College of Education for Pure Science Ibn-AL-Haithem/Dep. Of Computer Science
Third stage

Compilers / <laa sia

CHAPTER ONE

saadlae 12 Al o) sodlall (ke

2025 - 2026

Compilers
University of Baghdad

College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

REFRENCES:-

e Compilers Principles, Techniques and Tools by Alferd V.Aho.
e Compiler Construction for Digital Computers by David Gries.
¢ Introduction Theory of Computer Science by E.R. Krishuamugthy.
gl e clinde (el 42 by Luulal) ey cla) clan e avauatl M 4§yl o
A Compiler

Is a program that reads a program written in one language -the
Source Language- and translates it into an s equivalent program in
another language - the Target Language -.

A compiler translates the code written in one language to some other
language without changing the meaning of “the’ program. It is also

expected that a compiler should make #he target code efficient and

optimized in terms of time and spaee.

Source Program) Target Program
Compiler >

v

»

ErrO\iMessages

Compiler Design

Computers are a balanced mix of software and hardware. Hardware is
just a piece of mechanical device and its functions are being
controlled by compatible software. Hardware understands instructions
inytheaform of electronic charge, which is the counterpart of binary
language in software programming. Binary language has only two

alphabets, 0 and 1. To instruct, the hardware codes must be written in

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

binary format, which is simply a series of 1s and 0s. It would be a
difficult task for computer programmers to write such codes, which is

why we have compilers to write such codes.

Language Processing System

Any computer system is made of hardware and software. The
hardware understands a language, which humans cannot understand.
So we write programs in high-level language, which is easier for us to
understand and remember. These programs are then fed into a series
of tools and OS components to get the desired code that can be used

by the machine. This is known as Language Processing System.

Source Code

Pre-processed _ ...~
Code ...
e, N
‘ Compiler ’
~ Target _..
Assembly Code " d
‘ Assembler ’

> —— Library files/
Linker Relocatable
4— modules

Executable ...
Machine Code "

Memiory

The high-level language is converted into binary language in various

phases. A compiler is a program that converts high-level language to

-2-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

assembly language. Similarly, an assembler is a program that converts
the assembly language to machine-level language.

Let us first understand how a program, using C compiler, is executed
on a host machine.

1.User writes a program in C language (High-Level Language).
2.The C compiler compiles the program and translates it to
assembly program (Low-Level Language).
3.An Assembler then translates the assembly program into
machine code (object).
4.A Linker tool is used to link all the parts of the program together
for execution (Executable Machine Code).
5.A Loader loads all of them into memory and then the program is
executed.
Before diving straight into the concepts of compilers, we should
understand a few other tools that work closely with compilers.
Preprocessor
A preprocessor, generally considered as a part of compiler, is a tool

that produces input for compilers.

Interpreter

An interpreter, like a compiler, translates high-level language into
low-level machine language. The difference lies in the way they read
the source code or input. A compiler reads the whole source code at
once, creates tokens, checks semantics, generates intermediate code,
executes the whole program and may involve many passes. In
contrast, an interpreter reads a statement from the input converts it
to an intermediate code, executes it, then takes the next statement in

-3-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

sequence. If an error occurs, an interpreter stops execution and
reports it. Whereas a compiler reads the whole program even if it
encounters several errors.

Assembler

An assembler translates assembly language programs into machine
code. The output of an assembler is called an object file, which
contains a combination of machine instructions as well as the data
required to place these instructions in memory.

Linker

Linker is a computer program that links and merges various object
files together in order to make an executable file. The major task of a
linker is to determine the memory location where these files will be
loaded.

Loader

Loader is a part of operating system and is responsible for loading
executable files into memory and executes them. It calculates the size

of a program (instructions and data) and creates memory space for it.

Compiler Architecture:-

A compiler can broadly be divided into two phases based on the way
they compile.

1. Analysis Phase
Known as the Front-End of the compiler, the analysis phase of the
compiler reads the source program, divides it into core parts and then

checks for lexical, grammar and syntax errors. The analysis phase

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

generates an intermediate representation of the source program and
symbol table, which should be fed to the Synthesis phase as input.

2. Synthesis Phase
Known as the Back-End of the compiler, the synthesis phase generates
the target program with the help of intermediate source code

representation and symbol table.

Front-end . Back-end

F Analysis _\ /—. Synthesis ﬂ
Intermediate -

Source Code Machine
Code Representation Code

The Phases of a Compiler :-

The compilation process is a sequence of various phases. Each phase
takes input from its previous stage, has its own representation of
source program, and feeds its output to the next phase of the

compiler. Let us understand the phases of a compiler.

1. Lexical Analyzer. A y0 ghill il &y
2. Syntax Analyzer. Jubill ds y0 Saclgill Ll
3. Semantic Analyzer. S gizall
4. Intermediate Code Generator. gl ol il g b o
5. Code Optimizer. Ol gall i ds o
6. Code Generator. ol s go

In each phase we need variables that can be obtained from a table
called Symbol Table manager, and in each phase some errors may be
-5

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

generated so we must have a program used to handle these errors, this

program called Error Handler.

Source Program

l

Lexical analyzer

A 4

Syntax analyzer

A 4

Semantic analyzer

A A
S ols TItermedaiate coae
Generator Handler

Manager

A 4
A 4

A\ 4

Code Optimizer

\ 4

Code Generator

l

Target Program

>» Lexical Analyzer :- Is the initial part of reading and analyzing

the program text (source program); The text is read (character by
charaecter) and divided into tokens, each of which corresponds to a
symbol in the programming language, e.g., a variable name,
keyword or number.

» Syntax analyzer :- The next phase is called the syntax analysis

or parsing. It takes the token produced by lexical analysis as input

-6-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

and generates a parse tree (or syntax tree) that reflects the
structure of the program. This phase is often called parsing.

» Semantic Analysis:- Semantic analysis checks whether the
parse tree constructed follows the rules of language. Also is known
as Type checking which main function is to analyze,the, syntax
tree to determine if the program violates certain (consistency
requirements, such as, if a variable is used but notudeclared,
assignment of values is between compatible! data types, and

adding string to an integer.

>» Intermediate Code Generator :-' After) syntax and semantic

analysis, It is in between the high-level language and the machine
language. This intermediate code should be generated in such a
way that it makes it easier to be translated into the target
machine code. This phase bridges the analysis and synthesis

phases of translation.

>» Code Optimization. phase :- The code optimization phase

attempts to improve the intermediate code which results that the
output runs. faster and takes less space. Optimization can be
assumed as),something that removes unnecessary code lines, and
arranges/ the sequence of statements in order to speed up the

program execution without wasting resources (CPU, memory).

» Code Generator :- The final phase of complier is the generation

of target code, which represents the output of the code generator

in the machine language.

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

» Symbol Table :- 1t is a data-structure maintained throughout all

the phases of a compiler. All the identifiers’ names along with
their types are stored here. The symbol table makes it easier for
the compiler to quickly search the identifier record and retrieve
it.

» Error Handler :- Each phase can produce errors: However, after
detecting an error, a phase must deal with that error, so that the
compilation can proceed. So dealing with that erroriis done by a
program known as Error Handler which.is software used to handle

any error that may be produced from any phase and it is needed

in all phases of the compliers.

Note :- Each phase of the complier has two inputs and two outputs; for
example:- for the first phase (Lexical Analyzer) the first input to it is
the source program while the second input is some variables that may
be needed in that phase; while the first output is the errors that may
be generated in it and will,be manipulated by the Error Handler
program, and the second output from it will represent the input for the

next compiler. phase (Syntax).

Lexical Analysis:- A Review

Lexical analysis is the first phase of a compiler. It takes the
modified source code from language preprocessors that are written in
the:form of sentences. The lexical analyzer breaks these syntaxes into
a series of tokens, by removing any whitespace or comments in the

source code.

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

In programming language, Keywords, constants, identifiers,
strings, numbers, operators and punctuations symbols can be
considered as tokens.

For example, in C language, the variable declaration line
int value = 100;

Contains the tokens:-

int keyword
value identifier
= operator
100 constant
; symbol

The lexical analyzer also follows rule priority where a reserved
word, e.g., a keyword, of a language is'given priority over user input.
That is, if the lexical analyzer finds a lexeme that matches with any
existing reserved word, it.should generate an error.

If the lexical analyzer finds a token invalid, it generates an error.
The lexical analyzer works closely with the syntax analyzer. It reads
character streams from the source code, checks for legal tokens, and

passes the data tojthe syntax analyzer when it demands.

fokens

|a=— | lexemes .| Lexical Syntax

e . . L

——— | Analyzer Analyzer

o e |

= | —‘V_/ '

request for tokens

source-code

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter One

Specifications of Tokens

Let us understand how the language theory undertakes the following

terms:

Alphabets
Any finite set of symbols {0,1} is a set of binaryalphabets,

{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F} is a set of Hexadecimal alphabets; {a-z,
A-7} is a set of English language alphabets.

Strings

Any finite sequence of alphabets is called,a string. Length of the
string is the total number of occurrence of alphabets, e.g., the length
of the string tutorials point is 14 and is denotéd by |tutorialspoint| =

14. A string having no alphabets, i.e."a string of zero length is known

as an empty string and is denoted by,€ (epsilon).

Language

A language is considered/as\a finite set of strings over some finite
set of alphabets. Computer languages are considered as finite sets, and
mathematically set operations can be performed on them. Finite
languages can be described by means of regular expressions.

The various,operations on languages are:
¢ AUnien oftwo’languages L and M is written as
LUM={s|sisinL orsisin M}
¢ Concatenation of two languages L and M is written as
LM ={st|sisinLand tisin M}
e The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

-11-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter One

Grammars
A grammar is a set of formal rules for constructing correct

sentences in any language; such sentences are called Grammatical

Sentences.

