جامعة بغداد

كلية التربية للعلوم الصرفة ابن الهيثم

قسم الرياضيات

المرحلة الثانية

المعادلات التفاضلية الاعتيادية Ordinary Differential Equations

CHAPTER SEVEN

POWER SERIES SOLUTION OF THE LINEAR DIFFERENTIAL EQUATION

اساتذة المادة

اسانده الماده الماده الماده الم. الم. عصواد أ.م.د. مي مجد هلال ا.م. سماهر مرز ياسين

طباعة ا.م. اسماء عبد عصواد

Content	Page
Introduction	3
1.Basic definitions	3
2.Maclaurin Series	4
3.The power series method (the power series solution about x=0)	5
4.Some properties of power series	9
Exercises	11
RANKA HEBO. MIR.	

Introduction:

The power series method is a standard basic method for solving linear differential equation with variable coefficients. It gives solutions in the form of power series, this explains the name.

1.Basic definitions:

1. Power series: An infinite series of the form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots$$
 (1)

is called a **power series in** $(x-x_0)$.

where $a_0, a_1, a_2,...$ are constants, called the coefficients of the series. x_0 is called the center of the series.

for example: the power series $\sum_{n=0}^{\infty} (x+1)^n$ is centered at $x_0 = -1$

2. A power series in x: It is an infinite series (1) when $x_0 = 0$

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$
 (2)

3. **Ordinary point:** A point $x = x_0$ is called an ordinary point of the equation:

$$y'' + P(x)y' + Q(x)y = 0 (3)$$

If both the functions P(x) and Q(x) are analytic at $x=x_0$.

4. **Singular point:** If the point $x=x_0$ is not an ordinary point of the diff. eq.(3), then it is called a *Singular point* of eq.(3).

There are two types of singular points:

- (i) regular Singular point
- (ii)irregular Singular point

A singular point $x=x_0$ of the diff. eq. (3) is called **regular singular point** of the Diff. eq. (3) if both $(x-x_0)P(x)$ and $(x-x_0)^2Q(x)$ are analytic at $x=x_0$.

A singular point, which is not regular is called an irregular singular point.

5. Standard equation: equation (3) that in the form

$$y'' + P(x)y' + Q(x)y = 0$$

Is called a standard equation.

Example 1.1: Determine whether x=0 is an ordinary point or a regular singular point of the differential equation $2x^2y'' + 7x(x+1)y' - 3y = 0$.

Sol. Dividing by $2x^2$, the given equation becomes,

$$y'' + \frac{7(x+1)}{2x}y' - \frac{3}{2x^2}y = 0 (4)$$

Comparing (4) with (3) we have

$$P(x) = \frac{7(x+1)}{2x}$$
 and $Q(x) = -\frac{3}{2x^2}$

Since both P(x) and Q(x) are undefined at x=0, so both P(x) and Q(x) are not analytic at x=0. Thus x=0 is not ordinary point so x=0 is a singular point

Also,
$$(x-0)P(x) = \frac{7(x+1)}{2}$$
 and $(x-0)^2 Q(x) = -\frac{3}{2}$

Are analytic at x=0. Then x=0 is a regular singular point.

EXERCISES:

- 1. Show that x=0 is an ordinary point of y'' xy' + 2y = 0.
- 2.Show that x=0 is an ordinary point of $(x^2-1)y'' + xy' y = 0$, but x=1 is a regular singular point.
- 3. Determine the nature of the point x=0 for the equation $xy'' + y \sin x = 0$

2. Maclaurin Series:

Some functions can be expressed by the power series and are called Maclaurin series:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$$
 (5)

Where |x| < 1, its called the geometric series.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$
 (6)

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
 (7)

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 (8)

3. The power series method (the power series solution about x=0):

Suppose the second order linear diff. eq. in the standard form is:

$$y'' + P(x)y' + Q(x)y = 0 (3)$$

and x=0 is an ordinary point. Therefore, to solve the above equation we take the following power series,

$$y = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$
 (9)

Differentiating (9) twice w.r.t. (x), we get

$$y' = \sum_{n=1}^{\infty} na_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + \dots$$
 (10)

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = 2a_2 + 3 \cdot 2a_3 x + 4 \cdot 3a_4 x^2 + \dots$$
 (11)

Substituting equations. (9), (10) and (11) in (3) and collecting the like terms into x (which have the same powers), equating to zero the coefficients of the smallest power of x starting with the constant terms, the terms containing x, the terms containing x^2 , etc.

This gives us a relation between the coefficients which helps in determining the nature of the solution.

