

College of Education for Pure Science Ibn-AL-Haithem/Dep. Of Computer Science
Third stage

Compilers / مترجمات
CHAPTER ONE

 عبدالمجيد محمد نادية .م.ا :الماده مدرس

2025 - 2026

-1-

REFRENCES:-

 Compilers Principles, Techniques and Tools by Alferd V.Aho.

 Compiler Construction for Digital Computers by David Gries.

 Introduction Theory of Computer Science by E.R. Krishuamurthy.

 الوهاب عبد جنان.د  أمين محمد صباح.د الحاسبة برمجة لغات مترجمات لتصميم التطبيقية و النظرية الأسس

A Compiler

Is a program that reads a program written in one language -the

Source Language- and translates it into an equivalent program in

another language - the Target Language -.

A compiler translates the code written in one language to some other

language without changing the meaning of the program. It is also

expected that a compiler should make the target code efficient and

optimized in terms of time and space.

Source Program Target Program

Error Messages

Compiler Design

Computers are a balanced mix of software and hardware. Hardware is

just a piece of mechanical device and its functions are being

controlled by compatible software. Hardware understands instructions

in the form of electronic charge, which is the counterpart of binary

language in software programming. Binary language has only two

alphabets, 0 and 1. To instruct, the hardware codes must be written in

-2-

binary format, which is simply a series of 1s and 0s. It would be a

difficult task for computer programmers to write such codes, which is

why we have compilers to write such codes.

Language Processing System

Any computer system is made of hardware and software. The

hardware understands a language, which humans cannot understand.

So we write programs in high-level language, which is easier for us to

understand and remember. These programs are then fed into a series

of tools and OS components to get the desired code that can be used

by the machine. This is known as Language Processing System.

The high-level language is converted into binary language in various

phases. A compiler is a program that converts high-level language to

-3-

assembly language. Similarly, an assembler is a program that converts

the assembly language to machine-level language.

Let us first understand how a program, using C compiler, is executed

on a host machine.

1. User writes a program in C language (High-Level Language).

2. The C compiler compiles the program and translates it to

assembly program (Low-Level Language).

3. An Assembler then translates the assembly program into

machine code (object).

4. A Linker tool is used to link all the parts of the program together

for execution (Executable Machine Code).

5. A Loader loads all of them into memory and then the program is

executed.

Before diving straight into the concepts of compilers, we should

understand a few other tools that work closely with compilers.

Preprocessor

A preprocessor, generally considered as a part of compiler, is a tool

that produces input for compilers.

Interpreter

An interpreter, like a compiler, translates high-level language into

low-level machine language. The difference lies in the way they read

the source code or input. A compiler reads the whole source code at

once, creates tokens, checks semantics, generates intermediate code,

executes the whole program and may involve many passes. In

contrast, an interpreter reads a statement from the input converts it

to an intermediate code, executes it, then takes the next statement in

-4-

sequence. If an error occurs, an interpreter stops execution and

reports it. Whereas a compiler reads the whole program even if it

encounters several errors.

Assembler

An assembler translates assembly language programs into machine

code. The output of an assembler is called an object file, which

contains a combination of machine instructions as well as the data

required to place these instructions in memory.

Linker

Linker is a computer program that links and merges various object

files together in order to make an executable file. The major task of a

linker is to determine the memory location where these files will be

loaded.

Loader

Loader is a part of operating system and is responsible for loading

executable files into memory and executes them. It calculates the size

of a program (instructions and data) and creates memory space for it.

Compiler Architecture:-

A compiler can broadly be divided into two phases based on the way

they compile.

1. Analysis Phase

Known as the Front-End of the compiler, the analysis phase of the

compiler reads the source program, divides it into core parts and then

checks for lexical, grammar and syntax errors. The analysis phase

-5-

generates an intermediate representation of the source program and

symbol table, which should be fed to the Synthesis phase as input.

2. Synthesis Phase

Known as the Back-End of the compiler, the synthesis phase generates

the target program with the help of intermediate source code

representation and symbol table.

The Phases of a Compiler :-

The compilation process is a sequence of various phases. Each phase

takes input from its previous stage, has its own representation of

source program, and feeds its output to the next phase of the

compiler. Let us understand the phases of a compiler.

1. Lexical Analyzer.

2. Syntax Analyzer.

3. Semantic Analyzer.

 مرحلة اللفظي التحليل مرحلة

 التحليل مرحلةالقواعدي التحليل

 المعنوي

4. Intermediate Code Generator. مرحلة توليد الشفرات الوسطية

 .Optimizer. Code 5 الشفرات تحسين مرحلة

6. Code Generator. مولد الشفرات

In each phase we need variables that can be obtained from a table

called Symbol Table manager, and in each phase some errors may be

-6-

Table

generated so we must have a program used to handle these errors , this

program called Error Handler.

