0.9118

Example (2):

Suppose we know that the temperature of an object is 95°C, that the ambient
temperature is 20°C, and that exactly 20 minutes after the object began to cool
its temperature was 70°C. Write a formula for the temperature at arbitrary time t.

20 2. 20°C 2 Bndl 35 2 A2 00y, 95°C (s Lo pun Byl oa dn 2 plad Ll (a4 e
5l s a3 Jidd A (€1 709C 43 ) s A3 Cimseal 53 5 5ll el ¢ty (e Japally 23

i ) Lﬁij PIEN|
Solution:

T(0) = 95°C, T(20) = 70°C, T, = 20
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Applications of first order and first degree differential equations

T(t) =T, + ce*t
- T(t) =20 + ce®t
When t=0 , we get:
T(0)=20+¢c—>95-20=c—->c=175
Sub. ineg. (1)
T(t) = 20 + 75e*t
When t=20 , we get:
T(20) = 20 + 75e20k

70 = 20 + 75e2% — 50 = 75020k _, g — @20k

> k = =In(®)= -0.02027
20 3

T(t) =20+ 75e20""s

Eq.(3) is the required equation
Exercises:

1. Suppose we know that the temperature of an object is 95°C, that the
ambient temperature is 20°C, and that exactly 20 minutes after the object
began to cool its temperature was 70°C.

a) Determine the object’s temperature 45 minutes after cooling began.
b) Determine the number of minutes, after cooling began, until the object
reaches a temperature of 35°C.

. If the rate of decrease in the temperature of a hot object is proportional to
the increase in the temperature of the object over the ambient

temperature. (i.e.)

dT— AT —T,

Where T is the object temperature , T, is the ambient temperature and A is
the constant of proportionality. Prove that the temperature of the object
after ttime is :

T—Ty=(T,— m)e_At

Where T; is the initial temperature of the object.
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| Chapter 4: Solution of The Differential Equations of The First Order and Higher Degree

Solution of The Differential Equations of The First Order
and Higher Degree

The general form of the differential equation of the first order and
the degree n is:

pt+a,(x,Y)p" 1+ +a, ,(x,y)p+a,(x,y) =0 ...... )
Where n=2,3,4,... andp = 4y
dx

The differential equations of this type are divided into three cases:
4.1: Equation solvable for p
4.2: Equation solvable for y
4.3: Equation solvable for x

Here we will discuss each of these three types with examples:

4.1: Equation solvable for p:

In this type we can analyze the left side of equation (I), which is
considered to be polynomial for p in the form of n linear factors, so
we can write equation (I) as the form:

p—F)(p—-Fy)...(p—F,)=0 .ccco. e v e eeeeeeee. (1D
Where Fi, F,, ..., F, are functions of x and y,

Then equivalent each factor of equation (1) by zero to obtain n of
differential equations of order 1 and degreel

A8 e graaa Jal ol (e 230 @ pia Jeals ) ddaleal) Jadasy o 583 Allad) 020 8
saa o Jale JS 22U 548 5 peal) alaill (3 ko alasidy (I 5V da ol A5V
@QJ%M\ S pas s
pladl dall e Jiasid Aailill o gaall (o juad o 3 sl 480 Lo dleall ) S
Ex1: Solve x*p% + xyp — 6y* =0
Sol: (xp +3y)(xp—2y) =0 .l (1)
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| Chapter 4: Solution of The Differential Equations of The First Order and Higher Degree

xp+3y=O:)xp=—3y=>p=__3'3’:>d_y=—_3’3/=>dy_—3dx

x dx ~ x y x
Integrating both sides, we get:

In|ly| = =3In|x| + Inc=>

Inlyl=mnlx|3+mc=2>y=cx3 2 y—cx3=0 ..cce.... (2)

Now take (xp — 2y) = 0 then

dy _ 2dx

d
xp=2y=>xd—z=2y=>y "

Integrating both sides, we get:

y=cx? 2y—cx*=0 (3)
From (2) and (3), we get:
(y—cx)(y—cx?)=0 (4)

And this is the general solution.
Ex2: Solve the following equation  p? + py = x* + xy
Sol: rearrange the equation
pl+py—x2—xy=0 (1)
> pl—x+py—xy=0
>@-0)pP+x)+ypP-x)=0
>(p—-x)p+x+y)=0 (2)

Take the first factor,

(p_x)=0=>p=xz,~%=x:>dy=xdx

Integrating both sides to get:
x? x?

Take the second factor, dv = e*dx => v = e*

1
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| Chapter 4: Solution of The Differential Equations of The First Order and Higher Degree

p+x+y= 0=>Z—z+y= —x and this is a linear eq.

[ =eldx = ¢

Substitute in :

eXy = [ —xe*dx +c u=x=du=dx

dv = e*dx > v = e*

ey =—xe*+e*+c
e*y+xe*—e*—c=0 R €
From (3)&(4), we get:
X2
(y -5~ c) (e*y+xe*—e*—c)=0 TR €)

So eq. (5) is the general sol.

4.2: Equation solvable for y

This type of equations can be written as:

y = F(x,p) (10

Differentiating for x we get :

dy dF dF dp dp
—_— T — —_— e F (x’ p’ —_—
dx dx dp dx dx

=>p=F (x, p,Z—Z) cer e e e e e e (1V)

And this equation is of the first order and the first degree to solve
it, we analyze the equation into a several factors, one of which

d
contains ﬁ and we get from it the general solution @(x,p,c) = 0

the rest contains p and we get from it the singular solution.
Ex3:Solve 2yp — 3x = xp?

Sol: rearrange the equation

1
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| Chapter 4: Solution of The Differential Equations of The First Order and Higher Degree

Zy:3§+xp ......................... (D)
Differentiating both sides:

dy p-xL  ap

Za=37+xa+p ......................... (2)
2p=§—3—§-% %+p=>

p3 —3p xp2%+3x%=0

p(p? —3) —xL P> —3) =0

P =-DE-xD=0 3)

Either (p —x%) = 0 =>pdx = xdp = % = %p = Inp = Inx + Inc

Substituting (4)in the original equation, we get:
2cxy —3x = c%x3 =

cx? 3

y=—+5 N )|
Equation (5) is the general solution

Or p2=3=0=> p?=3=p=+Jy3 .. (6)
Sub. In the original equation, we get:

+2v3y —3x =3x =

y = +V3x N )

We note that equation (7) does not contain arbitrary constants, so it
does not represent a general solution , but rather a singular solution.

13yt Ma Jiad Lail s Lale Dla Jiai Y & 4l 5 4y jlia) Cul i g a3 Y (7) Aalaall ) Jaa s
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| Chapter 4: Solution of The Differential Equations of The First Order and Higher Degree

Ex4: Solve 16x2 + 2p%y —p3x=0 .. D
Sol: Dividing on p?we get:
2
2y = px — 16%

Deriving for x we get:

X x? dp

ay _ AP _ 99 X X~ dp
ZE—p%—xdx 32p2+32p3dx

dp x x? dp
[2p=p+xa—32ﬁ+32p—35 ]xp3
4 _ »n38P 24P _
p* + 32xp — xp o 32x dx—O
p(p3 + 32x) — x(p® + 32x)2—§ =0

(p? + 32x) (p —x%) =0

Either(p—x%) =0=>p =xZ—Z=>%p=‘i_x=>

p=cx e (2)
Substituting eq. (2) in (1) we get:
16x% + 2c?x?y—c3x*=0 (3)

Equation (3) is the general solution,

orp3 +32x=0=2p3=-32x=2p=Y-32x s (4)
Substituting eq. (4) in (1) we get:

16x2 + 2(32x)5y + 32x% = 0

—48x2

- 2
2(32x)3

4
-3 x3

y::){/E

And this is the singular solution.
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| Chapter 4: Solution of The Differential Equations of The First Order and Higher Degree

In this type (equation solvable for y) we have two special cases,
4.2.1. Clairaut's equation
4.2.2. Lagrange’s equation

And we will discuss them in the following:

4.2.1. Clairaut's equation: i g_alS Alalaa

It is a differential equation of the form:

y=px+fp) TR (

we can solve it by differentiating it for x.
dy _ ap | g1, \dp
. =ptx—+f(p)—=

d yroN d
p=p+x_+f ()=

dp I} d_p _
x—+f'(p)—~=0=
) d

(x+f @) =0
Either;ll—;9 = 0 = p = ¢ substituting in (V),we get:
y=cx+ f(c) e veevee e (V)

And this is the general solution.

Or(x+f'(0)=0=f'(p) = —x
Taking (f")~for both sides to get:

p=()"(=x)
Sub. In (V), we get:
y=x(fN)71=x) +FF)U(=X) e, V1)

And this is the singular solution.
Ex1l: Solve y =px+ cosp

Sol:y=px4+cosp (D

ASMAA ABD AND MAY MOHAMMED 7



| Chapter 4: Solution of The Differential Equations of The First Order and Higher Degree

Deriving eq. (1):

ay _ a o 4P
dx—p+xdx sinp-— e, (2)

_ b _ cing P
p—p+xdx sinp - =

dp . dp s _d_p_
x———sinp dx—0=>(x sinp) dx—O
Either (x — sinp) = 0= sinp = x = p = sin"'x

Sub. in (1), we get:

y = xsin"1x + cos(sin"1x) RPN ¢2))

And this is the singular sol.
dp .

Or a =0= p=c

Sub. in (1), we get:

y=cx+cosc e 3)

And this is the general sol.

Ex 2: Find the general solution of y = px + /4 + p?

Sol: y = px + /4 + p? T ¢ )

Deriving for x, we get:

o =PIt =)=
p=ptx dx+J%pz(pZ—Z

X or + s (=0
(x+\/%pzp)%=0

To get the general sol., we takeZ—ZzO:p =cC

ASMAA ABD AND MAY MOHAMMED 8



| Chapter 4: Solution of The Differential Equations of The First Order and Higher Degree

Sub. in (1), we get:

y=cx+ A4+ c? (2)

Eg. (2) represent the general sol.

4.2.2. Lagrange’s equation S Alaa
It is a differential equation of the form:

dy
y=xfp)+9) f@)#p&p=7" wonn (VI)

To find the general solution , we differentiate equation (VI111):

2= ) +xf () L+ g )=
p=fp)+xf (p) +g(p);=>
p=f)+&xf'(p)+ g’(p))a=>
(xf' @) +9' @)L =p - f()=

a _ ff® . _ 9 ®
dp p—-f(p) p—f(p)

a(f(p) / d(g(p)
Wheref( )_ (dpp) ( )_ (pr)’

This equation is a linear differential equation of order 1 with two

S
| 7@y Q=4 ® '@
p-f(p)

Ex1: find the general solution of the differential equation

variables x , p. and I=e

y=2px+p>* . 1)
Sol: Equation (1) in Lagrange form where f(p) = 2p & g(p) = p3,
deriving both sides:

2 = 2p +2x L+ 3p? L

1
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p=2p+ (2x+3p2)%=>
= 2y 4P
p=2x+3p )dx=>

dx _ (2x+3p?)
dp -p

2

Zd
B =p?, (p)=-3p
Hence, we get:

p*x = [(=3p) p?dp + ¢

= Z_’; n Z?x = —3p (and this is a linear eq.)