Remark: A solution of the form $y = \sum_{n=0}^{\infty} (x - x_0)^n$ is said to be a solution about the ordinary point x_0

Example 3.1: Solve
$$y' - y = 0$$
 about $x = 0$ (12)

Sol: starting with (9) and (10)

$$y = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$
 (9)

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + \dots$$
 (10)

Substituting in (12), we get

$$(a_1 + 2a_2x + 3a_3x^2 + \cdots) - (a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots) = 0$$
 (13)

Now we collect the terms of similar power to x:

$$(a_1 - a_0) + (2a_2 - a_1)x + (3a_3 - a_2)x^2 + \dots = 0$$
(14)

Then

$$(a_1 - a_0) = 0 \ \to a_1 = a_0$$

$$(2a_2 - a_1) = 0 \to a_2 = \frac{a_1}{2} = \frac{a_0}{2!}$$

$$(3a_3 - a_2) = 0 \rightarrow a_3 = \frac{a_2}{3} = \frac{a_0}{3(2)} = \frac{a_0}{3!}$$

. . .

Substituting in (9), we get:

$$y = a_0 + a_0 x + \frac{a_0}{2!} x^2 + \frac{a_0}{3!} x^3 + \cdots$$
 (15)

()r

$$y = a_0 \left(1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \dots \right) = a_0 e^x$$

Example 3.2: Solve
$$y' = 2xy$$
 about $x = 0$ (16)

(use the power series method)

Sol: we arrange the equation as follows

$$y' - 2xy = 0 \tag{17}$$

From (9) and (10)

$$y = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + \cdots$$

Substituting in (17) we get

$$(a_1 + 2a_2x + 3a_3x^2 + \cdots) - 2x(a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots) = 0$$

$$(a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + 6a_6x^5 + \cdots) - (2a_0x + 2a_1x^2 + 2a_2x^3 + 2a_3x^4 + 2a_4x^5 + 2a_5x^6 + \cdots) = 0$$

$$(18)$$

Then

$$a_1 = 0$$
 $a_2 = 2a_0 \rightarrow a_2 = a_0$

$$3a_3 = 2a_1 \rightarrow a_3 = 0$$
 *

$$4a_4 = 2a_2 \rightarrow a_4 = \frac{a_2}{2} \rightarrow a_4 = \frac{a_0}{2!}$$

$$5a_5 = 2a_3 \rightarrow a_5 = 0 \qquad *$$

$$6a_6 = 2a_4 \rightarrow a_6 = \frac{a_4}{3} \rightarrow a_6 = \frac{a_0}{3!}$$

. . .

Note that the odd coefficients are equal to zero.

Substituting in (18) we get:

$$y = a_0 \left(1 + x^2 + \frac{x^4}{2!} + \frac{x^6}{3!} + \dots \right) \tag{19}$$

$$= a_0 \sum_{n=0}^{\infty} \frac{(x^2)^n}{n!} = a_0 e^{x^2}$$
 (20)

Example 3.3: Solve
$$y'' + y = 0$$
 about $x=0$ (21)

(use the power series method)

Sol: From (9) and (11)

$$y = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$
 (9)

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = 2a_2 + 3 \cdot 2a_3 x + 4 \cdot 3a_4 x^2 + \dots$$
 (11)

Substituting in (21), we get

$$(2a_2 + 3 \cdot 2a_3x + 4 \cdot 3a_4x^2 + \dots) + (a_0 + a_1x + a_2x^2 + \dots) = 0$$
 (22)

Collecting like powers of x, we find

$$(2a_2 + a_0) + (3 \cdot 2a_3 + a_1)x + (4 \cdot 3a_4 + a_2)x^2 + \dots = 0$$
(23)

Then

$$2a_2 + a_0 = 0$$
 $\rightarrow a_2 = -\frac{a_0}{2} = -\frac{a_0}{2!}$

$$3 \cdot 2a_3 + a_1 = 0 \rightarrow a_3 = -\frac{a_1}{3 \cdot 2} \rightarrow a_3 = -\frac{a_1}{3!}$$

$$4 \cdot 3a_4 + a_2 = 0 \rightarrow a_4 = -\frac{a_2}{4 \cdot 3} \rightarrow a_4 = \frac{a_0}{4!}$$

. . .