Concatenation
We define the Concatenation of two symbols U and V by:-
UV={X| X=uv,uisinUand visin V}
Note that:- UV = VU
U (VW) = (UV) W

Example g:z:-
Let) = {0,1} and U= {000,111} and V= {101,010}

= UV={000101, 000010, 111101,111010}

= VU= {101000, 101111, 010000, 010111}
= UV £ VU

Example g:z:-
Let) ={a,b,c,d}; U= {abd, bed} 5V={bcd, cab} and W= {da, bd}
To prove the following:2\U (VW) = (UV) W
First, take the left side;
U (VW) ={abd, becd} {bcdda, bcdbd, cabda, cabbd}
= {* abdbcdda, abdbcdbd, abdcabda, abdcabbd, bcdbcdda,
bcdbcdbd, “bcdcabda, bcdcabbd }
Second; take the right side;
(UV) W= { abdbcd, abdcab, bcdbcd, bedcab} {da , bd}
= { abdbcdda, abdcabda, bcdbcdda, bcdcabda, abdbcdbd,
abdcabbd, bcdbcdbd, bedcabbd }
- U (VW) = (UV) W

-11-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

Closure or Star Operation :-

This operation defines on a set S, a derived set S*, having as members
the empty word and all words formed by concatenating a finite number of
words in S, as shown below:-

s =s‘us‘us’u ...
Where :-
S0—¢ and i — il for i>0

Example :-
LetS = {01, 11}, then

S$*={¢, 01,11, 0101,0111,1101,1111, 010101, 010411, 3
A A\ A J \ A

P Y Y
SO Sl SZ .

SS

Formalization:-
A phrase structure grammar is\of the form G= (N, T, S, P); where:-
N = A finite set of non-terminal symbols denoted by A, B, C,...
T = A finite set of terminal symmbols denoted by a, b, c,...
With N U T =V and N*) T= ¢ (null set).
P = A finite set of ordered pairs (o, 3) called the Production Rules, o
and [3 being the string over V* and o involving at least one symbol from

N.
S =ds a'special symbol called the Starting Symbol.

-12-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

Example :-

LetG= (N, T, S, P); N={S, B, C}, T= {a, b}

P= {(S — aba), (SB —b), (b—bB), (b—A)}

This grammar is not a structure grammar because of the production
rule b —-bB because the left side of this rule containing only, as4erminal
symbol (b) and in any production rule the left side must involve at least
one non-terminal symbol.

Example :-

Let G= (N, T, S, P) where N= {S, A}, T= {a, b}

P= {(S—aAa), (A—bAb), (A—a)}

S —» aAa —» abAba —» abbAbba — abbabba

Note :-
1. The production rules can be'\writtenjin another form, for the above
example, the production rule is written as follows:-
P= {(S, aAa), (A, bAb), (A, a)}
2.Some times it may %be'\that two different grammars G and G
generated the sa@me language L (G)=L(G) .. the grammars are said

to be equivalent.

Example :-

G= (N,T,S,P)

N= {number, integer, fraction, digit}

T={, 0,1, 2, 3, ..., 9}

S=number

P={(number—integer fraction), (integer—digit), (integer— integer digit),

(fraction—.digit), (fraction—fraction digit),(digit—0), (digit—1),

-13-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

(digit—2), (digit—3), (digit—4), (digit—5), (digit—6), (digit—7), (digit—8),
(digit—9)}
Now we want to prove if the following number is accepted or not

753.127

number
/ \
integer fraction
integer digit fraction digit
SN TN
integer igit 3 . digit 2
| 1
digit 5 1
1
7

Kinds of Grammar Description :-

1. Transition Diagram.

. BNF (Backus_ Naur form).
. EBNF.

<Cobol_Meta Language.

. Syntax Equations.

o UL~ W N

- Regular Expression (R.E.).

-14-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

By using BNF the grammar can be represented as follows:-
(For the previous example)

G=(N,T,S,P)

N= {<number>, <integer>, <fraction>, <digit>}

T=4{, 0, 1, 2, 3, ..., 9}

S= <number>

Production rules P will be represented as follows:

<number> ::= <integer> <fraction>

<integer> ::= <digit>|<integer> <digit>
<fraction> ::= .<digit>|<fraction> <digit>
<digit> ::= 0]|1|2|3]|4|5]|6]|7]|8]|9

Regular Expression (R.E.)

The lexical analyzer needs to scan and identify only a finite set of
valid string/token/lexemesthat belong to the language in hand. It
searches for the pattern defined by the language rules.

Regular expressions: thave the capability to express finite
languages by defining a pattern for finite strings of symbols. The
grammar defined by regular expressions is known as regular grammar.

The language defined- by regular grammar is Kknown as regular
language.

The various operations on languages are:
o, Unionoftwo languages L and M is written as
LUM={s|sisinL orsisin M}
e Concatenation of two languages L and M is written as
LM = {st| sisin L and tis in M}
e The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

-15-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

2
For example, R* is R.E. denoting {€¢}U L - UL - U.. U LnR

The main components of RE are
1. € or A is R.E. denoting by L°={€}=L
2. Any terminal symbol like a is R.E. denoting L={a}
3. [a-z] is all lower-case alphabets of English language.

4. [A-Z] is all upper-case alphabets of English language.

5. [0-9] is all natural digits used in mathematics.

Transformation of R.E. to Transitien Diagram

(Formal Method)

1. For each non terminal NT draw'a circle.
2. Connect with arrows between any two circles with respect to the
following rules:-
e If NT—>NT connect the two circles with arrow labeled A or €.
e IfNT—>T NT conmectthe two circles with arrow labeled T.
e If NT>T creates a new circle with a new NT (final) then
connect (the left-hand side NT of the rule and the new NT
with‘arrow labeled T.

o IfNT->T'S NT create circles (as the length of T's-1).

-16-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

Example :-
Let G= {{S, R, U},{a, b}, S, P}

P=
S—>a

R — abaU
U—>b

S — bU
R—>U
U — aS

S > bR

Transformation of BNF te Transition Diagram

(Informal Method)

1. Draw a separate transitionidiagram for each production rule.
2. Substitute each mon-terminal symbol by its corresponding
transition diagrams.
Example :-
G=(N,T,S, P)
N= {<number>; <integer>, <fraction>, <digit>}
T=4{.,0, 1,2, 37..., 9}
S= <number>

P=
<number> ::= <integer> <fraction>

<integer> ::= <digit>|<integer> <digit>
<fraction> ::= .<digit>|<fraction> <digit>

<digit> == 0]1|2|3]4|5|6|7|8]9
-17-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

Now we take each production rule and draw to it a separate transition
diagram:-

<number> ::= <integer> <fraction>

:<integer> Q<fracti0n>:
<integer> ::= <digit>|<integer> <digit>

<digit>
(O—©x

<fraction> ::= .<digit>|<fraction> <digit>

<digit> == O0[1/2[314(5]6|7|8]9

Qs-0

>

-18-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

Now we must substitute each non-terminal symbol by its corresponding

<fraction> @

transition diagram.

<digit>
> O

<digit>] <digit>
> —

<digj <digft>
> 0-9 () 0-9
0-9 0-9

-19-

College of Education for Pure Science Ibn-AL-Haithem /Dep. Of Computer Science
Third stage

Compilers / <laa sia
CHAPTERTWO

MH& .\5 Z\:MU e‘ “oalall Ja A

2025 - 2026

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Lexical Analyzer Design

Lexical analysis is the first phase of a compiler. It takes modified
source code from language preprocessors that are written in the form of
sentences. The lexical analyzer breaks these syntaxes into a series of
tokens, by removing any whitespace or comments in the source code.

If the lexical analyzer finds a token invalid, it generates an error.
The lexical analyzer works closely with the syntax analyzer. It reads
character streams from the source code, checks for legal tokens, and
passes the data to the syntax analyzer when it demands.

The main sub-phases of the Lexical analyzer phase are shown below

in the following figure:-

Grammar

Transition Diagram

A\ 4

Non-Deterministic Finite
State Automata (NDFSA)

\ 4

Deterministic Finite State
Automata (DFSA)

\ 4

Minimize of DFSA

\ 4

Recognizer

-22-

Compilers

University of Baghdad
College of Education for Pure Science 20_25'2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Two

e The grammar will converted to a Transition Diagram using special
algorithm.

e The converted Transition Diagram must be checked whether if it is
in NDFSA form or not; if so, the grammar must converted to DFSA
using algorithm which will be described in this chapter.

e The resulted grammar will be in DFSA form which must be
minimized to reduce the number of nodes depending on algorithm
designed for this purpose (fast searching and minimum memory
storage).

e The final sub-phase in lexical analyzer phase is to recognize if the
input string or statement is accepted or not depending on a specific

gramimar.

Finite State Automata (FSA):-

Is a mathematical model consists of:-
1. A set of terminal symbols
2. Transition functions
3. One-Initial state (Start state)
4. One or Set of Final states
5. Finite set of elements called states
States : States of FSA are represented by circles. State names or
numbers are written inside circles.
Start state : The state from where the FSA starts, is known as the start

state. Start state has an arrow pointed towards it.

-22-

Compilers

University of Baghdad
College of Education for Pure Science 20_25'2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Two

Final State :- If the input string is successfully parsed, the automata is
expected to be in this state. Final state is represented by double circles,
it is also called the Accepting State.