[=e

pix = Tp‘* +c (2)

P et AarY aopall JaS] p3siiui a3 (2) Lolaal) i i

4 4 2 _ 4
p +3px 3c
4 4 4 4
p4+§p2x+§x2—§c+—x2
2 4 4 i
(p? +§x)2 =§c+ §x2 RERPARE

4 4 2 1
p=i(i\/gc+ gxz -3 (3)

Sub. (3) in (1), we get:

_ torter 20y tor tez _2,;
y = i2x(i\/3c+ 5 X 3x)Zi(i\/36+ 5% 3x)2 ........ (4)

And this is the general solution.

4.3: Equation solvable for x

This equation can be written as

1
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x=f(y,p) N ¢ 0.9
Deriving for y, we get:

b4 > (@)

dy o dy dp dy dy

1 _ dp

5= F (y, D, dy) ................. (X)
Eqg. (X) is a diff. eq. of order 1 and degree 1 whose solution is :
d(y,p,c) =0 S 0. ¢))

From egs. (IX) &(XI) we get the general solution.

Laalaal (g 525 Ba sk (e aladl dall e Juass (IX) &(XI) - olabeall (0
P sxiall Cada 5 5 AV

Exl:Solve p3—-2xyp+4y*=0 RN ¢ )
Sol: Rearrange equation(1) as:

_PE .Y
2x = " + 4p ............. (2)

Deriving for y, we get:

dx ZyPZ—f,—pz p—yg—f,
g =
dy y? p?
2 2p d 2 4 4y d
[___p__p_p_z ___32’._p] X p2y? =
p vy dy y?> p p? dy
2 __o.3.9p 4 2 3dp
2py” =2py - P taApyt -4y

d
(p - 2yﬁ)(2y2 —p®) =0

Taking the first term (p — 2y z—z) =022 =22
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Integrating both sides, we get:

in|y| +inc =2in|p| = np? = inlcy|>

pP=cy =p==+/cy e ereveevee e e e (3)
Sub (3) in (2):

2x=244-2 >

y Vey
=42 _ 2 = 16y
2x c-4@=>(2x c) = i
(2x—c)?
o 4)

Eq. (4)is the general sol.

Now taking the second term (2y? — p3) = 0, we get:

p® =2y’= p=/2y?
Sub in eq. (2)

_ (2y?)?/3 y
2x = " + 4 T e (5)

And this is the singular solution.
Ex 2: Solve the following diff. eq.

p’x=2yp-3 (1)
Sol: Dividing on p?

2 3
e =T —— 2)

Deriving fory

dx 2 _odp _2dp

T _yp 2P yep3P o

oy p VP T TP Ty

1_2, (_9uyn-2 -3y 4P 3
[p—p+( 2yp™"+6p~°) ] Xp

dp
2 2 _
p°—2p°=(6-2yp)_~ =

y
____________________________________________________________________________________________________________|
ASMAA ABD AND MAY MOHAMMED 12
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2 = (6 — ap
p°=(6-2yp) =

—p?dy = 6dp — 2ypdp =

[ 2ypdp —p?dy=6dp ]  +—p*

p*dy—2ypdp _ =64
p* - pt

p =

Integrating both sides:

X =2p3+¢

=

y=2p"14cp? (3)

Sub. In eq. (1)

p?x =2Qp 1+ cpP)p-3=

px = 2cp3 + 1 ceeerrrneenererennenn(4)
(3) Halaa (3o Bt 1A S 13 las iraa palagl Lia

From eq. (3):

cp® =py — 2

Sub. In (4):

pix =2py—3 = p?x—2py+3=0 sl

T

X

p =
Sub. In (3), we get:

2 v y?-3x
y=—F—+c(——)°
y+yJy2-3x X

Eqg. (5) represent the general sol.
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mQuestion: Can you solve example (2) using the second case? Is
the result you will get equal to the output you have?

Exercises:

Solve the following equations:
1.y = 3px + 6y*p?
2.xp2+(y—1-xDp—x(y—1)=0
3.y*(1+p?) =1

4.y =px +./4+p?

5.v%2p% —3xyp + 2x2 =0
6.p2—p—6=0

7.p% —4xp —12x2 =0
8.p°+xp+yp+xy=0

9.py —2p*+2=0

10.y = psinp + cosp
11.x—2p—Inp=0

12. Find the general solution of:
a. (y — px)® = sin(y — px) + p?
b.e?™P* = (y — px)* — p°

Hint: derive for x

13.y = px + p*

14.px =y + p3

15.4y — 4px In|x| = p?x*?
16.yp? —2xp+y =0

17.y = 2xp + p In|p|

1
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Chapter 5

Section 5.1: Linear Differential equations of order n

Definition (5.1.1): The general form of linear differential equation (LDE)
of order n is:

n n—1

d"y y
ao(x) Tt + a;(x)

d
- an—1<x>d—§ +a,(X)y = fX) o (1)

Where ay(x) = 0

mIf all the coefficients ay, a4, ..., a,, are constants then eq.(1) is called linear equation
with constant coefficients.

mbut if at least one of the coefficients is a function of x then eq.(1) is called linear
equation with variable coefficients.

mineq.(1); If f(x)=0 then eq.(1) becomes homogeneous equation and has the form

n n—-1

y
dxn + a,(x)

dy
ay(x) + -+ an_l(x)a +a,x)y=0 .. ... (2)
f(X)=0 oY duilaie ipdad Alialds dlalas (2) Usladll
f(X)#0 Loie duilate ye Alialis Alales and (1) Aaleall 4dde
Example: The following equations are LDE with constant coefficients
A Clalas 3 Apdad Alalss Y Alea o4 A8V GY el
Dy +y' +y=x°
2) y''"+y =cosx
3)y' =3y +y=4x3+4
g Ly By b fulaie 4 Aslaall o) s

Theorem5.1.1); If the functions y;, y,, ..., ¥, are solutions of the homo. eq. (2) and
1, Cy, ..., Cn @re constants, then

Y =C1y1 + Cyy + o+ CuVn e (3)
Is a solution of eq. (2) also.

Definition (5.1.2)] The functions y;,v,,...,y, are called (linear dependent) on the
set | if we found numbers (c4, ¢, ... ¢, ) are not all equal to zero where

ciyr t 6y, ++ ¢y, =0 e s (4)
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And they are called (linear independent) on the set I if we found numbers (c4, c5, ... ¢,
) that all equal to zero (i.e.)

¢, =¢, =+ =c, = 0where:
c1yr + Y2+t ¢y, =0
linear dependent L sadias
linear independent Llaa Aléi

Section 5.2: The Wronskian Determinant (S 9 Maa

The Wronskian determinant of differentiable functions y,,y,, ..., ¥, on the interval |
IS:

Yi o Y2 e Yn
AP AP v,
ylll , :)}II2 A ylln
W =W,V V) = e (5)
yl(n—l),yz(n—l)’ ~ yr(ln—l)

Theorem 5.2.1): If the functions y,,v,,...,y, are solutions of the homogeneous
equation (2) then if:

mW=W(,,y,..7m) =0theny,,y,, .., vy, arelinearly dependent solutions
And if
mW=W(»U,,ys...7) #0theny,,y,, ..., y, are linearly independent solutions

Ex1: Prove that the functions e*,2e*,e™™ are linearly dependent on the interval (-
00, ),

e* 2e”* e X
Sol: W(e*, 2e*,e™*) =[e* 2e* —e7*
eX 2e* e X
2e* —e™* eX —e™* _x |le* 2e*
=e 2e* 7% —2e7 eX e™* te e* 2e”*
=e*2+2)—2e*(1+1)+e7%(0)
=4e¥ —4e* =0
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Then e*,2e*,e™ are linearly dependent.

Ex2: Prove that sin x , cos x are two linearly independent solutions of the diff. eq.
y'+y=0in —oo<x < oo

Sol:
Let y, =sinx,y, = cosx then
y'y =cosx ,y’, = —sinx and
y''y = —sinx ,y", = —cosx
So
y'+y=0

1- y'"i +y, = —cosx + cosx =0
2- y's +y, = —sinx + sinx =0

fllad Aliiuee ol Aadi ye Jslall o) Ja 2S5 (W) Flealisl Asaall Ja LM

cosx  sinx

) = cos?x + sin’x =1
—sinx cosx

w(cosx,sinx) =

So the two solutions are linearly independent.

Ex3: Show whether the functions xe*,x%e* are linearly dependent or linearly
independent.

Sol:
xe* x%e*
xe* +e* x%e* + 2xe*

— xBer + 2x262x _ x362x _ xzer

= xe*(x?%e* + 2xe*) — x%?e*(xe* + e%)

=x%e?* # 0
the functions xe*,x%e* are linearly independent

H.WZ1: Show whether the functions e*cosx, e*sinx are linearly dependent or
linearly independent.

H.W2: prove that y; = e**cosbx,y, = e**sinbx are sol. of diff. eq.

d*y dy
__2 P, 2 2 =
722 adx+(a + b))y =0

Then show that the solutions are linearly independent
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H.W3: Show whether the functions secx, tanx are linearly dependent or linearly
independent.

Section 5.3: The Differential Operator (D) D A&sddl) figall

Let D denote differentiation with respect to x that is

dy A2 d?y . e
Dy =—=,D%y = —= and so on , that is, for positive integer k
kyy — 4
b%y = dxk

Jinedl) uaiall Le il e it 13191 Lnd 5a3Y abialidl J1sall o3 o JanY
For example, D(cos4x) = —4sindx

D(5x3 — 6x2) = 15x2% — 12x

The expression: F(D) = a,D™ + a; D" * + -+ a,_41D + a,
Is called a differential operator of order n.

It may be defined as that operator which, when applied to any function y, yields the
result:

F(D)y = (apD™*+ a;D"* * + -+ a, 1D + a,)y

dTLy dn—ly
=ady—— a
0 gxn T dxn—1

dy
tortap St ay (7)

Where a,, a4, ..., a,_q1,a, are (constant or variable) coefficients

Properties of the operator D: D Jisall yal g
1. Commutative Property A dualll)

If the operators of the linear differential equation have constant coefficients,

then the operators are commutative. But if some of them are variables then the
operators are not commutative.

Ll elgale addla) (&8 o peall Adle b A4E Ml 0l Adadl) Aalialal) Y alaall @ figall il 1)
Al e oS8l gl Jo ) oY) 52 O llaall any il 1)
Ex1: Lety be any function,A =D + 2 and B = 3D — 1,prove that
ABy = BAy
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Sol: By =(3D -1y =32 -y

Then A(By) = (D + 2) (3 2 y)

X

@+2)(3-v)

_ @y cdy
—3dx2+5dx 2y

= (3D2 4+ 5D — 2)y

Now to find BAy
d
Ay=(D+2)y=£+2y
d
~ B(4y) = (3D — 1) (ﬁ + Zy)
_ d dy
=351 (G+)

_3d%y dy dy 2
T dx? dx dx

_ 3%y ey _
=3 i 5 - 2y
= (3D?*+5D —2)y
Hence BAy = ABy  (the operators are commutative).

Ex.2:LetG=xD+2and H=D — 1, Is G-Hy=H-Gy , show this.

Sol.: G(Hy) = (xD + 2)(D — D)y = (xD +2) (= — )

_ Ly N

=X +( x)dx 2y
So GHy = [xD?* + (2 —x)D — 2]y
On other hand

H(Gy) = (D = 1)(xD +2)y = (D — D) (x 2= + 2)
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d?y

— &Y Y
=x—+ (3 x)dx 2y
Then HGy = [xD? + (3 —x)D — 2]y
~ HGy # GHy ( the operators are not commutative).