Substituting in (9) we get

$$y = a_0 \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots \right) + a_1 \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \right)$$
 (24)

 $= a_0 \cos x + a_1 \sin x$

4.Some properties of power series:

I.
$$\sum_{n=p}^{k} F(n) = F(p) + F(p+1) + \dots + F(k)$$
 , $k > p$ (25)

Where k and p are integer numbers.

$$\mathbf{II.} \sum_{n=p}^{\infty} a_n F(n) x^{n+p} = \sum_{n=0}^{\infty} a_{n+p} F(n+p) x^{n+2p}$$
 (26)

III.
$$\sum_{n=k}^{\infty} a_n x^{n-k} + \sum_{n=m}^{\infty} a_n x^{n-m} = \sum_{n=0}^{\infty} a_{n+k} x^n + \sum_{n=0}^{\infty} a_{n+m} x^n$$
$$= \sum_{n=0}^{\infty} (a_{n+k} + a_{n+m}) x^n$$
(27)

IV. If
$$\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n \to a_n = b_n$$
, $\forall n \ge 0$ (28)

For example: if $\sum_{n=1}^{\infty} n a_n x^n = \sum_{n=1}^{\infty} a_{n-1} x^n$ then

$$na_n = a_{n-1} \to a_n = \frac{a_{n-1}}{n}$$

So, if
$$n=1 \rightarrow a_1 = a_0$$

if n=2
$$\to a_2 = \frac{a_1}{2} \to a_2 = \frac{a_0}{2}$$

if n=3
$$\rightarrow a_3 = \frac{a_2}{3} \rightarrow a_3 = \frac{a_0}{3!2} = \frac{a_0}{3!}$$

V.(Identity property of power series):

If $\sum_{n=0}^{\infty} a_n x^n = 0$, for every x number in the interval of convergence (i.e. in a neighbourhood of 0), then $a_n = 0$, for all n.

Example 4.1: Solve
$$y'' + xy = 0$$
 (29)

Sol: Let $y = \sum_{n=0}^{\infty} a_n x^n$ and $y'' = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$

Substituting in (29) ,we get:

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + x \sum_{n=0}^{\infty} a_n x^n = 0$$
(30)

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=0}^{\infty} a_n x^{n+1} = 0$$
 (31)

$$2a_2 + \sum_{n=3}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=0}^{\infty} a_n x^{n+1} = 0$$
 (32)

From property II, we get,

$$2a_2 + \sum_{k=1}^{\infty} (k+1)(k+2)a_{k+2}x^k + \sum_{k=1}^{\infty} a_{k-1}x^k = 0$$
 (33)

Where for the second term we take $k=n-2 \rightarrow n=k+2$, so if n=3 then k=1

And for the third term we take $k=n+1 \rightarrow n=k-1$, so if n=0 then k=1

From property III, eq. (33) will be:

$$2a_2 + \sum_{k=1}^{\infty} [(k+1)(k+2)a_{k+2} + a_{k-1}] x^k = 0$$
 (34)

From property V, we get:

$$2a_2 = 0 \to a_2 = 0 \tag{35}$$

$$(k+1)(k+2)a_{k+2} + a_{k-1} = 0$$

Then

$$a_{k+2} = -\frac{a_{k-1}}{(k+1)(k+2)} \tag{36}$$

So, if

$$K=1 \rightarrow a_3 = -\frac{a_0}{(2)(3)}$$

$$K=2 \rightarrow a_4 = -\frac{a_1}{(3)(4)}$$

$$K=3 \to a_5 = -\frac{a_2}{(4)(5)} = 0$$

$$K=4 \rightarrow a_6 = -\frac{a_3}{(5)(6)} = \frac{a_0}{2 \cdot 3 \cdot 5 \cdot 6}$$

$$K=5 \rightarrow a_7 = -\frac{a_4}{(6)(7)} = \frac{a_1}{3 \cdot 4 \cdot 6 \cdot 7}$$

$$K=6 \to a_8 = -\frac{a_5}{(7)(8)} = 0$$

$$K=7 \rightarrow a_9 = -\frac{a_6}{(8)(9)} = \frac{a_0}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}$$

. . .

Substituting in

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + \cdots$$
 (37)

$$y = a_0 + a_1 x - \frac{a_0}{2 \cdot 3} x^3 - \frac{a_1}{3 \cdot 4} x^4 + \frac{a_0}{2 \cdot 3 \cdot 5 \cdot 6} x^6 + \frac{a_1}{3 \cdot 4 \cdot 6 \cdot 7} x^7 + \frac{a_0}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9} x^9 + \dots$$
 (38)

EXERCISES:

Solve the following equations using the power series method:

$$1.\frac{dy}{dx} = x^2 - y$$

2.
$$(1-x^2)y'' - 2xy' + 6y = 0$$

$$3. y'' + y' - xy = 0$$

$$4.y'' - y = 0$$

5.
$$y' = x + y$$

6.
$$(x^2 + 1)y'' + xy' - y = 0$$

7.
$$y'' + x^2y' + xy = 0$$