A transition :- Is denoted by an arrow connecting two states, the arrow
is labeled by the symbol (possibly e). The transition from one state to
another state happens when a desired symbol in the inputis found. Upon
transition, automata can either move to the next state or stay in the same
state. Movement from one state to another is'shown as a directed arrow,

where the arrows points to the destination state.

o

Two types of FSA :-
¢ _Non-Deterministic Finite State Automata (NDFSA)

e Deterministic Finite State Automata (DFSA)
FSA is of NDFSA if one of these two conditions is satisfied:-
1. There are more than one transition have the same label from that

state to another states.

2. There is a € - transition.

-22-

Compilers

University of Baghdad
College of Education for Pure Science 20_25'2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Two

A transition, represent FSA of type | A transition, represent FSA of type

DFSA.

Formal method for converting R.E. to NDFSA :-

@ If we have an R.E.= € then the NDFSA will be as follows:-
@_ﬁ, where i = initial state, f =final state
@ If we find a terminal symbol like a, then the NDFSA will be as

follows:- ° a @

Q If we have P|Q

:

OO

-23-

Compilers

University of Baghdad
College of Education for Pure Science 20_25’2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Two

@ If we have P.Q

@IfwehaveQ>l<
€
A‘
: +.(©
&

-22-

Compilers

University of Baghdad
College of Education for Pure Science 20_25’2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Two

Examples :-

1 RE= letter (letter | digit)*

letter

letter

2.RE=(a|b)” e

-22-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

4. RE=((A|a)b")*

Data structure representation of FSA :-

® Transition Matrix

We must have a matrix with the number of its rows equal to the number
of the FSA states in the diagram while the number of its columns in this
matrix equal to the number of its inputs (labels).

This type of representation has a disadvantage that it contains many

blank spaces, while the advantage of this type is that the indexing is fast.

For example:-
0-9 .
@L@ ; a 1 [21 #
O ' 2 [2 [3
& 3 4 | #
4 4 #

-22-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

@ Graph Representation

In this representation we have a fixed number of columns which is equal
to 2 and the labels of these two columns are Input Symbol & Next State
while the number of rows differs from one transition diagram to another
and these rows are labeled by the number of states. The disadvantage of
this representation is that it takes a long time for searching (search slow)

while the advantage of this representation is that it'is compact.

For the previous example:-

Input Next

Symbol State

ORNOS=O e
\J 2 0'9

@ P

3 0-9 4

4 0-9 4

-22-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Transformation of NDFSA to DFSA:-

Before we use an algorithm to convert the grammar which is NDFSA

form to DFSA form, we must deal with a special function known as €-

Closure Function, which can be explained using the _ following

procedure:-

Function &-Closure (M) :-
> Begin

Push all states in M into stack;

Initialize £-Closure (M) to M;
While stack is not empty do
> Begin

Pop S;

For each state X with an edge labeled € from S to X do

If X is not in E-Closure (M) then
> Begin

Push X;

Add X to ¢-Closure (M);

L, End;
End;

'S

End;

-22-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Example :-
R.E.= abc|d”™

To compute randomly the €-Closure for the following states:-
&-Closure ({0}) ={0, 1,5, 6, 8,9}
E-Closure ({1}) = {1}
&-Closure ({7,8}) ={7, 8,9, 6}

&-Closure ({2, 3,4})={2, 3,4, 9}

-20-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Algorithm for transforming NDFSA to DFSA:-

Initially let x= £-Closure ({So}) marked as the start state of DFSA, Sy is the
start state of NDFSA;
While there is unmarked states X = {S1, Sz, ... ,Sn} of DFSA do

Begin

For each terminal symbol (a € 2) do
Begin
Let M be the set of states to which there is transition on a from

some states Siin X ;

Y = ¢-Closure ({ M });

If Y has not yet been added to the set of states of DFSA then make
Y an unmarked state of DFSA;

Create an edge by adding a transition from X to Y labeled a if not
present;

End;
End;

End {algorithm}

-32-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Examples:-
@ R.E. = Letter (letter | digit)"

letter

@ letter
/

Start State

N

Final State

rm

&€-Closure ({ 0 }) = {0} «------ Create a new node called for example A
A— letter ; M={1}; &-Closure ({1})={1,2,3,5,8} <«=------ Create a new

node called for example B (must be a final node because of node 8).

— digit ; M=O;

B — letter ; M={4}; ¢-Closure ({4})={4,7,8,2,3,5} <------ Create a new

node called for example C (must be a final node because of node 8).

— digit ; M={6}; £-Closure ({6})={6,7,8,2,3,5} <------- Create a new

node called for example D (must be a final node because of node 8).

C— letter ;M={4}; No need to create a new node because £-Closure

({4}) has been computed and by which we have node C.

digit ;M={6}; No need to create a new node because c-Closure

({6}) has been computed and by which we have node D.

-32-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

D — letter ;M={4}; No need to create a new node because E-Closure

({4}) has been computed and by which we have node C.

— digit ;M={6}; No need to create a new node because c-Closure

({6}) has been computed and by which we have node D.

Since of no nodes will be created and all the created nodes have been
manipulated, we will reach to the final step by which we have the DFSA,

this step will convert all the above work into a graph as follows:-

letter

-32-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Two

@ R.E.=((€]a)b")*

&-Closure ({0}) = {0,1,2,4,5,6,7,9,10} «-+----- Create a new node called for

example A(must be a final node because of node 10).

A— a ;M={3}; c-Closure ({3})={3,6,7,9,10,1,2,4,5} <------ Create a new

node called for example B (must be a final node because of node 10).

—> b ; M={8}; ¢-Closure ({8})={8,7,9,10,1,2,4,5,6} <------ Create a new

==

node called for example C (must be a final node because of node 10).

Br— a ;M={3}; No need to create a new node because &-Closure ({3})

has been computed and by which we have node B.

— b ; M={8); No need to create a new node because c-Closure ({8})

has been computed and by which we have node C.

Cr— a ;M={3}; No need to create a new node because E-Closure ({3})

has been computed and by which we have node B.

— b ; M={8}; No need to create a new node because c-Closure ({8})

has been computed and by which we have node C.

-33-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Since of no nodes will be created and all the created nodes have been
manipulated, we will reach to the final step by which we have the DFSA,

this step will convert all the above work into a graph as follows:-

®) R.E.=(a|b)"abb

-32-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Minimizing of DFSA:-
The purposes of minimization are:-

1. Efficiency.
2. Optimal DFSA.

Algorithm:-

1. Construct an initial partition JI of the set of states with two groups:
the accepting states F and the non accepting states S-F; where S is
the set of all states of DFSA.

2. for each group G of J1 do
Begin

partition G into subgroups such that two states Sand T of G are in
the same subgroup if and only if for all input symbols a, and states S
and T have transitions on a to states in the same group of JI, replace G

in JIew by the set of all subgroups formed .

End
3. If Jpew = JI, let Jlfingl = JI and continue with step (4), otherwise

repeat step (2) with JI :=JI .,
4. Choose one state in each group of the partition Jl;,, as the

representative for that group.

-32-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Example :-
The DFSA for the R.E. = Letter (letter | digit)* is as follows:-

letter

Groupi= {A} which represents the set of not final nodes while Group: =

{B,C,D} which represents the set of final nodes.

Always minimization acts on the nodes of the same type (on the nodes of
one group)

After applying the previous algorithm, the minimization figure will be as

follows:-

letter

-32-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Another example :-

Groupi= {A,B,C,D} which represents the set of not final nodes while
Group: = {E} which represents the set of final nodes.
Always minimization acts on the nodes of the same type (on the nodes of

one group)

After applying the previous algorithm, the minimization figure will be as

follows:-

-32-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

FSA Accepter (Recognizer):-

This will represents the final sub-phase for the lexical analyzer ,by using
a specific algorithm shown below we can specify the input string or
statement is accepted or not depending on a given grammar.

Never can apply the algorithm unless the grammar will be in minimized
orm.

First, a transition matrix must be created for a given FSA, then doing a
table having two columns, the first represents the number of states while

the other represents the symbols for a given input string.

Algorithm :-
Begin
State = Start State of the FSA;
Symbol = First Input Symbol;
If Matrix [State, Symbol] # Error Indication then
Begin
State = Matrix [State, Symbol];
Symbol = Next Input Symbol;
End
Else Input is not accepted
If State is-a Final State of FSA then Input is accepted
Else Input is not accepted

End;

-32-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Two

Example :- Having the following FSA representation shown below:-

Depending on the above representation, for 1.3$ and 379% ,you asked to

recognize which one is accepted and which one is not accepted?

Solution:-

The Transition Matrix for the above FSA:-

0-9 .
1 2 #
2 2 3
3 4 #
4 4 #

For the String=1.3 $

Input symbol

Itis accepted
because state
number 4 is a final
State

1 1
2 .
3 3
4 $

-39-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

For the String=37 $

State] Input symbol

It is not accepted because
state number 2 is not a final
state and the expression is
finished

This algorithm was slow and overlapping token, so a new algorithm can
be used to recognize the overlapping token.

For example:-

Suppose that we have this language:

{"bit", "byte", "item" , "tem"}

Now if we take the word items, we will find two words overlapping with

each other, these words are: item and tem

tem

—

items

/_I

item

-22-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

The new algorithm is known as AHO Algorithm and depends on the

following steps:-
(For the above example)
Step 1:- Constructing Tree-Structured DFSA.

(Always the input for the first node is all letters except the letters that are

outputted from it).

Every
character
except

b,i,t y
t

Step 2:- Determine fall back function f (Q) =R which is calculated as

follows:-

¢ Find largestroute o which lead to Q from a state thatis not

the start state.

e Find the route o but this time from the start state and

finished in R.
e F(Q)=R.