2) D™f(x)-D"g(x) = D"g(x) - D™ f (x)
3) D™. D™ = D" D™ = p™+n

(i.e) D™[D™f(x)] = D"[D™f(x)] = D™ f(x)
4) Dlcif(x) + Cog(x)] = C;Df (x) + C;Dg(x)
Where f(x), g(x)differential function and C,, C, are constant.

Theorems about the operator D:

Theorem 5.3.1} if b is a number then F(D)e®* = F(b)e?* ...... 8)

Proof:
Deb* = pebXx D2gb* = p2Zebx = pDnebx — pnobx
~ F(D)e®* = (D" + a, D" ' + -+ a,,_,D + a,)e?*
=bB"+a,b™ ! +--+a, b+ a,)e?*
= F(b)eb*
Examplel: find (D% + 3D + 2)e3*
Sol.: b=3,
F(D)= D?>+3D +2
F(3)=32+33+2=20
(D? + 3D + 2)e3* = F(3)e3* = 20e3*
Theorem 5.3.2: If y is a differentiable function and b is a number then

F(D).{eP*y} = e?*F(D+b)y = ......... (9)

Proof:
D{eP*y} = eP*Dy + beP*y = eP*(D + b)y
Also D%{e?*y} = D{e? (D + b)y} = e?*{(D + b)(D + b)y}
= ebP*(D + b)?y
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Continuing in the same way, we get:
D™ {eb*y} = eP*(D + b)"y
« F(D){e"y} = e"*F(D + b)y

Example2: Find (D% — 4D + 1){e**y}
Sol..+vb=2,
F(D)=D?*—-4D +1
= F(D+b)=F(D+2)
=MD+2)Z—-4D+2)+1
=D*+4D+4—-4D—-8+1=D?-3
~ (D% — 4D + 1){e**y} = e**(D? - 3)y

Theorem 5.3.3: if it is b number then

a- F(D?*)sinbx = F(-b*)sinbx ... (10)
b- F(D?*)cos bx = F(—b*)cosbx ... (11)
Proof:
+ F(D?)sinbx = (D?" + a;D?@ Y + ...+ q,_,D? +a,)sinbx .....(12)

We will start with derivatives sequentially:

D(sin bx) = b cos bx

D?(sinbx) = —b?sinbx .. (13)
D*(sinbx) = (D?)?sinbx = (—=b?)?sinbx ... (14)
Dé(sinbx) = (D?)3sinbx = (—=b?)3sinbx ... (15)
And so on,

substituting equations (13),(14), (15) in (12) , we get:
F(D?*)sinbx = [(=b»)" + a; (—b>)" 1 + -+ a,_,(—b?) + a,] sin bx
= F(—b?)sin bx
And by the same away we prove, F(D? )cos bx = F(—b?) cos bx
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Remark:

1) D(sinbx) = b cos bx

2) D3(sinbx) = D%.D sinbx = (—b?).D sin bx = —b3 cos bx

3) D°(sinbx) = D*.D sinbx = (b*).D sin bx = b® cos bx
Andsoon.

Example3: Find

a- (D* +3D?% — 1) sin2x
b- (D* — 2D?) cos 2x

Sol.: a
b =2, f(D?) =D*+3D?—1
= f(=22) = {(=22)2 + (=2%) -1} = 16 — 12 — 1 = 3
s (D* + 3D? — 1) sin 2x = 3 sin 2x

(D* — 2D?) cos 2x = {(—2?%)? — 2(—2%)} cos 2x
= {16 + 8} cos 2x = 24 cos 2x

Example4: Prove (D + 1)(D? + 2) sin2x = (D? + 2)(D + 1) sin 2x

Sol: (D + 1)[D?sin 2x + 2 sin 2x]
= (D + 1)[—4 sin 2x + 2 sin 2x]
= —4Dsin2x + 2D sin 2x — 4 sin 2x + 2 sin 2x
= —8sin 2x + 4cos2x — 4sin2x + 2sin2x
= —4cos2x — 2sin2x
H.W

1-Is(D+1)(D+ 2x)y= (D +2x)(D+ 1)y

2- I1s (D + x)(D + 2x)e* = (D + 2x)(D + x)e*
3- Find (D? + 1)2e?*

4- Find (D* + 2D? + 1) cos 3x

5- Find (D3 + 2D?)(sin 2x + e%¥)
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Section 5.4: Solution the linear differential equation by reduce
order to the first order
AN A A gha ) (auidy Adadl) A LalE) Adalaal) Ja

g il AL5eY1 may G gas Ayl ) el Frall clac) (8
Example 1: Solve theeq. y” —2y' — 3y =5e™%*
A @l shadl) adii o gue

Sol: (D? — 2D — 3)y = 5e™%* lllais D il AV Alalaad) oSG -]
(D+1)(D—3)y =5e"** (D —3)y = udpahyaii-2
Letu= (D —3)y A8l Alaleall 8 dpia @l (528 (ms2i -3

— (D+ 1u=5e*
du _ £,—2X -
L tu= Se (linear eq.)

[ =eldx = ¢x integral factor

u.eX = [e*.5e *dx +c

[u.e* = —5e ™ +cl.e™
— u=-5e"% +ce™*
— D -3).y=u —>(D—-3)y=-5e"*+ce*

[ =e 3

Ly=[e3*(=5e 2 4+ ce ™ )dx + ¢;
ey = (e—Sx _ ‘;_13—4x + Cz) 3%
y=e % — %e‘x + c,e3*  The general sol. where ¢, &c, are arbitrary constants.
Example2: Solve y'" +2y"+5y" —6y=0
Sol:

(D3 +2D —5D —6)y =0
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D = —1 is the root of equation
Adkeall (Biay Cim Alolaal) sl Cogas (-1) a5 131 5
D=-1={D+1)=0
= D+1)D?*+D—-6).y=0

MD+1DMD+3)D—2)y=0 (*)
Letu=(D+3)(D—2)y (**)
sub. in (*)
= D+1Du=0
du+ 0
_ — =
dx u
du
ej?+fdx=j0dx >hu+x=c
—u=e“*
u=ee™* , e‘=A
Su=Ae™* (*¥**)

Sub.(**) in (***), we get:
(D+3)(D—-2)y=A4e™*
Letu, = (D —2)y
(D +3)u; =Ae™™*

du1 x

— — 4+ 3uy = de” linear
dx

|=e3*

- e3* u, = [e3*. de ¥ dx + ¢,

A
e3* u, = Afezxdx +c; - (e3Fu, = Eezx +¢;)e 3%

- U =Ee_x+cle‘3x ; letizc2

> U =ce ¥ +ce 3
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@b)ﬁ‘gul Aol o U gad

— — —3x -X Q_ — —-3x -X
- (D—-2)y=ce®* +ce _>dx 2y = e ¥ + e

€1 _ G
Sy=—e ¥+ —e* + e
5 3 ’

-y =Ke 3 + Be™ + c;e?* the general sol. where K, B, c5 are arb. const.
Example3: Solve (D — 2)3y = 2x
Sol.: (D—-2)(D—-2)(D—-2)y=2x

Letu, = (D —2)(D — 2)y

S>—2-2uy=2x ;1= e~?* Integration factor
ey, = [2xe *dx + ¢,

= e ¥y, = [—xe‘zx — %e‘z" + cl] * e%¥

— U = —x—%+clezx
(D—2)(D—2)y=—x—2+ce*

Letu, = (D —2)y

= (D — 2)u, = —x—%+cle2x

1
j xe‘zxdx+j—ze‘2x+jcldx
x
2
1

1
= ey, =—e +4e‘2x +e 2Xeix + ¢y
X 1 5
=u —§+4+4+clxex+ce
x 1 2x 2x
=>u2=§+§+clxe + cye

x 1
=>(D—2)y=§+§

e deani gl il
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x 3 x2 2%
y=—z—§+(C17+C2X+C3)€ eL’J‘dAM

The general rule of (5-4)

We can find a general solution for linear diff. eq. with fixed coefficients

dny dn—ly dy
dxm +aq A1 + -t an—la + a,y = f(x)

Where we first write the differential equation with the effect of D

D"+ a; D"+ -+ a,_1D+a,)y = f(x)
A Jalge AV W) 6 all (s
D—m)D—my) .. (D—m,)Y =f(X) oo (16)
Letu; = (D —my)(D—mg3) .. (D —M)Y oo, (17)
ALl Alalaall 8 Uy e i g2
= (D —my)u,; = f(x) linear equation

The general solution of the above equation is

uy.e”M™Mx = je‘mlx.f(x)dx +c

u = e™* f e ™* f(x)dx + ce™*
(N-1) 45l (e dplad Aldlae o Jianil 4 6l (8 (i o
(D —my)(D —m3)...(D—m,).y =e™* f e X f(x)dx + ce™¥
(D —my)u, = e™* [e™™* f(x)dx e”mM¥ Jalill Jale
Uy e T2X = j e M2X @M1 j e ™% f(x)(dx)?

Uy = e™* [e(M=mX [ o=MuX f£(x)(dx)?

Al Dbl il el bl Alabaall alad) Jall () s a1 1agn ainsi

y = emnxfe(mn—l_mn)x_fe(mn—Z_mn—l)xfe(mn—S_mn—Z)x ___fe_mle(x)(dx)n ".(18)

:\:\J\:ﬁa b ) g Caolal<H) wad

We will re-solve the previous examples using the general rule
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Example 4: Solve theeq. y” — 2y’ — 3y = 5e%* (the same ex.1)

Sol.m; = —1,m, = 3,f(x) = 5e~%* and
y = e™Me¥ [[e(Mmax, [T M f(x)(dx)?
y=e3*[e ™ [eX(5e *)dx - dx
y=e3[e™ [5e *dx-dx
=e3* [e™*, (=5e™ + ¢;)dx

y
y = e3* [(=5e™>* 4+ c;e™*) dx
y

e3x(e—5x +%e—4x +c,)

y = ™ + e + c,e3* the general sol.
Example5: Solve (D —2)3y = 2x (the same Ex.3)
Sol..my =m, =mg =2
y = eMs* [eMamma)¥, [ eMmma¥ . [ e=M¥ f(x)(dx)*
y=e*[[[e?(2x)dx- dx- dx
y=e? [ [(—xe ** — %e‘z" + ¢;)dx - dx
y =e?* f(%xe‘zx + %e‘zx + %e‘zx + ¢c;x + ¢y)dx
y =e?* f(%xe‘zx + %e‘zx +c;x + ¢y)dx
y = ezx(_Tlxe‘zx — ée‘zx — %e‘zx + %xz + cyx + ¢3)

y="x- % + (5% + % + ¢3)e?* the general solution

Exercises : Solve the following equations
1-(D? - 1)y =x

2-y" —6y' +8y =e*

3-(D*—4D +3)y=2x+1

4- (D* -8)y =x
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Section 5.5: Solution of homogenous linear diff. eq. with higher order and
constant coefficient ( the characteristic equation)

dn dn—l
_y + al _y
dx™ dxn—1

d
+...+an_1d—i’+any=0 .............. (19)

Where a4, a,, ..., a, are constants

Oor(D*+a, D" +--+a, ,D+a,)y=0

We can write this eq. by diff. operator as a form

Jisall AV ddalea

FD)y=MD-m)(D—-—my)..(D—my)y—0 ... (20)

And the following equation is called the (Auxiliary equation)

Fm)=(m-my)(m—-m,)..(m—m,) =0

As for the equation

m*+am*+am*?+-+a,_m+a,=0 ... (21)

Is called (characteristic equation) 3 _jasll 4alaall

Y ) 5 jpeall Adbaad) Ja Ay 1 ¥ alaall Ga g sill 13 Jal

There are three cases of the roots of characteristic eq.