-22-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Q 012|3|45678|910111213

F(Q)|[o]o 7|8|0 11|12] o 11|12 13/o0]o0}o

Step 3:- Construct the Matrix Representation for the DFSA, the

number of rows in it equal to the number ob nodes found in DFSA,

while the number of columns equal to the number of characters that

form the input language.

bl i t | m y| e

0 1] 7111 0] 0 0

1 #] 2 # # | 4] #

2 #| # 3 # | #] #

T #11 #] # # | #H]| #
4 # | # 5 # | #H]| #

T #1 #]| # # | #] 6
6 #1 #]| # # | #H]| #

T #] #] 8 # | #] #
T #1 #]| # # | #] 9
9 #| #)| # 10| #] #

10 ||| # | # | # # | #H]| #

11 ||| # | # | # # | #] 12

12 ||| #) # | # | 13 | #]| #

13 ||| # | # | # # | #H]| #

-22-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Step 4:- Apply the steps of AHO Algorithm which is shown below:-

Algorithm :-
Begin
State = Start State;
Ch = First Character of Input;
While input symbols are not already exhausted do
If Matrix [State, Ch] # error indication then
— Begin
State = Matrix [State, Ch];
Ch = next Character;

— End

— Else begin
If State is a Final State then Signal;
If State = 0 then Ch= Next Character & State = Same State
Else State=f (State) & Ch=Same Character
. End;
End;

-23-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Example :-

Input String = bitemks$ for the same language {"bit", "byte" , "item",
"tem"}

After constructing Tree-Structured DFSA, and create a Transition Matrix

for it with computing the value of the fall back function

State| Ch
0 | b%}—— bit
1 1 <
> t < » item
3 e)
3 P —> tem
9 m <+—
10 k
13 k
0 k
0 $

-22-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Example :-

If you have the following language:-

{"WHAT", "WHERE"," WHEN"," WHERES","HOW"," WHY"} and you
asked to apply AHO algorithm on it to specify the words that are
overlapped with each other in this string:- (WHYOWNSE$)

Step 1:- Constructing Tree-Structured DFSA.

-22-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Step 2:- Compute fall back function f (Q) as follows:-

Q |oj1]2314)5]16])17]|8]19|10]1112)13

F(QJiojoj11gojojojgojojojojojojog1

Step 3:- Construct the Matrix Representation for the DFSA, the

number of rows in it equal to the number ob nodes found in DFSA,

while the number of columns equal to the number of characters that

form the input language.

WH|A|E|Y NJ] O S|R

H*]| #F] #*

N

) F| OF] OF] OFH] OH

) F| OF] OF] OH] H

L OF| OFH] O] OH] OH*

L OF| OFH] O] OH] OH*
=e]

H*HL F] H] OH] o

#]| %=

1
1

glo ool\lc\ml-b wlwlr—xo

#) =l =] #] #) ==l #] x| x| =] =] =~

#] #=| o] 2

#] wl %] o

#] =] a] %] o

* #| Bl #] ©
1 | | P

#| #] #] #| o

#] #] #] o

#] #] %] o

#| #] #] #| o

11

j—
w
+
+

12

Y O] OF| OH) O H) OFH| OFH] F] OO

H*
H*

HFY O HF] OF) OF] OF] OH] OH
H*

H*
3+
3+

13

-22-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

Step 4:- Apply the steps of AHO Algorithm on the string :-
(WHYOWNSES$).

State] Ch
0 | W > WHY
1 H
2 Y
10 0 — Matrix [State,Ch |=#
0 o
0 W
1 N —— Matrix [State,Ch |=#
0 N
0 S
0 E
0 $

-22-

College of Education for Pure Science Ibn-AL-Haithem/Dep. Of Computer Science
Third stage

Compilers / <laa sia

CHAPTER THREE

saadlae 12 Al o) sodlall (ke

0202-0202

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Syntax Analyzer

When an input string (source code or a program in some
language) is given to a compiler, the compiler processes it in
several phases, starting from lexical analysis (scans the input and
divides it into tokens) to target code generation.

Syntax Analysis or Parsing is the second phase, i.e. after
lexical analysis. It checks the syntactical structure of the given
input, i.e. whether the given input is in the correct syntax (of the
language in which the input has been written) or not. It does so
by building a data structure, called a Parse Tree or Syntax Tree.

The parse tree is constructed by using the pre-defined
Grammar of the language and the input string. If the given input
string can be produced with the help of the syntax tree (in the
derivation process), the input string is found to be in the correct

syntax. If not, error is reported by syntax analyzer.

Example (1):-

Suppose Production rules for the Grammar of a language are:

S — cAd

A — bcla

And the input string is “cad”.

Now the parser attempts to construct syntax tree from this
grammar for the given input string. It uses the given production
rules and applies those as needed to generate the string. To
generate string “cad” it uses the rules as shown in the given

diagram:-

-84-

University of Baghdad

College of Education for Pure Science

Compilers

Ibn-AL-Haithem/ Dep. Of Computer Science
Chapter Three

C

]

/

A

AN

d

C

S

7N
/\

2025-2026
Third Stage

1)

2)

3)

@w

In the step (3) above, the production rule A—bc was not a

suitable one to apply (because the string produced is “cbcd” not

“cad”), here the parser needs to backtrack, and apply the next

production rule available with A which is shown in the step (4),

and the string “cad” is produced.

Thus, the given input can be produced by the given

grammar; therefore the input is correct in syntax. But backtrack

was needed to get the correct syntax tree, which is really a

complex process to implement.

Example (2):-

G= ({<exp>, <operand>, <id>},{a,b,c, +, -, (,) },<exp>, P)

T={a,b,c,+,-,(,)}

P=

<exp> ::= <operand> | <exp> + <operand> | <exp> - <operand>

<operand> ::= <id> | (<exp>)

<id>:=a|b]c

-84-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Syntax analyzer utilizes syntax trees to determine whether a

statement is accepted or not. Check if a-(b+c) accepted?

<exp>
<exp> <operand>
i A
f \
\ 4
. (l)
operand>
<exp>
v A
<id> r 1
<exp> <operand>
\ 4 +
a A 4 v
<operand> <id>
\ 4 \ 4
<id> C
\ 4
b

We can use another method to determine whether a statement is
accepted or not, this method is called (Derivation Method).

There are two types of derivation:-
1. Leftmost derivation

2. Rightmost derivation

-05-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Example (3):-

Let G be a grammar with this components ({S,E,F,P,R,L}{a,b, (,
)!*-!-!xll\!/}!S)P)

P=
SO E S| +E SC -E EOT
T F FL P Plb R a(L)
ECE+T EOTxF F[] FAP LOS
S E-T ET/F Plla P (S)

Is ax(b+a) accepted or not?
Leftmost derivation :-

S El] TxF [FxF [1 PxF [axF [] axP [ax (S) [ax(E)[ax(E+T) [
ax(T+T) [ax(F+T) [ax(P+T) [l ax(b+T) [ax(b+F) [ax(b+P)

Jax(b+a) .. ax(b+a) is accepted

Rightmost derivation :-
S JE [OTxF [0 TxP [Tx(S) [J Tx(E) [J Tx(E+T) [Tx(E+F) [Tx(E+P)

Tx(E+a) [Tx(T+a) [Tx(F+a) [Tx(P+a) [Tx(b+a) [/Fx(b+a) [

Px(b+a) [1 ax(b+a) .. ax (b+a) is accepted

Context-Free Grammars:

The syntax of a programming language is described by
context-free grammar (CFG). CFG consists of a set of terminals, a

set of non-terminals, a start symbol, and a set of productions.

-05-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Ambiguity

A grammar that produces more than one parse tree for some
sentence is said to be ambiguous.

Example:-

consider a grammar

S—aS|Sa|a

Now for string aaa, we will have 4 parse trees, hence ambiguous

-05-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Parser Techniques

Types of Parsers in Compiler Design:-

The parser is that phase of the compiler which takes a token
string as input and with the help of existing grammar, converts it
into the corresponding Intermediate Representation. The parser

is also known as Syntax Analyzer.

Types of Parser:

The parser is mainly classified into two categories, i.e. Top-

down Parser, and Bottom-up Parser. These are explained below:-

Parser (Syntax Analyzer)

A
‘ Y

Top-down parser Bottom-Up parser
(Predictive Parser) (Operator-Precedent
A Parser)
With Without
Backtracking Backtracking

1-Top-Down Parser:
The top-down parser is the parser that generates parse for
the given input string with the help of grammar productions by
expanding the non-terminals i.e. it starts from the start symbol

and ends on the terminals. It uses left most derivation.

-05-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Further Top-down parser is classified into two types: Recursive

parser, and Non-recursive parser.

1. Recursive parser is also known as the backtracking parser.
It basically generates the parse tree by using backtracking.

2. Non-recursive parser is also known as LL(1) parser or

predictive parser or without backtracking parser. It uses a parsing

table to generate the parse tree instead of backtracking.

2- Bottom-up Parser:

Bottom-up Parser is the parser that generates the parse tree

for the given input string with the help of grammar productions
by compressing the non-terminals i.e. it starts from non-
terminals and ends on the start symbol. It uses the reverse of the

rightmost derivation. Further Bottom-up parser is classified into
two types: LR parser, and Operator precedence parser.

LR parser is the bottom-up parser that generates the parse
tree for the given string by using unambiguous grammar. It
follows the reverse of the rightmost derivation.

LR parser is of four types:-

(a) LR(0)

(b) SLR(1)

(c) LALR(1)

(d) CLR(1)

Operator precedence parser generates the parse tree form given

grammar and string but the only condition is two consecutive

-08-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

non-terminals and epsilon never appear on the right-hand side of

any production.

l Parser l
|

I Top Down Parser I Bottom Up Parser

n : Operator
ecursive LL(1) LR parser Precedence
. Parser Rl
[1 l I
LR(o)I SLR(l)I LALR(l)I CLR(l)I

Steps of parsing in LL(1) parser or predictive parser with or

without backtracking:-
1- Remove left recursion, because ambiguous not allowed in
LL(1).
2- Compute FIRST and FOLLOW sets.
3- Construct the predictive parsing table using algorithm.