The first case 1: Different Real Roots

If the roots of the characteristic eq.(21) are different and real , let m,and m, are two
roots of an equation of order 2 and m; # m, ;

my, m, €ER

O 5 (dliae B jaall Aalaall |0 55

we note that the solution which called( the complementary function y,.) is:
Y. = c1e™* + ¢ e™2*

In general, for n roots (m,, m,, ..., m,) the complementary function y, is:

Y. = c1e™* + c,e™2* 4 ... + ¢, e R 7))

Wherecy, ¢4, ..., ¢, are an arbitrary constants.
Examplel: Find the general sol(the complementary solution)of the eq.
y'+3y' —4y=0
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Sol.:
(D2 +3D—-4)y =0
the Ch. EqQ. is  3acluall dlabaall A1Yay i
= m?+3m—-4=0
(m+4)(m-1)=0= m=-4 , m=1 differentroots
=~ the general sol. is
Y=Y, =cre” ¥ +ce* (il Jadl)alall Ja
Where c;, c, are two arbitrary constants
Example 2 : Solve y""" + 2y" + 5y’ —6y =0

Sol.:
(D3 +2D?*—-5D—-6)y =0

The Ch. Eq. is
m3+2m?—-5m—-6=0
m+1)(m+3)(m—-2)=0

! ! !
m; = —1,m, = —3,mg = 2 (three different real roots)
The general sol. is :

y =ce™* + ce 3 + c;e?*  where ¢y, ¢, andcs are an arbitrary constants.

The second case 2: Equal Real Roots

If the roots of the characteristic eq.(21) are equal and real suppose that , if m,, m, are
the roots of eq. of order 2and m; = m, ; m,;,m, € R then

the complementary function y., is:

y =9y, =ce™* 4+ cyxe™*

Ory =y, = (c1 + czx) e™*

Where c;, c, are an arbitrary constant

In general, for n roots (m,, m,, ..., m,) the complementary function y, is:

y=y.=(c; +cx+ - +c,x"Hem* . (23)
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Where ¢4, ¢y, ..., c,, are an arbitrary constants.
Example3: Find the general solution of the eq.
y'—4y' +4y=0
Sol.: (D? —4D +4)y =0
The Ch. Eq. is:
m?—4m+4=0 - (m-2)2%=0
= m=22 oSy biba ol
The general sol. is:
y = (¢ + cx)e?*
Where c;, c, are an arbitrary constant
Example4: Find the general solution of the eq
(D3 -5D*+7D—-3)y=0
Sol.: The Ch. Eq. is:
m3—-5m?+7m—-3=0
m—1)(m-3)(m—-3)=0
(m—-—1)?m-3)=0
! !
my=m,=1,m3=3
e i s o)) Se hids ol jda
The general solution is:
y = (c; + cyx)e* + cge3*
Where ¢4, ¢,, c3 are an arbitrary constants.

The third case : Complex roots

If the roots of the characteristic eq. is complex numbers, suppose m, and m, are
complex numbers then

Ifwas m; = a + ib , m,=a-—1ib

The solution of the diff. eq. of the first case is
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y = c;e™* 4 c,e™2X
>y = Cle(a+lb)x + Cze(a—Lb)x — Cleax_ elbx + Czeax_ e—be

— eax(cleibx + Cze—ibx)

e’ = cos bx + isinbx  (Euler’s low)

e % = cos bx + i sin bx

=y = e[c;(cosbx + isinbx) + c,(cos bx + i sin bx)]
= e[c; cos bx + cyisinbx + ¢, cos bx — ¢,i sin bx]

e™[(cy + cz) cosbx + i(cy — ¢y) sin bx]

= e[A cos bx + B sin bx]

Where A = ¢; + ¢, , B =i(c; — cy), then

y=y.=e"™Acosbx + Bsin bx] SUTRIRSRRR (.2 3

Example5 : Find the general sol of the eq.
y'+2y'+5y=0
Sol.:
(D2 + 2D +5)y =0  sacluall abaal) Y2y i
m?2+2m+5=0
em=———-=-1+4+2i

~ the general sol. ~ y = e *[c; cos 2x + ¢, sin 2x]

Example 6: Find the general sol of the eq.
y'+9y=0
Sol.: (D2 +9)y =0

m?2+9=0 = m2=-9 = m

+3i
The general sol.

Yy = ¢4 €0S 3x + ¢, Sin 3x
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mmmm) | the roots of the char. Eq. are complex numbers and equal, then the sol. is:

y = e™[(cq + c2x + c3x% + - + x¥ 1) cos bx + (Cppq + CpyaX + Cpypzx? +
ot cpxF Y sinbx  ; n=2k

For example:
[fn=6—-m; =my, =mg=a+iband my=mgs=mg=a—1ib
Then the complementary solution is:
y = e%[(c; + cyx + c3x%) cos bx + (¢4 + csx + cgx?) sin bx
Example7: Find the general sol of theeq. (D — 2)3(D +3)?(D—-4)y =0.
Sol.: (m-22m+3)2?(m-4)=0
= m=222,-3,-3/4
The general sol. is
y = (¢ + cx + c3x2)e®* + (¢4 + csx)e 3 + cge™*
Example 8 : Solve the equation (D* + 8D% + 16)y = 0
Sol.:. m*+8m?2+16=0 3 naall dalaall Aoy S
(m?+4)2=0 = m=+2i, + 2i
(i.e.) my =m, =2i,mg=m, =—2i (complex roots)
y = (c; + c,x)cos2x + (c3 + c,x)sin2x
Where c;, ¢, , c3&c, are arbitrary constant.
Example 9: Solve the equation (D3 —3D? +9D +13)y =0
Sol.. m3—3m?2+9m+13=0 eiily

m? —4m + 13
m=-1, m+1| m®—=3m?+9m
+ 13
(—1)3 = 3(-1)2 +9(-1) + 13 =0 4+ m?
—1-3-94+13=0 —4m? + 9m
sl Jas +4m? + 4m
13m+ 13
(m+1)(mM?>—-4m+13)=0 +13m + 13
0+0
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—b +Vb?% — 4ac

m =
2a
_ +4++16 —4.1.13
B 2.1
4 ++/-36
= =2+ 3i
2

m1=_1 , m2=2+3l ) m3=2_3l

Then the general sol. is
y = c e + c,e?*cos3x + c;e**sin3x

Where c;, c, &c5 are arbitrary constant.

d3y d’y | dy _
dx3 4-dxz-l_dx-l_6:y_0

Example 10: Solve

Sol.: The char. Eq. is
m3—4m?+m+6=0
m=—-1 = (—1)3—4(-1)2+(-1)+6=0
> (m+1)(mM?*-5m+6)=0

(m+1)(m-3)(m—-2)=0 m?—5m+6
=my=—-1m,=3,m;=2 Alisedgis ;0 MmM+1| m® —4m* +m
\ + 6
The general sol. is: +m3 + m?
y =ce™* + c,e3* + c;e?* —5m? +m
Where &c5 are arbitrary constant 5m” 3 Sm
) [ :
LY Y 6m + 6
tom+ 6

0+0
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Section 5.6: The non-homogenous linear equation with constant
coefficients

Al G lalaall ld dcailariad) dadadld) Adatall

The general solution of the non-homogenous linear equation

Z%+a1 Znnll + -t a,_ 1 +any f(x)
Issy=y. @) +y,x (26)
Where

v.(x) is the complementary solution of the eq. F(D)y = 0
&y, (x) is the particular solution of the eq. F(D)y = f(x)

We already found y.(x) and here we will find y,, (x)

) Haaidl AL dsans 35 dusilaiall Aslaall Aledl Jall s ¢ dlaiedll Alsteall alad) Ja)
Py (1) omll JASL a3 5 il Alskaall ol s 4l Glias

Sus F(D)y = 0 goas lld g dlaiodl] Alabeall daaiall adlall slag) 38yl gbiadl ailly Ui 50
AailataBl) Asbaall Galal) Jall s 531y, (x) Sl e

w&\dﬂ\d@yw\d#\ ‘_A\L&d‘)ja.\.maj

5.6.1:Un determined coefficient method: Badaall & COlalaall 48, yh

The first case : If f(x) was a polynomial 3g3ad) sas%e

The method for finding the particular solution for non- homogenous diff. eq. is a
polynomial that degree equal to the degree of f(x) then after that we find the
coefficient of the given polynomial

Examplel : Solve theeq. 3y”’ —5y —2y = 6x% —7
Sol.: 1- we find the complementary function ( y.(x))
3y" —=5y"' =2y =0
The char. Eq.is: 3m?—-5m—2=0
Bm+1)(m-2)=0 = m=—§ . m=2

Then the complementary function is
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1
y.(x) = c;e?* + c,e 3, where ¢, &c, are arb. cons.
2-The particular sol. y, (x)

we note that f(x) = 6x% — 7 its polynomial of the 2- degree so we suppose the
solution is a polynomial of 2-degree is

y =ax?+bx+c

we must find the coefficient a, b, ¢ , but the first we find y,y’,y"" then we make it up
in the original equation

y'=2ax+b ; y"=2a
Al Aslaall & (a5l
3(2a) —5Qax +b) —2(ax?>+bx +c¢c) =6x*>—7
A0l 45, Hhally X (5 8 CBllaa (g sbus
—2a =6 = a=-3
_10a—2b=0 = —10(-3)—2b=0 = b=15

6a—5b—2c=-7 = 6(—3)—-5(15)—2c=-7
= —18—-75—2c=-7

= c¢=-43
The particular sol. Is y,(x) = —3x% 4+ 15x — 43
and the general sol. Is y = y.(x) + y, (x)

1
= y=ce?*+ce’™ —3x2+15x—43  the general sol

The second case : If the function is f(x) = be®*

1- If (a) isnot aroot of the char. Eq. then we assume that :

- y=Ae¥ el s il g
Slanall Alalaall 8 48EL 5 y e a2l sani g Jgenall g8 4 o) Cus

2- If (a) is one of the roots of the char. Eq. and not repeated then we assume:

-y =Axe™ [ S« ¢ sag
3- If (a) isone of the roots of the char. Eq. and repeated then we assume:
- y=Ax"e" LS aa
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Example2 : Solve theeq. 3y"” — 5y’ — 2y = 5e3*
Sol.: we find the char. Eq.
3y" =5y =2y=0 = 3m?*-5m-2=0

= Bm+1)(m—-2)=0 :mz—i , m=2

Ve = cie?* + cze_gx
 a = 3 not root of the char. eq. so we suppose the function as :
y=A4e3* > y' =34e3* ; y'"" = 94e3*
Wesub. vy, y', y" by the diff. eq.