4- Parse string or statement using parser.

-00-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Three

Backtracking manipulating (Removing Left

Recursion)
Left-Recursion Elimination Gl Gl ey bl A painl)) S5 sl
E [E+A

Left Recursion Elimination :-
Left Recursion Elimination is of two types:-
1. Immediate Left-Recursion Elimination.

2. Not-Immediate Left-Recursion Elimination.

Immediate Left-Recursion Elimination

A grammar is left recursive if it has a nonterminal
(variable) S such that there is a derivation
S—Sa|p

Where a and 8 (sequence of terminals and non-terminals
that do not start with S)

Due to the presence of left recursion some top-down
parsers enter into an infinite loop so we have to eliminate left
recursion.

If we have a production of the form:-

A D Axy| A, | Acg|..|Ax, | B, | B,]|..| B, Where

no fi begins with an A. The main rule for removing the

immediate backtracking is by generating two rules as follows:-

-05-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Three

Al B,A | B,A | ...] B.A (the first one depends on the part

of the previous rule exactly on the
part that not begins with A)

Ve Ve Ve

All ;A |O(2A |O(3A | | O(mA |€ (the second one depends on

the part of the initial rule exactly
nth rtth in ith A

Example (2):-
EJabc |def|Erx
Sol.

Elabc| defE

Example (1):-
S—Sab|Scd|Sef|g|h
Sol.

S—>gS'|hs

, , , , ElrxE|€
S —abS |cdS |efS | &
Example (3):- Example (4):-
S—(L)|a (Noleftrecursion) | exp () exp or term |term
L—LcS|S (leftrecursion) term [| term and factor | factor
Sol. factor [not factor|(exp) |true | false
L— SL Sol.
L' —>cSL'| € exp (| term exp’

exp’] or term exp’ | &

term [factor term’

term (| and factor term’ | €

factor [not factor | (exp) | true | false

-05-

University of Baghdad

Compilers

College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

2025-2026
Third Stage

Not Immediate Left-Recursion Elimination

Algorithm:-

Arrange NT in any order;

Forl:=2tondo

For]J:=1toi-1do

Begin

Replace each production of the form Aj [Aj & by the production

Ajl1 g1 /g x /g3 x/../gk X,

Where

Ay 91/82/93/ .-/ gk are the current Aj productions;

End;

Eliminate the immediate left recursion among the Ai productions;

End;{of algorithm}

Example (1):-
B(1Ac/d
A 1 Br/x

Solution:-
A=B A=A

AllA c/d
1 2

A2DA1r . =r

Replace:- Aj [Aj &
By:- Ai 91 /g0 & /93 & /..d i X
Using:- Ay U 91/92/93/ -/ 9k

-04-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Az [0 91 /9y &
A1 U 91702

" AL Aye/d . 1= Ayc and g1=d

1=2 J=1 X=r 51=A2C 62=d

Ay [] 610(/620(
. Az [T Ascr/dr/x

A, Ayc/d These two rules are converted to
immediate backtracking which can be
Az [1Ascr/dr/x

eliminated by the following rules:-

Bl Ac/d ATTAX,/Ax,/ Axg/.JAX /B, /B, /.18,
ADAcr/dr/x A BA/IBA/I.IBA
The result will be:- . , , ; ,
AT XA/0GATXGA /X A /E
B[] Ac/d

AlldrA/xA
AllcrA/ls
Example (2):-

SIJAb/Db

AllAc/Sd/ e

-04-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Another method to convert not immediate left recursion to
immediate left recursion is by using substitution, as shown in the

following example:-
SIJAb/Db

Al Ac/Sd/ e
The values of prameters i, j, a, d1,02,03, ...

e Usually, (i) refers to the rule that contains the not immediate
left recursion (rule no. 2), while (j) refers to the first rule

(rule no.1).

e (%) represent the element next to the non terminal that

causes the not immediate left recursion.

e (01,025 03,) these values can get them from rule no.1 (the
first rule), through taking the right hand side of the rule.

Now, depending on the notes above,

Ruleno.1 S Ab/b (j=1) from this rule we can get
the values of (01,02,03,...),s0 d1=Ab and d2=Db
Ruleno.2 AlJAc/Sd/e (i=2), from this rule we can get the

valueof a =d

i=2 j=1 01=Ab 02=b o =d
SIUAb|Db
AllAc|Sd | e

SIJAb| b
AllJAc| (Ab]b)d]|e

-55-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

SIAb|b
AllAc|Abd|bd]|e

Now in this step, the not immediate left recursion
is converted to immediate left recursion

SIIAb]|b

Now in this step, eliminate the immediate left
recursion

4

AllbdA |eA

A" UcA" | bdA" |«

Example (2):-
Bl Ac|d rule no.1
A Brj|x rule no. 2
i=2 j=1 Jdi=Ac 02=d o =r
Bl1Ac|d
Al (Ac|d)r|x

BllAc|d Now in this step, the not immediate left recursion
AlAcr I dr | X is converted to immediate left recursion
BlIAc|d

AldrA’|xA’

Now in this step, eliminate the immediate left
recursion

A" crA’ | €

-55-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Predicative Parsing (Top Down Parser)

e Predictive parsing is a special case of recursive descent
parsing where no backtracking is required.

e The key problem of predictive parsing is to determine the
production to be applied for a non-terminal in case of

alternatives

Non-recursive predictive parser architecture:-

INPUT a + b $
STACK .. .
X Predict
redictive parsing program | o UT

¥

z

$ k 4

Parsing Table M

The table-driven predictive parser has an input buffer, stack, a

parsing table and an output stream.

Input buffer:- 1t consists of strings to be parsed, followed by $
to indicate the end of the input string.

Stack:- 1t contains a sequence of grammar symbols preceded by

$ to indicate the bottom of the stack. Initially, the stack

contains the start symbol on top of .
Parsing table:- 1t is a two-dimensional array M[A, a], where ,A" is

a non-terminal and , a" is a terminal.

-55-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Previously, we talk about the steps of top-down parser with or
without backtracking, as shown below:-
1- Remove left recursion, because ambiguous not allowed in
LL(1). (note that, this step is previously explained)
2- Compute FIRST and FOLLOW sets.
3- Construct the predictive parsing table using algorithm.

4- Parse string or statement using parser.

Predictive parsing table construction

The construction of a predictive parser is aided by two functions
associated with a grammar:-

1. FIRST

2. FOLLOW

FIRST Set in Syntax Analysis

FIRST(X) for a grammar symbol X is the set of terminals that

begin the strings derivable from X.

Rules to compute FIRST set:-
1. If x is a terminal, then FIRST(x) = { ,x" }
2. If x — €, is a production rule, then add € to FIRST(x).
3. If X is non-terminal and X — a g is a production then add (a) to
FIRST(X).
4. 1f X — Y1 Y2Y3...Yn is a production,
a. FIRST(X) = FIRST(Y1)
b. If FIRST(Y1) contains € then FIRST(X) = { FIRST(Y1) - € }
U { FIRST(Y2) }

-55-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

c. If FIRST (Yi) contains € for all i = 1 to n, then add € to
FIRST(X).

Example (1):-

Consider the following grammar:-

E—-E+T| T
T—->T*F| F
F—->(E)] id
Sol.:-

Before calculating the first and follow functions, eliminate Left

Recursion from the grammar, if present.

E - TE'
E' > +TE" | €
T—-FT"
T' - *FT' |
F—-(E)]| id
Production Rules of
FIRST sets
Grammar
E — TE' FIRST(E) = FIRST(T) = { (, id }
E' — +TE'|€ FIRST(E') = { +, €}
T—FT FIRST(T) = FIRST(F) = { (, id }

T —*FT' | € FIRST(T) = { *, €}

Loy dp iyl

F— (E) | id FIRST(F) = { (, id }

-58-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Example (2):- Consider the following grammar:-

S—->A

A - aB / Ad

B—-b

C—-g

Sol.:-

Before calculating the first and follow functions, eliminate Left

Recursion from the grammar, if present.

S—-> A
A - aBA"
A“ _) dA“ / E
B—-b
C—-g
FIRST sets
'gU S—>A = First(S) = First(A) = { a }
Q w
o £ A - aBA = | First(A) = {a}
(=g
s e w w
E S A"—>dA" /€ | = |First(A") = {d, €}
=
[«5)
= % B-b = |First(B) = { b}
= C—g = |First(C) = { g }

University of Baghdad

Compilers
2025-2026

College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Example (3):-_Consider the following grammar:-

E-E+T/T
T—>TxF/F
F—- (E)/id
Sol.:-

Before calculating the first and follow functions, eliminate Left

Recursion from the grammar, if present.