(27 — 15— 2)Ae3* =5e3* > A=—=1
10 2

So the particular solution is
1

yp(x) =5

e3* and the general sol is

1
e o1
y =cie?* +ce 3 + E e3* where ¢, &c, are arb. cons.
Example3: Find the sol. of ~ 3y”’ — 5y’ — 2y = 5e?*

Sol.: suppose the particular sol. is

y = Axe?*

Since a = 2 is a root of the char. Eq. from the
last example where m = —% ,2

S e 8 padldlilad) Hiisoa) a0 a=2

y' = Ae?* + 2Axe?*

y'" = 24e** + 24e** + 4Axe?*
Substituting y",y’,y in the original equation , we get:

3(24e%* + 24e?* + 44Axe?*) — 5(Ae?* + 2Axe?*) — 2Axe?* = 5e?*
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(12— 10 — 2)Axe?* + (12 — 5)Ae?* = 5e¢%¥

= 0+74e* =5¢% = A=:
= the particular sol. is y, (x) = gxezx

1
. —= 5
And the general sol.is  y = c,e?* + c,e 3" + ;xezx where ¢, &c, are arb. cons.

Example 4: Solve theeq.  y"’' — 4y’ + 4y = x%e?*
Sol.: the char. Eq. of homogenous eq. y"” —4y" +4y =0 is:
m?—4m+4=0 = (m-2)(m-2)=0

(@Y paladl dall (a8 53l i e ) Sy 2 588 el Al Hs2a Glsa =2 O s
y = Ax?e?*
y' = 24x%e?* + 2Axe**
y'" = 4Ax?%e?* + 4Axe?* + 24e** + 4Axe?*

O o lalall dilaalh y, y! Y e G el

4Ax%e?* + 4Axe®* + 24e?* + 4Axe? — 4(24x%e?* + 24xe?*) + 4(Ax?%e?¥)

— xZer

4Ax?% + 4Ax + 2A + 4Ax — 8Ax? — 8Ax + 4Ax? = x?

2
X
= 24 =x2 = A=

Then the particular solution is:

_1 4
yp—zxe

2x
The general sol. is :
1
y =ce?* + cyxe? + Ex‘*ezx , Where ¢, &c, are arb. cons.

The third case If the function was f(x) = b sinax or f(x)=bcosax

To find the particular sol. of non-homogenous equation as this case suppose that
1- If (ai) is not a root of the char. Eq. then we assume that :
y = Acosax + Bsinax

Where A and B are unknown constants.
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Substituting y and its derivatives in the original equation to obtain A and B.
A, B Sl Jpasll AlaV) il Aobedl aliliisl sy ge g o

2- If (ai) is one of the roots of the char. Eq. and not repeated then we assume:

y =x(Acosax + Bsinax)
3- If (ai) is one of the roots of the char. Eq. and repeated then we assume:

y = x"(A cos ax + B sin ax)

Example 5: Solve theeq. 3y — 5y’ — 2y = 4sin2x
Sol.:
m = _§,2 Cua Apdie | sda 3 jaaal] Alolaall L 431 Jaa

Let y = Acos2x + Bsin2x
— y' = —2Asin2x + 2B cos 2x
— y'""=—4Acos2x — 4B sin 2x

substituting y, y', "' in the original eq.

3(—4Acos2x — 4B sin2x) — 5(—2Asin 2x + 2B cos 2x) — 2(A cos 2x + B sin 2x)
= 0cos2x + 4sin2x

e deani cos 2x, sin 2x O llaa (g gl

—14A—10B =0

104 — 14B = 4

N g=_’
37 ’ - 37

- . 5 7 .
~the particular sol.is y = 55 COS 2x — 55 sin 2x

=~ the general sol. is

1
1. s 7 .
y =ce?* +c,e’s + - cos 2x — _-sin 2x

where ¢, &c, are arb. const.
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Jie cpils o puia Jualas Jias 31 1 gall &y Sl a3y (alall Jal) abal Sy i pale
f(x) = x"sinax or f(x)=x"cosax & f(x) = e’*sinax or f(x) = e’ cosax
L Led (3 ki ald anlall aid) 8 (s LSyl (3 )k a5 g5 Led sla Jdal (ST

5-6-2: The inverse operator method Sal) Jigall 43y 5k
The Particular sol. of the linear differential eq. is

F(D)y = f(x)

With the constant coefficient is given as the form

where F(D) = a,D™ + ;D" '+ -+ a,_,D +a, .

And — is called the inverse operator
F(D)

s Lem 3 1 i3l pal 53 pladialy

|
1

F(D)eb* = F(b)eb*
F(D){e"*y} = e F(D + b)y
F(D?)sinbx = F(—b?) sin bx
F(D?) cos bx = F(—b?) cos bx

A wWwN
T

To find the particular sol. for non-homogenous eq. we take the following cases
) VA e Jalats Ca s AuailaioD) Al 4 baliall Alslaall Galall Jall slayy

The first case

if f(x) = eP* then there are two cases

1- If  F(b) #0 , thenthe particular sol. is:
F(D)y = eP* = y= 1 eb* = 1 eb* (28)
FD)’ F(b) et e e

2- If F(b) =0 , then the particular sol. will be as a form

1 xT bx

y=%.;e ...................................................... (29)
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where F(D) = (D — b)"G(D), ris a positive integer, G(b) # 0
JeasBF (D) sisall Jlad dsie Jo¥ A Gudat § a0 jhia= jigall )5S Larie 4000 A 8 (o)

G(b) # 0 Asaddl o s siom = Sizall Jan b casiidll 585 (D — b)T g5 e dele e
et ¢ sl o daill () 55

Examplel: Solve theeq. y""' —2y" — 5y’ + 6y = e**

Sol.: the Eq.is
(D3 —2D? —5D + 6)y = e**
1-to find y,

D-1)MD-3)(D+2)y=0
the char. Eq. is
m—1)(m—-3)(m+2)=0
- m=1,3,-2

LY. = eX + cpe3 + cgem
Where c;, c,&c5 are arbitrary constants
2- the particular sol. y,, is :

1
Y= -Db-3D+2)°

F(D) =D —-1)(D —3)(D +2) b=4
—F(4)=04-1)@-3)(4+2)=18+#0
Note that F(b) # 0

4x

1 bx 1 4y
=— e " = —e
Yp F(b) =18

The general sol. is
y =ce* + ce3¥ + ;e + 1—18e4x ,  Where ¢;, c,&c5 are arbitrary constants
Example 2: Solve theeq. y"' —2y" — 5y’ + 6y = e3*
Sol.: the comp. fun.y, is: ¢l JUall (1
Y, = cie* + c,e3* + cze™?*
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To find the particular sol.y,,  since b=3

Fbhy=b-1D)bB-3)b+2)>FB3)=B-1)3-3)(3+2)=0
1
= DD -3)D+2)°

N

G(3)=(3-1)(3+2)=10% 0 o5 pliall siay 53 58 (D — 3)) Laadl

3x

r=1
The part. Sol.y,, is

s
1 x px _ 1 3x

yp=%-ﬁe —l—oxe
Or:
1 1
= { Jx
P (D=3 {(D-1)(D +2)
— 1 i 3x _iﬁ 3x_i 3x
_(D—3)1{1Oe }_101ie R

. _ 1
The general sol. is vy = c;e* + c,e3* + cze 2 + Exe“

Where c;, c,&c5 are arbitrary constants

Remark: ~f(x) = [ f(x)dx

Prove: Iet%f(x)=Z = f(x)=Dz=>f(x)=%

1
z= j Fl)dx = = f(x) = j FG)dx

ke e () Al LS By — L ) Al JlS5l g = ) g1 D) il oSl il
Sl yall (e

1

. ﬁ=fdx=x
1

o ﬁ:j (dX)Z
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Example3: Solve theeq. y'"" +y" —y' —y=¢€*

Sol.: (D3 4+ D2 =D -1y =0
D(D2-1)+ (D2 -1y =0
D2-1)D+1)y=0
D-1)MD+1)D+1y=0
—- D-1DMD+1?*y=0
Then the char. Eq. is
(m—1)(m+1)2=0
m=m,=-1mz=1
e = (c; + c;x)e™ + cge*
To find the particular sol.
F(b)=(0b-1D(b+1)?% ,b=1
F()=1-1(1+1)%=0
=0,..r=1 )':4:6(1)

1

—_ X
Yo = (D-1)(D+1)2 g

_1x x
41!

= Zox
4

Then the general sol. is:
Yy=YctYp

— X
= (c; + cox)e™ + cze* + Zex

Where c;, c,&c4 are arbitrary constants
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Example4: Solve theeq. y'"’ — 8y = 10e3*
Solution: (D3 —8)y =0 - (D-2)(D*+2D+4)y=0
Thechar. Eq. (m —2)(m? +2m+4) =0
- m=2,-1+iV3
y. = c;e?* + e *(c, cos V3 x + c3 sinV3 x)

The particular sol. is

F(D)=D3—-8
F(b)=b3—8->F(3)=27-8=19 # 0
10
=10 3x=10 3x — ___ ,3x
= UFD)° F)° T19°

The general sol. is:
y =ce?* + e‘x(cz cosV3x +c; sin\/§x) + 1—283’5

Where c;, c,&c5 are arbitrary constants

The second case

If f(x) =sinbx or  f(x) = cosbx tofind the particular solution in this case
we can using one of the three cases

A) from e?* = cosbx +isinbx  we get:
eibx+e—ibx i eibx_e—ibx
cosbx = ——— and sinbx = ———

2 2i
After that we find the particular solution of e??*  as in the first case when
F(D)=0 &F(D) #0 .

Al Js A (sin bx, cos bx YAl Jisall Jysadl Hhgl o 5il8 aadiud Cagu Y AT & o) (o
rams A2l ) g (F(D) = 0) s o) Al 8 4,1l o3 ) e salll iy 1) A e Jealls
(F(D) # 0) 0S5 Laxie Liay) aodiudi s (oW1 A5 jlall () Lals Gl 5 gaV 138 5 (g gail) 22y | jaaa

sl o3l e 48yl il ()
B) If f(x) = sinbx or cosbx then the particular sol. is:
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sinbx , F(-b*)#0

sin bx =

1 . 1
Yp = Fo?) Yp = kb

....(30)

cosbx = y, = ﬁcos bx , F(-b»)=+0

1
or ¥p = 10p5

C) If we have the following formula:

cos bx or when F(D) of odd order then the particular Sol. is:

D3+a3’
Jalal 8yl 21l () S alall Jalld s 8 (5 48 sela 5 A0 8305 53 il (oS Laie
(SIS Gl
>33 COS bx = ~—52 €08 bx

3 2
= 20D osbx (38 all Jalall o puai )

a6_b4D2

a3+b2D
= .cos bx

—_ 1! 3 3
= —.5z (@’ cosbx — b” sin bx)

Examplel: Solve the diff. eq. (D? + 4)y = sin4x
Solution:  the complementary function is:
Y. = ¢y cos2x +c,sin2x  , Where ¢y, ¢, are arbitrary constants
The particular sol is
F(D?) = D? +4
F(-=b?) ==b%*+4 ,b=4>F(-16)=—-16+4=—12

= sin4x =
Y = p2ia —(4)%2+4

sin4x = —isin 4x
12

The general solutionis y =y, + y,

Y = € COS 2X + C, Sin 2x — %sinélx

Where c;, c, are arbitrary constants
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Example2: Solve the diff.eq. — —2-—=+y = cos3x

d?y dy
dx? dx
Solution: (D?—-2D +1)y =0
(D—-1)?*y =0
thechar. Eq.is (m—-1)?=0 - m=1,1

v y.(x) = (c; + cpx)e* , Where ¢y, ¢, are arbitrary constants

Yo = 55551 €0S3x
1
=_32_2D+1.cos3x
1 1 1 D—4
=—E.(D+4).c033x=—§mc053x
=—l(D—4);cos3x=—(Dc053x—4cos3x)
2 —32 — 42 50