E - TE"

E* - + TE" / €
T - FT"

T - xFT" / €
F—- (E)/id

E —» TE"

FIRST sets

First(E) = First(T) = First(F) = { (, id }

E“ - + TE“ /e

First(E') = {+, €}

T - FT"

First(T) = First(F) = { (, id }

T > xFT" / €

First(T") ={x, € }

JTewrue.nr)
JO S9Ny uondINp o.ad

F - (E) / id

Lpupdp i)l

First(F) = { (, id }

-55-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

FOLLOW Set in Syntax Analysis

Follow (X) to be the set of terminals that can appear immediately
to the right of Non- Terminal X in some sentential form. That is
mean; we calculate the follow function of a non-terminal by
looking where it is present on the Right Hand Side (RHS) of a
production rule.
—rdaga claada
[(rule) JS (e (a1 s 3l e adiad (Follow) 48 gaxa -1

($) st Laila (start) sainl! (Follow) 4a -2
(€) = (Follow) 4 gaxa (g 58l) (Saall 38 (0 -3
-4} (Follow) 4a da) Giglhaal) puaisll (¥} jglaall puaiall o Eadl oy Lail -4
yaill 18 i < (Follow) 4@ U (terminal) g5 (v paitdl G 13
.(terminal T)
Lol dygsa b puaiall 1ig) (Follow) Asd (585 Gigud (il Jslaa paie i 08 al 13 -
(rule) ¢a) 5 3ad u-°' 352 94l paiall (Follow)
(Follow) 4&é o (non terminal NT) £ ¢ Oal) jslaall puaiadl S 13 -
dad Gids g) gglaall paiall (First) dsgaae (u S 3l go 3ke (Sia paial) 13
o Sl £3al) b apagdl paiall (Follow) 4 gaxa) daYy (€)

(rule)

Rules For Calculating Follow Function:-

1- If S is a start symbol, then FOLLOW(S) contains $, means, for
the start symbol S, place $ in Follow(S). {Means put $ (the
end of input marker) in Follow(S) (S is the start symbol)}

2- If there is a production A - aBf3, then everything in FIRST(f3)
except € is placed in Follow (B), means Follow(B) = First(f3)

-55-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

3- If there is a production A —» aB, or a production A —» oaBf
where FIRST(B) contains g, then everything in FOLLOW(A) is
in FOLLOW(B), means Follow(B) = Follow(A)

4- € will never appear in the follow function of a nonterminal.

Example (1):- Consider the following grammar:-

E-E+T/T

T—->TxF/F

F—- (E) /id

Sol.:-

The given grammar is left recursive. So, we first remove left

recursion from the given grammar. After eliminating left

recursion, we get the following grammar-

First Set Follow Set
E > TE' First(E) : {Fi(r,sting = First(F) Follow(E) = { § ,) }
E'> +TE'/ €| pirst(E) = { +, € } Follow(E') = Follow(E) = { $,) }
T > FT' First(T) = First(F) = { (, id } FOLLOW(T)=£F{ir:T($E,')) }- €}U Follow(E")
T'> xFT'/€ | pirst(T) = { x, € } Follow(T') = Follow(T) ={+,$,)}
F - (E) / id | First(F) = { (, id } Follow(F) == {{F ':si(T;))' }E} U Follow(T)

-54-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Example (2):- Consider the following grammar:-

S—-A

A - aB / Ad

B—-b

Cog

Sol.:-

The given grammar is left recursive. So, we first remove left

recursion from the given grammar. After eliminating left

recursion, we get the following grammar-

First Set Follow Set
S—A First(S) = First(A) = { a } | Follow(S) = { $ }
A - aBA" | First(A) = {a} Follow(A) = Follow(S) = { $ }
A" >dA’/€ | First(A’) = {d, €} Follow(A’) = Follow(A) = { § }
B—-b First(B) = { b } Follow(B) == {{Fg's,téA}') -€ } U Follow(A)
C—-g First(C) = { g } Follow(C) = empty set

-54-

Compilers

University of Baghdad
College of Education for Pure Science

Ibn-AL-Haithem/ Dep. Of Computer Science

2025-2026
Third Stage

Chapter Three

Algorithm for construction of predictive parsing

Method :

table

1- For each production A - a of the grammar, do steps 2 and 3.

2- For each terminal a in FIRST(a), add A - o to MJ[A, a].

3-If eisin FIRST(a), add A — a to M[A, b] for each terminal b in
FOLLOW(A). If e is in FIRST(a) and $ is in FOLLOW(A),add A
—a to M[A, $].

4- Make each undefined entry of M be error.

(Parsing table) Jgi> &laaiu) 4ua)yl sa
(Non terminal) salindl 35 5 gled shul 3y Jgaa gl 4 ghuan (19S5 -1
(§) waiad) N A2 (Terminal) sele s (g ght Joaadl (8 Bascy) 2 -2

Jsial s Fola B (First) i (do JalS Jody oY) o -3
EE+T /T
TOTXFE / F
FO(E) / id
dalooy exdl 8 galsll g9)l @lles o 3 M Laball £9i o Lils £ 92, Jo xcl gill 0 Sgi
) Followg) First (a8 Glusg wl el

First Set

Follow Set

E —» TE'

First(E) = { (, id }

Follow(E) ={ $,) }

E'> +TE'/ € | First(E') = {+, € } Follow(E') = { $,) }

T - FT' First(T) = { (, id } Follow(T) = { +, $,) }
T'> xFT'/€ First(T') = { x, € } Follow(T') ={+,$,) }
F - (E)/id First(F) = { (, id } Follow(F) = { x, +, $) }

-55-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Three

We must find or construct now the predictive parsing table

Id + x () $

E [TE E [ITE’

E [I+TE’ E'Ce | E e
T (FT T [FT’
T [IxFT’ T e | T e
F(id F [(E)

il lisiic

Predictive parsing program

Algorithm:-
Set IP (Input Pointer) point to the first symbol of the input string W$
Repeat
Let X be the top stack symbol and () be the symbol pointed by IP;
If X is a terminal or $ then
If X = a then
Pop X from the stack and advance IP

Else error()

Else
if M[X,a]=X[1Y,Y, ..Y, then
Begin

Pop X from the stack

pushY Y, .. Y, ontostack withY, on top

-55-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Three

Output the production X Y. Y, ...Y, End

Else error();
Until X=$;
s 134 (Backtracking) (Al gl o 16l g5 @ (Top-Down) Ay e Gulud) Jaydl
gl G IS 13 Lok Gl £ g) g (ha) (ha D08 IS gl o gl Il
(Not-Immediate Backtracking) s&all s& i (Immediate Backtracking) sl
a0 A G0 gy Adalaa
. Push & Pop Jis Ally g 4aldl) clileally Stack gy) 4 lall oda b lisg
O &un aae¥ly Jhul)l (e a1y (Parse table) Jdsss ¢S Jal ¢ (First and follow) ad e i
Tiseas 4 3) o5 La s Terminal e Jiah sue) pais o a8 Ul Non-Terminal als Jid ¥l el
- 4yl 0 oY) gl Le il ghas
Bas] (uady Jta (19 4
. Top of Stack Jiay gillg X asl) Jiay Jg¥ 2gaadl 1
M) coladl I) s e B glly A Ja dhe) 2ped 2

. Stack Jiay Ul agaall 3 .

Al gl e cugthaal) Jaall pualis iy gl 1 agand) 4

yalial) o e Bl iy gllly Output diay ¥y paddd sgend) 5
. Non-terminal salsllgterminal

-55-

Compilers

University of Baghdad
College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Three

eCIB - (S
X=a oS 13 B ¢ & Terminal g5 o X QoS Leis 1
Jull il Uy Top of Stack dia gy X aad cow gleny a5t byl (33 e
G 3 ganll 328 Liad s Input gl dpendl gad acdes Ay aded g agall 2ad of) 158 qitha) Jaadl G

(Stack fia gy
Jsfta pé (8 10 2) uslhal) Jaadl o slina (X # 8) ¢) Al Jaydll (gialy ol Nl
.(Not accepted)

sl (Parse table) dsiall G a aa X G& o asid Not-Terminal g5 e X s Latis 2
painll Stack oa Gy gualddl yganl) G \ga) &G Gigw) Gl Ol @ dgadl g X el il
Jia iy paka gy a dis g olidly o8y G on oAl Gkl Push ey f) Gagagal
Input
. Stack # $ aaf Ll iy Jg¥) clghdl) &4 paied 3
Example ©:-
Having the following grammar:-
ENE+T /T
TUOTxF / F
FO(E) / id
Show the moves made by the Top-Down Parser on the input=id+idxid$
Sol.

1- We must solve the left recursion and left factoring if it founded

in the grammar

oY) (aley saud) Jid (AL £) mlae e 8 pdal) p i (e S pgay Jo Il 0l g giad

-55-

University of Baghdad
College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

ELITE’
E'1+TE /&
TUFT
TIxFT /&
F((E)/id

Compilers

2- We must find the first and follow to the grammar:

2025-2026
Third Stage

First Set Follow Set
E - TE' First(E) = { (, id } Follow(E) = { $,) }
E'> +TE'/ € | pirst(E') = { +, €} Follow(E) = {$,) }
T - FT' First(T) = { (, id } Follow(T) = { +, $,) }
T'> xFT'/€ | First(T') = { x, € } Follow(T) = {+,$,) }
F— (E)/id | First(F) = { (, id } Follow(F) = { x, +, $,) }

3- We must find or construct now the predictive parsing table

Id + X () $
E E[TE E [ITE’
E’ E [1+TE’ E (e |E e
T | TOFT T OFT’
T’ T (€ | T [IxFT’ T e | T e
F | Fid F O (E)

-58-

University of Baghdad

College of Education for Pure Science

Compilers

Ibn-AL-Haithem/ Dep. Of Computer Science
Chapter Three

X|l a|| Stack Input Output
E || id|| $E id+idxid$|[----------
T ||id|| $SE"T id+idxid$|| E [0 TE’
F||id||$E" T F ||id+idxid$|| T OFT’
id||id|| $E" T~ id||id+idxid$|] F [id
SE" T’ +idxid$ Pop id
$SE’ +idxid$ T [&
$E T+ +idxid$ || E” O+TE’
SE'T idxid$ Pop +
$SE"T F idxid$ T OFT’
$E"T id || idxid$ F []id
$SE’' T xid$ Pop id
$E T Fx xid$ T [IxFT’
SE"T F id$ Pop x
$E" T id Id$ F []id
$SE’' T $ Pop id
$SE’ $ T e
$ $ E'(€
Stop

-50-

2025-2026
Third Stage

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Example ©:-

Having the following grammar:-

exp [l exp or term | term

term [] term and factor | factor

factor [not factor | (exp) | true | false

Parse the following statement:- not (true or false) $
Sol.

1- We must solve the left recursion and left factoring if it founded

in the grammar

exp [term exp'

exp' [l or term exp | €
term [] factor term’

term' [| and factor term'| €

factor [not factor | (exp) | true | false

2- We must find the first and follow to the grammar:

First Set Follow Set
exp [J term exp’ First (exp)={not,(,true,false} | Follow (exp) ={$,)}
exp’ [) or term exp’ | € First(exp') = {or,€ } Follow (exp) ={$,)}

' Follow (term) = first

term [factor term First(term)={not,(,true,false} | ((exp"-€) u follow
(exp)={or,$,)}

term’' [] and factor term’|e First(term’) = {and , €} Follow(term’) = follow
’ (term)={or,$,)}

factor [not factor | (exp) | Follow(factor) = first

First(factor)={not,(,true,false} | ((term")-€) U follow

true | false (term)= {and, or, $,)}

-55-

Compilers

University of Baghdad
College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

2025-2026
Third Stage

3- We must find or construct now the predictive parsing table

not or and () true | false $
exp— exp— exp— exp—
exp term term term term
exp’ exp’ exp’ exp
exp’—
exp’ orterm exp’—€ exp’—€
exp’
term— term— term— term—
term factor factor factor factor
term’ term’ term’ term’
term’
, — and
term factor term’—e term’—e
term’
factor || factor— factor factor— | factor
not — (exp) true — false
factor

4- Apply parsing algorithm to parse the statement not (true or

false) $

X a Stack Input Output
exp not || $exp not (true or false) $|}] ----------
term not || $ exp" term not (true or false) $ exp— term exp"
factor || not | $ exp" term" factor not (true or false) $ || term— factor term"
n_ot n_ot $ exp" term" factor not not (true or false) $ || factor— not factor
factor ($ exp" term" factor (true or false) $ pop not
(_($ exp" term") exp ((true or false) $ factor— (exp)
exp true || $ exp" term") exp true or false) $ pop (
term m $ exp"“ term") exp" term true or false) $ exp— term exp"

and so on until we reach to to stop condition when stack=$ only

-55-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Bottom Up Parser (Shift-Reduce Parser)

Bottom Up Parser

Operator
LR parser Precedence
parser

=

Constructing a parse tree for an input string beginning at the

leaves and going towards the root is called bottom-up parsing.
There is a general style of bottom-up syntax analysis, known

as shift reduces parsing.

Is a right most derivation for a sentential form in reverse order.

Conditions for Bottom-Up Parser:-

1. No €-rules (i.e., A [] €).
2. It must be operator grammar (i.e., no adjacent non-terminal).

Example ©®:- E[JEAE/(E)/-E/id

Since of this production rule, the

grammar is not operator grammar

(E=NT, A=NT, E=NT).

-54-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Example @:- ELJE+E /E-E

This grammar is an operator grammar (E is
NT, + is T, E is NT).

SHIFT-REDUCE PARSING (Operator Precedence Parser)

Shift-reduce parsing is a type of bottom-up parsing that attempts
to construct a parse tree for an input string beginning at the
leaves (the bottom) and working up towards the root (the top).
Example: Consider the grammar:

S —» aABe

A—>Abc|b

B-d

The sentence to be recognized is abbcde.

REDUCTION (LEFTMOST) RIGHTMOST DERIVATION
abbcde (A —b) S — aABe

aAbede (A — Abc) — aAde

aAde (B —d) — aAbcde

aABe (S — aABe) —> abbcde

S

We need to do a table with three fields (Stack, Input, action

{which will be either shift or reduce}).

-54-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Actions in SHIFT-REDUCE PARSING

e Shift - The next input symbol is shifted onto the top of the
stack

e Reduce - the parser replaces the handle within a stack with a
non-terminal.

e Accept - the parser announces successful completion of
parsing.

e Error - the parser discovers that a syntax error has occurred

and calls an error recovery routine.

Initial value for stack=S$.
Initial value for input=the sentence which we want to parse.
Initial value for action = Shift.
We need to know the meaning of the handle.
Definition: a handle is a substring that:-
1- Matches a right hand side of a production rule in the grammar
2- Whose reduction to the non-terminal on the left hand side of
that grammar rule is a step along the reverse of a rightmost
derivation.
A9 Empty word (g) ¢e =158l s s (Bottom-Up) Gk <lsd Gulud) bydll o
NON- gt (e Boghaia jualic 3gay ate ¢l (Operator grammar) g om (s
.Terminal
g Jaladl) quslhal) 201 8l G GilA £ g asag a2 gl aga g Gaokl) oR Qg C e
Push & Pop i &l 1 (el claleally Stack 4y d) gejylsil) o2 G gliad o

-45-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

- i A gkl
sa &y dya (s
. Stack dia dg¥l agad) 1
(Input) Jalslly 15387 qigthaall Jaad) yalie Jlay G aganll 2

Shift & bt (aiagubal adales Jhay slllg Action e jad¥ly Gl spell 3
.Reduce

$ Jo kb g gt (Stack) ds¥) agell Sga gl o

J3i2) gthal) Jaal 3 (Input) G ganll SEIaL aall o

A agadl bl G agagall paill Push e fidig Shift os jadlly Gl spall Ozl Al &
Stack i painll adag

Slaadl) 2\ gil) Jo Right Most Derivation @as oa & o

Y 3 ganll a2l | gale sty o Cllg (Handle) o s Lo yind ol gale sldelyy §pdba Gled) Sgbid) sy o
.(Action)

(Tree) phiiul & Al Gl o

J) sl g 15310 osthaall Jand) Jlasy el Gi g gall paind) i) Jia Jia Ja g g
.(Top of Stack)

G813 50 ol (Handle) s g b 3ub3) (3 (Top of Stack)d) el s gl sainh g 13 Bia o
siad (Handle) o8 ol g hal J) paith) gla) 2iad (Handle)
(Top of Stack) J)

(Stack=$Start Symbol) ds¥ Jiadl gad ¢s< ¢ J) Gibedl @l ghilly el o

Example ©:-

S[ISxS/S+S/id Input =idxid+id$

Sol.

® _Derive this grammar using right most derivation
S [1SxS [SxS+S [SxS+id [Sxid+id [idxid+id

-45-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

@Specifv the handles (using the above derivation
S[I1SxS [1Sx S+S (1 SxS+id [Sx id +id [| id xid+id

®Doing Syntax tree (parse tree)

S
——
S X S
L
- R S
' !
id id
@Doing Parse table
Stack Input Action
$ idxid+id$ Shift
$id xid+id$ Reduce S [Jid
$S xid+id$ Shift
$ Sx id+id$ Shift
$ Sxid +id$ Reduce S [id
$ SxS +id$ Shift
$ SxS+ id$ Shift
$ SxS+id $ Reduce S [id
$ SxS+S $ Reduce S [1S+S
$ SxS $ Reduce S [1SxS
$S $ Accept

-45-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Example ©:-
E(T/E+T/ET/-T
T U F / TxF/ TF Input = -(idx(id-id) / id)$
F [(E)/id
Solution :-
E(-T]IE
1 -F # %
0 -(E) |
L -(T) ll?
L-(I/F) ¥) 1
J-(T/ id) (T)
J-(TxF / id) p
-(Tx (E) /id) } ;/ ;
1 -(Tx(E-T) /id) | |
" -(Tx(E-E) /id) d ' ' “
1 -(Tx(E-id) /id) l ; l .
7 -(T*(T - id) /id) F (;)
[-(Tx(F-id) /id) i{l ; ¢ %
0 -(Tx(id - id) /id) l |
) -(E x (id - id) /id) T F
7 -(id x (id - id) /id) i ild
|
id

-45-

Compilers

2025-2026
Third Stage

University of Baghdad
College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Stack Input Action
$ (idx(id-id)/id)$ Shift
$- (idx(id-id) /id)$ Shift
$-(idx(id-id) /id)$ Shift
$-(id x(id-id) /id)$ Reduce F [id
$-(F x(id-id) /id)$ Reduce T [F
$-(T x(id-id) /id)$ Shift
$ -(Tx (id-id)/id)$ Shift
$ -(Tx(id-id) /id)$ Shift
$ -(Tx(id -id)/id)$ Reduce F [id
$ -(Tx(F -id)/id)$ Reduce T [F
$ -(Tx(T -id)/id)$ ReduceE [T
$ -(Tx(E id)/id)$ Shift
$ -(Tx(E- id)/id)$ Shift
$ -(Tx(E-id)/id)$ Reduce F [Jid
$ -(Tx(E-F)/id)$ Reduce T [F
$ -(Tx(E-T)/id)$ Reduce E [E-T
$-(Tx(E)/id)$ Shift
$-(Tx(E) /id)$ Reduce F [(E)
$-(TxF /id)$ Reduce T [ITxF
$-(T /id)$ Shift
$-(T/ id)$ Shift

-48-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

$-(T/id)$ Reduce F [lid
$-(T/F)$ Reduce T T/F
$-(T)$ Reduce E I T

$-(E)$ Shift

$-(E) $ Reduce F [(E)
$-F $ Reduce T [IF
$-T $ Reduce E [] -T
$E $ Accept

LR Parser

An efficient bottom-up syntax analysis technique that can be used to parse a large class of
CFG 1s called LR(k) parsing. The ‘L’ is for left-to-right scanning of the input, the ‘R’ for
constructing a rightmost derivation in reverse.