1
=z (—3sin3x — 4 cos 3x)

“ Y = Ye(x) + yp(x)
= (c; + czx)ex+% (—=3sin3x — 4 cos 3x)
Example3: Solve theeq. y'" + 4y = 8cos 2x
Solution: thechar. Eq.is m?+4=0 - m=+2i
" Y. = €1 COS2Xx + ¢, Sin 2x
We know that F(D?) = D? +4 > F(—22)=-224+4=0 ;b=2
C0S2X Al gl () 8 aadinnid 3 pilaall (3 kll Jall § el hia aliall ol Ly

ezix + e—Zix
= (D2+4)y=8——-—

2
cos x AVl Al (¥ (@2 YAl alall dad) Jiey adad) ¢ ) ans Cus
4 2ix 4 —-2ix

=200 +20)° +(D—2i)(D+2i)e
\_ ~ ) %/—/
u W

Tofindu: b=2i then:
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4 x . 1 .
2ix 2ix
u=-—r—e = —Xe
47 1! [
To findw;  b=-2i then:
w = i._fe—Zix — _l_xe—Zix
—4i 1! i
1 2ix —-2ix
Yp =u+w=7xe —Yxe
erzix _ xe—zix
B 2i
= 2xsin 2x

" Y = €1 €0S2x + Cy Sin 2x+ 2x sin 2x
, Where c,, ¢, are arbitrary constants
Example4: Solve theeq. (D? + 3D — 4)y = sin 3x

Solution: 1-thechar.Eq. (m—1)(m+4)=0 - y,=ce*+c,e ¥

2- To find 1y,
Yo = Sirapa sin 3x
1 : ) 3D+13
= sin 3x = sin 3x = sin 3x
—9+3D—4 3D-13 9D2-169
-1 )
=—(3D + 13)sin 3x
250

= (9 cos 3x + 13 sin 3x)
250

The general sol. is y = c,e* + c,e™* + % (9 cos 3x + 13 sin 3x)

Where c,, ¢, are arbitrary constants

The third case

If the £ (x) is a polynomial of x to find the particular solution of the eq.
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F(D)y = x™ where m is a positive integer number we write % as a power

ascending to D

For example if F (D) =1—D

F = =14D+D?4 D344 DM

a- — =
F(D) 1-D
b- —=——=1-D+D?—D3 4+ D™+ -
F(D) 14D
S -1 _q_ 2 _4p3 + ... mog ...
C 55 = aapi = 1~ 2D +3D% —4D% + -+ (m+ 1)D™ +
R 2 3 4 ... mog ...
d- =g = 1+2D +3D% +4D° + + (m+1)D™ 4+
Since the D™*"x™ = 0 the particular solution is
y = x™=(1+D+D*+D3+--+D™)x™

F(D)
=x™+mx"" ! + -+ ml

Example to explain:  D?x! =0 , D3x?2=0
Examplel: Solve the diff. eq. y" + 4y = 8x3
Solution: D*+4=0 - D=+2i
the char. Eq. is
m*+4=0 - m=42i
y.(x) = ¢; cos 2x + ¢, sin 2x
The part. Sol. is

8 3 8 3
= . x = .
Yo = 42 4(1+—D2)

-2(1-(2)+ (%)

The general sol. is

+...>x3:2(x3—%)=2x3—3x

y = ¢4 €0s 2x + ¢, sin 2x + 2x3 — 3x

Where c;, c, are arbitrary constants
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Example 2: Solve the diff.eq. (2D* —5D —-3)y =x*+2x—1

1
Solution:  y, =ce 2" + e Al A
1

= 242x—1) = (x4 2x—1

Vp 2D2_5D_3(x+x ) : L2 (x*+2x—-1)
-3(1+(30-3D)
_ 1 5 2D? 2?2 2
—5(1 ~Go-F)+(Go-%) + “'>(x +2x-1)
=@ +2-D-2(2x+2) - +2(2)
= —2x2—4x 4=
3 9
Then the general sol. is :
1
y=ce 2 +cedr — %xz — 4x + %
Where c,, c, are arbitrary constants
The fourth case
Ifthe f(x) =e*™v(x) where
xm
v(x) = sin bx
cos bx
The particular solution y, (x) is
_+  Lax — pax

yp(x) = F(D) e v(x)=e F(D+ - V(X)  ceererieiierierinceecnecnns (31)

Examplel: Solve the diff. eq. (D% + 2D + 5)y = xe*
Solution:  (D?+2D+5)y=0
The char. Eq. is:
m2+2m+1=—4
(m+1)2=—-4 - m+1=42i-> m=-1+2i

ASMAA ABD & MAY MOHAMMED

Page 35




Chapter 5

v Ye(x) = e7*(cq cos 2x + ¢, sin 2x)

y,(x) = L x.e* =e* L X
p D2+42D+5" " (D+1)2+2(D+1)+5
1
— X
YOI
2 8

The general sol. is:
y(x) = yc(x) + yp(x)
y(x) = e *(c; cos 2x + ¢, sin 2x) +%ex (x — %)

Where c,, c, are arbitrary constants

. dy ., dy _ 22,3
Example2: Solve the eq. — 2 LTy =x"e
Solution:
(D?-2D+1)y=0
The char. Eq. is
m?2—2m+1=0 -» (m—-1)2=0 > m=m,=1
Ye(x) = (c1x + cz)e”
D el Ay (iSG Galaldl Jall slayy
(D? — 2D + 1)y = x%e3*
1
N 2 ) 2. 3x
W =pz_op+1°
— 53 1 X2
(D+3)2-2(D+3)+1°
— p3Xx 1 _xz
D2+6D+9-2D—6+1
— 53x___ 1 2
D2+4D+4 "
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=le3x(1—(DT2+D)+(DTZ+D)2+~-->.x2

=§e3x(x2—%—2x+2)

= 21g3% (x2 — 2x +§)
4 2
- y=(cx+cy)e* + ieg”‘(x2 —2x + g)

Where c,, c, are arbitrary constants

Example3: solve the diff. eq. (D? + 4D + 4)y = e*sin 2x
Solution:  y, =ce™* + c,xe ¥

The particular sol. is

1 .
X .Sin 2x

T DD A4D + 1) + 4

x 1 }
=e .sin 2x
D24+2D+1+4D+4+4

— pX

=e sin 2x
D2+6D+9

1 )
= eX¥ ———.sin2x
—4+6D+9

=e sin 2x

6D+5
6D-5
36D2-25

= e*¥ sin 2x

= exl_—;(6D — 5) sin 2x

X
= " 169
The general sol. is:

(12 cos 2x — 5 sin 2x)

Y=Yt

X
y =ce " + cyxe % —% (12 cos 2x — 5sin 2x)

Where c;, c, are arbitrary constants
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The fifth case  dwaldd) A3l

If f(x) = x™v(x) where v(x)=cosax orv(x) = sinax

To find the particular solution for this case we take the following examples.
Examplel: Solve theeq. (D? + 1)y = x? sin 2x
Solution: To find y., we have
m?+1=0 - m=4i

y:.(x) = ¢; cosx + ¢, sinx , Where c;, c, are arbitrary constants

) 1
2 o 21x 2
xX) = .x%.sin 2x = e“"*, X
%) =prg (D +20)% +1
; 1 : 1
— p2lXx — x2 = p?lx — x2
D4+41D—-3 _3(1_?11)_?)

= —lerr[1 4224 2y (B2 0 ]

3
1 2ix 4iD | D?> 16D? 2
=-—ze 1+—+—- + X
3 3 9
— _ eZLx(2+8ﬂ_ﬁ)
3 3 9
=—§(c052x+isin2x)[(x —?6)+8%

=1 [(xz — E) sin 2x + Zcos 2x]
3 9 3

Y =Y (x) + yp(x)
Example2: Find the general sol. of (D + 1)y = xsinx
Solution: The char. Eq.is: m+1=0 - m=-1
- y.=ce * thecomp.sol.

The particular sol.

1
yp=D+1xsinx
— 1 ix
R il
— ,lix 1 .
- W= Dritel ¥
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ix 1

T T (i+1)(1+i%)x

eix 1—i( D

= ) 1-— .
e T T T
eix(l—i)( 1 )
- = —
Yp 2 \*Tir1
el . 1-i 1-i
—T(X(l—l)—::
_ cosx-lz-isinx (x(l . i) + l))
=§(sinx—cosx)+%cosx
Y=Yt
Exercises

Solve the following diff. equations.

1- (D> +5D — 6)y = e3*

2- (D2 +5D —6)y =%
3- (D* + 8D?)y = sin 2x

4- (D2 +3D+2)y?=0

5- (D? 4 2D + 2)y = cos 5x
6- y'" — 27y = e?*

7- y'" =27y = x*

8- (D> +5D)y = e*x?

9- (5D? +15)y = e* cosx

10- (2D + 1) = xsin2x

ASMAA ABD & MAY MOHAMMED

)x

Page 39



Chapter 5

Section 2: Reducing the order of a differential equation( with
variable coefficients)

The second order differential equation is in the form

Fx,y,y,y)=0 (1)
And it can be reduced to the first order according to its type, we have two types here:

The first type: if the dependent variable y does not appear in the equation
(el (e A jeday Jiray) Aaleall &y daieall juaiall jeday ol 1)

Then we suppose that

I — " o__ dp o
Yy =p Y =97~ P
Then equation (1) will be
Gx,p,p)=0 e 2

And this is an equation of first order can be solved as in ch.2 to get p, then we return
the variable p and solve it to get an equation in term of x and y represents the general
sol.

A0l mnddS 4Gy Hla aladiily b paie GOl 1D A A5 ) (e Alialdd Adlas Jad 4] agdi (Gaw Las
Ol 2 3
sl &y daizall puriall jeday ¥ ledie -

L
Yy =p Y =4y P

Cus e S Jaadll (8 LS Jad IV Ax ) e Aalas e Jiasid ba) Aaleall (8 (o gad
gé.us@\a;su\m@\ dgjz_zmmmw pela b asiial @Ls;\dmmms@s
alall Jall e Joanid SN Juadl)
Example (1): solve the following eq.
X’y — ()2 -2xy'=0 e 3)
Solution:
Note that eq. (34) does not contain the variable y

! 1) d !
Lety'=p = y"==L=p
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Sub. in (3)
dp
2 _p2—2xp=0
X 7y p xp
d
x2£—2xp=p2 + x?
dp 2 _ 1. 2
dx xp_xzp
—2dp _ 2 -1 _1
p dx xp T x2
_ -1 dz _ ___dp
Letz=p = =P
Sub. In (5)
[ dz 2 1 "
—_—— e — = —] k% —
dx x x2
Z—z+§ x—zl linear
I.F = ef%dx _ ezlnx —_ xz
xzzzf—ﬁ x2dx + ¢,
xzz=—fdx+c1
x%z=—-x+¢
_—x+C1
=—;
Replacing z = p~1
1 —x+q x?
_——,—_—_—m—_ - =
p x? P L —X
cf
dy = _x_C1+c1—x dx

Integrating both sides

2
—X
y=7—clx—clzln|cl—x|+c2

¢, & c, are constant
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The second type: If the independent variable x does not appear in the equation
Asleall b 5 Jibesall yuiall jglay o1 13)
Then we suppose that
d’y dp dpdy dp dy dp

y=p = =dx2_a_dx'dy_dy'dx_p@
Then equation (1) will be
dp\
E(y,p,pd—y) =0 e )

And this equation is of the first order with dependent variable p and independent
variable y solve it to get an equation with p & y then return the variable p = Z—Z and
solve it to get the general solution.