Advantages- of LR Parser:-

v Itis an efficient non-backtracking shift-reduce parsing method.

v A grammar that can be parsed using LR method is a proper superset of a grammar that
can be parsed with predictive parser.

v It detects a syntactic error as soon as possible.

-40-

University of Baghdad

Compilers

College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

Types of LR Parsing method:-

1. SLR- Simple LR

= Easiest to implement, least powerful.

2. CLR- Canonical LR

* Most powerful, most expensive.
3. LALR- Look-Ahead LR
» Intermediate in size and cost between the other two methods.

2025-2026
Third Stage

Let us see the comparison between SLR, CLR, and LALR Parser.

SLR Parser

LALR Parser

CLR Parser

It is very easy and cheap to
implement.

It is also easy and cheap to
implement.

It is expensive and difficult
to implement.

SLR Parser is the smallest in
size.

LALR and SLR have the same
size. As they have less number
of states.

CLR Parser is the largest.
As the number of states 1s
very large.

Error detection is not
immediate in SLRE.

Ermor detection is not immediate
in LALR.

Error detection can be done
immediately in CLR Parser.

SLR fails to produce a
parsing table for a certain
class of grammars.

It is intermediate in power
between SLR and CLR 1.e,
SLR =LALR = CLR.

It is very powerful and works
on a large class of grammar.

It requires less time and
space complexity.

It requires more time and space
complexity.

It also requires more time
and space complexity.

-45-

College of Education for Pure Science Ibn-AL-Haithem/Dep. Of Computer Science
Third stage

Compilers / <laa sia

CHAPTERFOUR

saadlae 12 Al o) sodlall (ke

0202-0202

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science
Chapter Four
Semantic Analysis

Immediately followed the parsing phase (Syntax Analyzer). A
semantic analyzer checks the source program for semantic errors.
Type-checking is an important part of semantic analyzer.

The Semantic Analysis of the Compiler is implemented in two
passes. The first pass handles the definition of names (check for
duplicate names) and completeness (consistency) checks. The
second pass completes the scope analysis (check for undefined
names) and performs type analysis.

Example :- newval = oldval + 12
The type of the identifier newval must match with type of the

expression (oldval+12).

If the declaration part for a any programming language segment
code for example declares the type of newval as integer type and
through the running of the program the value of oldval has a type
of real then the Semantic Analysis of the Compiler is
implemented through the first pass by giving an error message
refers to the type inconsistency (type mismatch).
Two types of semantic Checks are performed within this

phase these are:-
1. Static Semantic Checks are performed at compile time like:-

e Type checking.

e Every variable is declared before used.

¢ Identifiers are used in appropriate contexts.

-78-

Compilers
University of Baghdad

College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Four

2. Dynamic Semantic Checks are performed at run time, and the

compiler produces code that performs these checks:-
e Array subscript values are within bounds.
e Arithmetic errors, e.g. division by zero.

e A variable is used but hasn’t been initialized.

Intermediate Code Generator

After syntax and semantic analysis, some compilers generate an
explicit intermediate representation of the source program. This
representation should be easy to produce and easy to translate
into the target program. These intermediate codes are generally
machine (architecture independent). But the level of intermediate
codes is close to the level of machine codes.

The forms of codes that are generated in the Intermediate Code

Generator phase are:-
1. Polish Notation:- which can be performed through the
following:
e Infix Notation :- In which the operation must be in the
middle of the expression (between two operands) like A+B.
e Prefix Notation :- In which the operation must prior the
operands (in the left hand side of the operands) like +AB.

e Postfix Notation :- In which the operation must be in the
right hand side of the operands like AB+.

Example 1:- Having the following expression

-77-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Four

M= ((D*E) - ((F + G) / (H + I)))
For Infix Notation the expression will be as same because the

operation is between the two operands.

For Prefix Notation the expression will be as shown step by step
depending on the notation of the prefix rule which make the
operation prior the operand by moving these operations to the

left hand side of the operand as shown:-

1- M= ((D*E) - ((F+ G) / (H +1
M) (1(_*[)/1:1)))

2- M= (*(DE) - (+(FG) (+(HI)))

3- M= l(>l<(DE)] /(+(FG) +(HI)))
= - (*(DE) /(+(FG) +(HI)))

For Postfix Notation the expression will be as shown step by step
depending on the notation of the postfix rule moves the

operations to the right hand side of the operand as shown below:-

1- M= ((DE) £ ((F 4 G/ (H 4 D)
2- M= ((DE)* - ((FG)+ / (HD+))

3- M= ((DE) T ((FG)+ (HI)+)/)+

4- M= ((DE)* ((FG)+ (HI)+)/) -

-79-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Four

Example 2:- Having the following expressions in infix form

convert them to the two others forms:-

2. (WxL)-(A/(C*D)) 3. (A+B)*(C+D)

2. Quadruples:- In which each expression is performed using
the following format:-

Operator, operand, operand,, result

Example :- Having the following expression M= (A * B) + (Y + Z)

The Quadruple format will be:-

3. Triples:- In which each expression is performed using the

following format:-

Operator, operandq, operand,

Example 1:- Having the following expression M= (A *x B) + (Y + Z)

The Triples format will be:-

Steps
(1) +, Y, Z
(2) * A, B

(3) +, (1), (2

-99-

Compilers

University of Baghdad
College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Four

Example 2:- Having the following expression

X= (X1 + X2) * (X2 + X3) * (X3 + X4y)

The Quadruple format will be:-

2025-2026
Third Stage

OP. | Operand, | Operand; | Result | Meaning
+ X1 Xo Temp,4 | ADD X3 X5 ,Tempq
+ Xo X3 Temp, | ADD X, X3 ,Temp;
+ X3 X4 Temp3 | ADD X3 X4 ,Tempg3
« | Tempq Temp, |Tempy | MULT Temp; Tempy,Temp,
" Tempy Tempz | Temps | MULT Temp, Tempgz,Temps
= Temps | -—c-omoem | cooeeeee MOV Temps X
The Triple format will be:-
Steps | Operation | Operand; | Operand;

(0) + X1 X2

(1) + X2 X3

2) + X3 X4

(3) K (0) (1)

(4) « (3) (2)

= X (4)

-91-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Four

Three Address Code 1s a sequence of statements typically of

the general form A = B op C, where A,B and C are temporary

operands and op is the operation. The cause of naming this

format by Three Address Code is that each statement or
expression usually contains three addresses, two for
operands and one for the result.

The following expression X= (X + X3) * (X5 + X3) * (X3 + X4) will

performed using Three Address Code as shown below:-

Steps

Tq +, X1, Xy
Ty +, X2, X3
T3 +, X3, X
Ty *, T1, T2
Ts x, Ta, T3
X = Tsg

-92-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Four

Code Optimization

Optimization is a program transformation technique,, which tries
to improve the code by making it consume less resources (i.e..
CPU, Memory) and deliver high speed.

In Optimization, high--level general programming constructs are
replaced by very efficient low-level programming codes. A code
Optimization process must follow the three rules given bellow:

1- The output code must not change the meaning of the
program.

2- Optimization should increase the speed of the program and if
possible, the program should demand less number of
resources.

3- Optimization should itself be fast and should not delay the
overall compiling process.

Efforts for an Optimized code can be made at various levels of
compiling the process.
At the beginning, users can change/rearrange the code or use
better algorithms to write the code.
After generating intermediate code, the compiler can modify the
intermediate code by address calculations and improving loops.
While producing the target machine code, the compiler can make
use off memory hierarchy and CPU registers.
Optimization can be categorized into two types:-

e Machine independent and

e Machine dependent.

-03-

Source
program

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Four

Code Generation

The final phase in compiler is the code generator. It takes as
input an intermediate representation of the source program and
produces as output an equivalent target program, as indicated in

Figure below:-

Frontend |Intermediate Code Intermediate | Code | L, Target
code | Optimizer code Generator | ~Program

Symbol

table

Position of code generator

Code generation takes a linear sequence of 3-address
intermediate code instructions, and translates each instruction
into one or more instructions.
The big issues in code generation are:-

1. Instruction selection

2. Register allocation and assignment
Instruction selection: for each type of three-address statement,
we can design a code skeleton that outlines the target code to be

generated for that construct.

-99-

Compilers

University of Baghdad 2025-2026
College of Education for Pure Science Third Stage
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Four

Example: every three address statement of the form X =Y + 7Z,
where X,Y and Z are statically allocated, can be translated into
the code sequence

Mov Y, RO /*load Y into register RO */

Add Z, RO /*add Z to RO */

Mov RO, X /* store RO into X */

Register allocation and assignment

The efficient utilization of registers involving operands is
particularly important in generating good code. The use of
registers is often subdivided into two sub problems:
1. Register allocation: selecting the set of variables that will
reside in registers at each point in the program
2. Resister _assignment: selecting specific register that a
variable reside in, the goal of these operations is generally to
minimize the total number of memory accesses required by

the program.

-95-

Compilers
University of Baghdad

College of Education for Pure Science 2025-2026
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Four

Example:- Consider the statement d= (a-b) + (a-c) + (a-c)
This may be translated into the following three-address code, with

the corresponding the final target code:-

Statement Three-Address Code The code
Mov Ryp,a
(a-b) T=a-b Mov Rib
Sub Rj1,Ro
Mov Rz,c
(a-c) U=a-c
Sub Rg,R:2
Add R1, Ro
(a-b) + (a-c) + (a-c) V=T+U
Add Ro, R:
d=V+U Mov d, Ro

-99-