Example (2): Solve the following eq.

yy'+2y - ()2 =0 e 8)
Solution: Aol jalla ye x ol Jaadl
! 17 dp
= e = —
Yy =p y de
Sub. in eq. (8), we get:
dp
yp-—+2p—p?=0
dy
dp
P (y— t2 - p) =0
dy
p=0 = Z—z=0 = y=b Singular sol.
Or
dp
—+2-p=0 +
ydy + p y
b _ 1. _ 22
o ;P =5 linear
1
I — ef—ydy — e_lny — y_1

-1 -1 —2
y p= |y -Tdy+cl
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[y 'p=2y" +cl*y
p=2+cy pegkt

dy
a=2+c1y

d 1
Y_ = dx —In|2 4+ c;y| = x + ¢, wherec; & c, are constants
2+c1y Ccq

And this the general sol.
Exercises:

Solve the following equations:

1) 2y"=(»)?+1=0

2) y" +k*y =0
3 xy" =y
4) y" —k’y =0

5 yy"+(@)*=0
6) yy'+(©»)?=0

ASMAA ABD & MAY MOHAMMED Page 43



i) o 48yl sl Ay 1) A
Aot Al yal

dgalie ) A daldt) ey ataall

CHAPTER SIX

LAPLACE TRANSFORM

sl
..\\Jmﬁ e s Lal P




CHAPTER 6: LAPLACE TRANSFORM

Chapter six

About the Laplace transform

The Laplace transform method solves differential equations and corresponding
initial and boundary value problems, Laplace transform reduce the problem with
differential to an algebraic problem.

Definition:
Let f(x) be an arbitrary function defined for x > 0, then:
F(p) = Lf(®0)] = [ f(x)eP*dx
Where p is a real number is the (Laplace transform) of f(x).
Remark:

The original function f depends on x and the new function F depends on p.

- f(x)in(6.1) is called the inverse transform of F(p) and will be denoted by
L7 [F(p)]
(ie)
F(p) = LIf ()] & f(x) = L7*F(p)]

Theorem: linearity of Laplace transforms
Llaf(x) + bg(x)] = aL[f(x)] + bL[g(x)]
Where a & b are constants.
Laplace transform of some functions:
1- Let f(x) =1whenx >0, then L[1] =%;p>0

Proof: from the definition (6.1), we get:

[}

Lv@n=u]=f

0
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=1 [lim
—P x—o0

1
=—(-1==

e PX — 9]

1
p

2- If f(x) =x then L[]=pl2 ; p>0

Proof: from the definition (6.1), we get:

L[x] = fOOO xe P* dx

(0 0)

—-X 1 oo
=—e P +=J e PXdx
P ] pfo

= lim (e P*) -0+

x—o00 P

p >

ASMAA ABD AND MAY MOHAMMED
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CHAPTER 6: LAPLACE TRANSFORM

3- If f(x) = e** where a is a constant then

L[e""‘]—L ;p>a

= —a

Proof: from equation (6.1)

Lle*] =f e . e P*dx
0

— (® pla-p)x
=[, e dx
o0

— L e(a_p)x ]
a—-p 0
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=—(11m e(@=Px _ o0 ) Sincep>a thena—p<0
a—p "x—-oo

:E(_l) >e =0

1

p—a
By the same way we can find the Laplace transform for another function as
cosax ,sinax ,x™,

Ex. 1: Let f(x) = coshax , find L[f(x)]

Sol: L[coshax] = L E (e™ + e_ax)]

= 1L[ea"] + 1L[e“"‘]
2 2

= ( ¢ —+ A ): b
p—-a p+a p2—a?

Ex. 2: Find L[f(x)]whenf(x) = {’; 0 ; >x 4< '

Sol: L[f(x)] = f f(x) e P*dx
= fo xePXdx + [ 5.e7P¥dx
Using integration by parts, we get

—X
Lif ()] = [7 )
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Exercises 6.1

Find the Laplace transforms of the following:

1- f(x)=2x+6

2- f(x) = sinnx

3- f(x) =™

4- f(x) = sin(3x + 5)

5- f(x) =x3—x?+4x
et — ™%X

cos? 8x

oo = {3

)

10- 5e?%* sinh 2x
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Table of Laplace transform

f(x) =L [F(p)]

F(P) = L[f(x)]

n=123,..

sin(ax)

cos (ax)

x sin(ax)

(pZ + aZ)Z

x cos(ax)

pz_az

(pZ + aZ)Z

sinh(ax)

a

cosh(ax)

p
p? — 2

e**sin (bx)

b
-+ 1

e cos (bx)

p—a
(p —a)* + b?

e“sinh (bx)

b
(@~ —b?

e**cosh (bx)

p—a
(— a7~ b?

n=123,..

n!
(p — a)n+1
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The inverse transform (L™1):
We said that before
F(p) = LIf(x)] then L7*[F(p)] = f(x)

So we can find L~1for some function as follows:

And so on

La cpaig (ladl Jeaadl PR e Jlsall (0 81 Al sSaa g 3Y dagad ala) (S 180
Jsanll (ALY dapunll Glleall ey aladinly Ga3LY Jasad G sSae Alag) A4S ABGY) (any

Ex. 3: Evaluate (a) L1 [%] (b) L_l[ - ]

p%+7

Sol:

@1 [] = 517 [5] = 5

O 5] = 517 [555] = Frsin v+

Ex. 4: Find L1 [ﬂ]

p2+4

Sol:
] = [
p-+4 p<+4 p+4
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= 3L [ 2+4] +L17 [p22+4]

= 3c0s 2x + sin 2x

p+5
Ex. 5: Find L™ [(+2y+9]

Sol:

e R )

=17 [l + 1 [l

—-2x

= e %*cos3x + e %*sin3x

Ex. 6: Evaluate L~ [ o +3)]

Sol: 430 aladin) Al ua s

BERN

o]
p(p +3) 3 _A+ B
1 1 p(p+3)_p p+3

=1 [— - __ Ap+3A+Bp
p p+3 ~ p(p+3)

=rﬂﬂ_LﬂPL] “A+B=0

— 34=324=1

:1—6_3x ~B=-1

Exercises 6.2

Find L~1[F (p)]for the following:

Y M.
' [p242p+10

5 -1 _3—1’]
' | p2+4p+13

3. 1|2 ]

| p2+4p+4

-1 'p2—2p+3
4. L L (p-1)3 ]
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Using Laplace Transform to Solve the (LODESs) With Constant
Coefficients

One of the main applications of the Laplace transform (LT) is the solution of
linear differential equations with constant coefficients in the existence of boundary
and initial conditions, where the ordinary linear differential equation (OLDE) is
transformed into an algebraic equation using the following theorem.

AN O lalaad) @l Adadl) Adialanl) ¥ Alaall da 5o A 1 DY s Clindad aal aal o)
alaainly 4y yus Aobea I Aol W1 Adaal) dplialanll ddalaall Jy s 2y Cam 4300000 5 430 50 Ja g 38 0 52 0
Ay daa )

Theorem: if f(x)and its derivativesf’(x), f@® (x), f®)(x), ..., f™(x), exist then:

LIF® @] = p"F () = p" £ (0) = p"2£/(0) = = pf "D (0) = F*-D(0)

LIf'()] = pF(p) = f(0)

and

L[f" ()] = p*F () — pf(0) = f'(0)

And so on

Now to solve the following diff. eq. by LT

apy" + a1y + @y e+ any = g(x);

y(0) = y'(0) =¢; ..., y™P(0) =, 4

Step 1:Taking LT for both sides and using eq. (6.2), we get:
aoLy™] + a,L[y® V] + - + ayLly] = LIg(x)]
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Step 2: From eq. (6.3) we can find L[y™],

Lly™ ], ...,Lly"] ,L[y']

For example: L[y'] = pY(p) — y(0)
Lly"] =p*Y(p) —py(0) —y'(0)
And from the table of LT we can find L[g(x)]

Step 3: substituting the initial conditions y(0) =o,

y'(0) =4 ,...,y™1(0) =,,_, in (6.5), we'll get an algebraic for Y (p), after
solving it we take the L~1for both sides

Step 4: from the table we return all the functions to the original variables.
EX.7:solve y'—y=1 ,y(0)=0byLT

Sol. :

Taking LT for both sides

1
pY@)—yw)—Y@)=5

(P-DYP) 0=

1
Y =
(p) p(p—-1)

-1, 1

p p-1

Taking L~for both sides we get:
-1 _ _g7-1]1 -1|_1
e = -1 [ + 1 [

— y(x) =-1+¢e* from (table of LT)
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EX.8:solvey" +2y'+5y=0 , y(0)=1,y'(0)=5
Sol.: taking LT for both sides
Lly"]+ 2L[y'] + 5L[y] = 0

[p*Y () — py(0) —y'(0)] + 2(pY (p) — ¥(0)) + 5Y(p) = 0
p’Y(®) —p—5+2pY(p) —2+5Y(p) =0
P> +2p+5)Y()=p+7
+7
Y(p) = pzizm
p+1+6
p+2p+1+4
p+1+6 p+1 6
Tt 2+4 prlii4d (pri+a
Taking L~ for both sides we get:

p+1 ] 31 [ 2 ]
(p+1)2+4 ' (p+1)?2+4
From the table of LT (n.10) , (n.11), we get

Ly =1

y(x) = e *cos2x + 3e *sin 2x
EX.9:Solvey” —3y' + 2y =1 —4x + 2x%, y(0)=4 , y'(0)=5
Sol.: taking LT for both sides
L[y"]1—=3L[y'] + 2L[y] = L[1] — 4L[x] + 2L[x?]

p2Y (p) —py(0) ~ ¥'(0) = 3(pY (p) — ¥(0)) +2Y (p) = -

p?Y(p) —4p—5—-3pY(p) + 12+ 2Y(p) =~ — pg

4
p?

_|_

2_
(P> = 3p + 2)Y (p) = 4p — 7 + L2

4p—7 p%—4p+4
2-3p+2  p3(p2-3p+2)

=>Y(p)=p

_ 4p-7 (p—2)?
T (-2)(»-1)  pi(p-1)(p-2)

ASMAA ABD AND MAY MOHAMMED




CHAPTER 6: LAPLACE TRANSFORM

_ 4p-7 p—2
T -2(-1)  p3(p-1)
1 2

PENSREREN

Taking L~for both sides
1 1 2 1 1
L [Yy(p)] =L H + L1 [—] + L1 [—] + L1 [—] + 2L [——
P p p? p? p—2 [p 1
= y(x) =1+ x +x2+e?* + 2e*

EX.10:solvey” —3y' + 2y =e™* ,y(0)=1 , y'(0)=5
Sol.: taking LT for both sides
Lly"]=3LIy'] + 2L[y] = L[e™]

[p?Y () — py(0) — y'(0)] = 3[pY () = y(0)] + 2Y(p) = —

1
pt+4

2 _ o — —al\
(p"=3p+2)Y()-p-5+3=-7

2 _ ey _9=_L
(" =3p+2)Y(p)—p—-2=7

2 _ — 1
(p"=3p+2)Y(p)=p+2+_—

p+2 1
+
2-3p+2  (p+4)(p%2-3p+2)

Y(p) = .

. p2+6p+9
(p+4)(p%—3p+2)

¢ p%+6p+9
(p+4)(p-2)(p-1)

_16 g

p p—1 p—2 pt+4
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Taking L1 for both sides, we get:
) = -2 5 |+ L]

p-2 30 p+4

y(t) _ _16 t+25 2t+310e_4t

Exercises 6.3

Solve the following initial-value problems by the Laplace transform method

1- y"" — 9y = 6 cos 3x , y(0)=0 , y'(0)=3
2——+2y—cosx , y0)=1

3- y"4+4y =10sin3x — 5cos 3x , y(0)=2 , y'(0)=-4
4- y" — 6y’ +9y = 6x%* , y(0)=y'(0)=0
5-y"+9y=40e* , y(0)=5 , y'(0)=-
6-y"-2y'=-4 , y(0)=0, y'(0)=4

7- x"(t) —2x'(t) = 6 — 4t , x(0)=2, x'(0)=0
8-y'=2" , y(=-

9- y® —y'=sinh2x , ¥(0)=y'(0)=y"(0)=0

10- y''(¢) = 6y (1) + 9y(t) = 6t%e*  ,y(0) =y'(0) =0
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Chapter 7 : Power series solution of the linear differential equations
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Chapter 7 : Power series solution of the linear differential equations

Introduction:

The power series method is a standard basic method for solving linear
differential equation with variable coefficients. It gives solutions in the form of
power series , this explains the name.

1.Basic definitions:

1. Power series: An infinite series of the form

(00]

> @n(x = xo)" = ag + ay(x — xp) + ay(x — x0)* + -+ (1
n=0

is called a power series in (X-xp).
where ay,a,,a,,... are constants, called the coefficients of the series.

X, 1S called the center of the series.

for example: the power series
Y2 ,(x + 1)™ is centered at x, = —1

2. A power series in x: It is an infinite series (1) when x, = 0

z a,x" = ay+ a,x + ax* + - (2)

n=0

3. Ordinary point: A point x = x, is called an ordinary point of the equation:

y'+ Py +Qx)y =0 (3)
If both the functions P(x) and Q(x) are analytic at x=x,.

4. Singular point: If the point x=x, is not an ordinary point of the diff. eq.(3) ,
then it is called a Singular point of eq.(3).
There are two types of singular points:
(i) regular Singular point
(if)irregular Singular point
A singular point x=x, of the diff. eq. (3) is called regular singular point of
the Diff. eq. (3) if both (x — x¢)P(x) and (x — x)%Q(x) are analytic at

X=x,.
I ————
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A singular point, which is not regular is called an irregular singular point.
5. Standard equation: equation (3) that in the form
y'+Px)y +Qx)y =0
Is called a standard equation.

Examplel.1: Determine whether x=0 is an ordinary point or a regular singular point
of the differential equation 2x%y” + 7x(x + 1)y’ — 3y = 0.

Sol. Dividing by 2x?2, the given equation becomes,
., T(x+1) | 3

Yo+ Y —52Y=0 (4)
Comparing (4) with (3) we have
_ 7(x+1) _ 3
P(x) = " and Q(x) = "

Since both P(x) and Q(x) are undefined at x=0, so both P(x) and Q(x) are not analytic
at x= 0. Thus x=0 is not ordinary point so x=0 is a singular point

7(x+1)

Also, (x —0)P(x) = and (x = 0)%Q(x) = 2

Are analytic at x=0. Then x=0 is a regular singular point.
EXERCISES:

1.Show that x=0 is an ordinary point of y" —xy’' +2y =0 .

2.Show that x=0 is an ordinary point of (x> —1)y”" +xy' —y =0 ,but x=1is a
regular singular point.

3. Determine the nature of the point x=0 for the equation xy” + ysinx = 0
2. Maclaurin Series:

Some functions can be expressed by the power series and are called Maclaurin series:

o

=Zx"=1+x+x2+x3+--- (5)

n=0

1
1—x
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Where |x| < 1,its called the geometric series.

(ole]
x" x% x3

X — - = —_— —_
e _Zn' L+ x 4+ o+ e 6)
n=0
- *© (_1)nx2n_ x2 oyt 6
COS X = W_l_g-l_z_a-l_ (7)
n=0
°°(_1)nx2n+1 3 x5y
. _ CDx X 8
— Z)(Zn+1)! T TR ®

3.The power series method (the power series solution about x=0):

Suppose the second order linear diff. eq. in the standard form is:

y'+PX)y ' +Qx)y =0 (3)

and x=0 is an ordinary point. Therefore, to solve the above equation we take the
following power series,

yzzanx” =ay + a;x + a,x? + azx3 + - (9)

o

Differentiating (9) twice w.r.t. (x), we get

Z na =a, +2a,x + 3azx? + - (10)
n=1
Zn(n— Da,x" % = 2a, + 3 2a3x + 4 - 3a,x? + - (11)

n:

Substituting equations. (9), (10) and (11) in (3) and collecting the like terms into x
(which have the same powers), equating to zero the coefficients of the smallest
power of x starting with the constant terms, the terms containing x, the terms
containing x?, etc.

ASMAA ABD 5



Chapter 7 : Power series solution of the linear differential equations

This gives us a relation between the coefficients which helps in determining the

nature of the solution.

Remark: A solution of the form y = }.>°_,(x — x,)™ is said to be a solution about

the ordinary point x,

Example 3.1: Solve y' —y =0 aboutx =0
Sol: starting with (9) and (10)

[0 0]
y = Z a,x™ = ag + a;x + ax® + azx> + -
=0

y' = Z na,x" ' =a; +2a,x + 3azx* + -
n=1

Substituting in (12), we get
(a; + 2a,x + 3azx? + - ) —(ap + ayx + a,x*> +azx3+-- ) =0
Now we collect the terms of similar power to x:
(a; —ap) + 2a, —a)x + Baz —ay)x*+ - =0
Then

(a; —ap) =0 —a; =ag

a; Ao
20, —a;)) =0-a, =—= ==
(2a; — ay) 2 =5 =5
as g _ Qo

(3a3—az)=0—>a3=§=ﬁ—;

Substituting in (9), we get:
Ao Ao
y=ay+ a0x+§x2 +§X + -

Or

y=a0(1+x+%x2+%x3+---) = qqe”

(12)

(9

(10)

(13)

(14)

(15)
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Example3.2: Solve y' =2xy aboutx =0 (16)
(use the power series method)
Sol: we arrange the equation as follows

y' —2xy=0 (17)
From (9) and (10)

(e 0]
y = Z a,x™ = ag + a;x + ax* + azx3 + -

n=0
y =¥ na,x™ ! =a; + 2a,x + 3azx* + -
Substituting in (17) we get
(a; + 2a,x + 3azx? + ) —2x(ag + a1x + ax* + azx3> +--) =0 (18)

(a; + 2a,x + 3asx? + 4a,x3 + 5asx* + 6agx® + ) — (2 apgx + 2a,x?
+ 2a,x3 + 2a3x* + 2a,x° + 2a5x + ) =0

Then

a, =0 %
2a, = 2a9 — a, = ay

3a; = 2a; > a3 =0 %

— ) — Qo
4a4—2a2—>a4—7—>a4—;

S5a; =2a; > a5;=0 3

— _ Q4 _ %
6a6—2a4—>a6—?—>a6—;

Note that the odd coefficients are equal to zero.

Substituting in (18) we get:

4 6
y=a0(1+x2+%+%+...) (19)
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o ()" z
= a, Z = age” (20)
n=0
Example 3.3: Solve y” + y = 0 about x=0 (21)

(use the power series method)

Sol: From (9) and (11)

n=0
y" = Z n(n — Da,x" % = 2a, + 3 2azx + 4 - 3a,x* + - (11)
n=2

Substituting in (21), we get

(2a, +3-2asx +4-3a,x*> + )+ (ag + ayx + azx? + ) =0 (22)
Collecting like powers of x, we find
(2a, + ag) + 3-2a3 + a;)x + (4-3a, + a,)x*> + - =0 (23)
Then
a a
2a2+a0=0 —)a2=_70=_2_?
_ —_4 —_4
a a
4-3a,+a,=0 —a, = —4—_2 —ay =4—(!’
Substituting in (9) we get
x?  x* x3  x®
y=a0(1—;+z—---)+a1(x—;+a—~--) (24)

= agcosx + aq sinx
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4.Some properties of power series:

. Yk, F(n)=F@)+F(p+D+-+Fk) ,k>p (25)
Where k and p are integer numbers.
”-Z%):p anF()x™?P = 37, an+pF(n +p)x™+AP (26)

1. Z?f:k anxn_k + Z?Lo:m anxn—m = Z?lo=0 an+kxn + Z%O:O an+mxn
= Z?lo=0(an+k + an+m)xn (27)

IV If Y ganx™ = Yo obpx™ = a, = by, vn >0 (28)

an—
nap, = 4ap-1 = ap = 7:11
So ) ifn=1—>a1 = 4y
. a a
if n=2—)a2 == a, = =
2 2
. a a a
1fn=3—>a3 =2 —> a3z = =2 =22
3 3-2 3!

V.(ldentity property of power series):

If Yo—oa,x™ = 0, for every x number in the interval of convergence (i.e. in a
neighbourhood of 0), then a,, = 0, for all n.

Example 4.1: Solve y" +xy =0 (29)
Sol: Lety = Y% _sa,x™ and y" =Y ,n(n— 1a,x" 2

Substituting in (29) ,we get:

Z n(n—1Da,x" % +x Z a,x" =0 (30)
n=2 n=0

n(n— Da,x" %+ Z a,x™*t1 =0 (31)
n=2 n=0
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2a, + Z n(n—1a,x" 2+ z a,x"*t1 =0 (32)
n=3 n=0

From property I, we get,

2a, + Z(k + 1) (k + 2)ap,x" + z Ap_1x* =0 (33)
k=1 k=1

Where for the second term we take k=n-2— n=k+2, so if n=3 then k=1
And for the third term we take k=n+1— n=k-1, so if n=0 then k=1
From property Ill, eq. (33) will be:

o

2a, + Z[(k + 1)k + 2)agsr + ap_1]x¥ =0 (34)

k=1

From property V, we get:

2a2 = 0 g az = 0 (35)
(k+1)(k+2)agy +ar-1=0
Then
Ak-1
_ 36
M2 = T Dk + 2) (36)
So, if
_ — _ 4
KEl=d: = 55
- — _ 9
K== = 5@
- - __% _
K—3—)a5 = @)(5) 0
— — __93 _ _%
K=4—ae = (5)(6) ~ 2356
Ks5—a, = — ——— = —1

67 3467

L ___________________________________________________________________________________________|
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- —__9 _
K—6—>a8 - (7)(8) 0
KeT—ag = — —o = —°

T (8)(9)  235:6:8°9

Substituting in

=ay + a;x + a,x? + azx3 + ayx* + asx® + agx® + a;x” + - (37)
y 0 3

_ G0 3 Q1 4 0 6 a, 7 o) 9, ...
y = Go + arx 23% 34" t 2356 t 3467 © t 235689 + (38)
EXERCISES:

Solve the following equations using the power series method:

1.%=x2—y
2.(1—=x%)y" = 2xy' +6y =0
3y"+y ' —xy=0

4y" —y=0

5y =x+y

6. x*2+1)y"+xy'—y=0

7.9y" +x*y' +xy =0

L ___________________________________________________________________________________________|
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