Source Program

Lexical analyzer

Syntax analyzer

Semantic analyzer

Symbols
Manager

Intermediate Code
Generator

Error
Handler

Code Optimizer

Code Generator

⮞ Lexical Analyzer :- Is the initial part of reading and analyzing

the program text (source program); The text is read (character by

character) and divided into tokens, each of which corresponds to a

symbol in the programming language, e.g., a variable name,

keyword or number.

⮞ Syntax analyzer :- The next phase is called the syntax analysis

or parsing. It takes the token produced by lexical analysis as input

-7-

and generates a parse tree (or syntax tree) that reflects the

structure of the program. This phase is often called parsing.

⮞ Semantic Analysis:- Semantic analysis checks whether the

parse tree constructed follows the rules of language. Also is known

as Type checking which main function is to analyze the syntax

tree to determine if the program violates certain consistency

requirements, such as, if a variable is used but not declared,

assignment of values is between compatible data types, and

adding string to an integer.

⮞ Intermediate Code Generator :- After syntax and semantic

analysis, It is in between the high-level language and the machine

language. This intermediate code should be generated in such a

way that it makes it easier to be translated into the target

machine code. This phase bridges the analysis and synthesis

phases of translation.

⮞ Code Optimization phase :- The code optimization phase

attempts to improve the intermediate code which results that the

output runs faster and takes less space. Optimization can be

assumed as something that removes unnecessary code lines, and

arranges the sequence of statements in order to speed up the

program execution without wasting resources (CPU, memory).

⮞ Code Generator :- The final phase of complier is the generation

of target code, which represents the output of the code generator

in the machine language.

-8-

⮞ Symbol Table :- It is a data-structure maintained throughout all

the phases of a compiler. All the identifiers’ names along with

their types are stored here. The symbol table makes it easier for

the compiler to quickly search the identifier record and retrieve

it.

⮞ Error Handler :- Each phase can produce errors. However, after

detecting an error, a phase must deal with that error, so that the

compilation can proceed. So dealing with that error is done by a

program known as Error Handler which is software used to handle

any error that may be produced from any phase and it is needed

in all phases of the compliers.

Note :- Each phase of the complier has two inputs and two outputs; for

example:- for the first phase (Lexical Analyzer) the first input to it is

the source program while the second input is some variables that may

be needed in that phase; while the first output is the errors that may

be generated in it and will be manipulated by the Error Handler

program, and the second output from it will represent the input for the

next compiler phase (Syntax).

Lexical Analysis:- A Review

Lexical analysis is the first phase of a compiler. It takes the

modified source code from language preprocessors that are written in

the form of sentences. The lexical analyzer breaks these syntaxes into

a series of tokens, by removing any whitespace or comments in the

source code.

-9-

In programming language, keywords, constants, identifiers,

strings, numbers, operators and punctuations symbols can be

considered as tokens.

For example, in C language, the variable declaration line

int value = 100;

Contains the tokens:-

int keyword

value identifier

= operator

100 constant

; symbol

The lexical analyzer also follows rule priority where a reserved

word, e.g., a keyword, of a language is given priority over user input.

That is, if the lexical analyzer finds a lexeme that matches with any

existing reserved word, it should generate an error.

If the lexical analyzer finds a token invalid, it generates an error.

The lexical analyzer works closely with the syntax analyzer. It reads

character streams from the source code, checks for legal tokens, and

passes the data to the syntax analyzer when it demands.

-11-

Specifications of Tokens

Let us understand how the language theory undertakes the following

terms:

Alphabets

Any finite set of symbols {0,1} is a set of binary alphabets,

{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} is a set of Hexadecimal alphabets, {a-z,

A-Z} is a set of English language alphabets.

Strings

Any finite sequence of alphabets is called a string. Length of the

string is the total number of occurrence of alphabets, e.g., the length

of the string tutorials point is 14 and is denoted by |tutorialspoint| =

14. A string having no alphabets, i.e. a string of zero length is known

as an empty string and is denoted by ε (epsilon).

Language

A language is considered as a finite set of strings over some finite

set of alphabets. Computer languages are considered as finite sets, and

mathematically set operations can be performed on them. Finite

languages can be described by means of regular expressions.

The various operations on languages are:

 Union of two languages L and M is written as

L U M = {s | s is in L or s is in M}

 Concatenation of two languages L and M is written as

LM = {st | s is in L and t is in M}

 The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

-11-

Grammars

A grammar is a set of formal rules for constructing correct

sentences in any language; such sentences are called Grammatical

Sentences.

Concatenation

We define the Concatenation of two symbols U and V by:-

UV= { X | X= uv, u is in U and v is in V }

Note that:- UV ≠ VU

U (VW) = (UV) W

Example ①:-

Let ∑ = {0,1} and U= {000,111} and V= {101,010}

🢧 UV= {000101, 000010, 111101, 111010}

🢧 VU= {101000, 101111, 010000, 010111}

UV ≠ VU

Example ②:-

Let ∑ = {a,b,c,d} ; U= {abd , bcd} ; V= {bcd , cab} and W= {da , bd}

To prove the following:- U (VW) = (UV) W

First, take the left side;

U (VW) ={abd , bcd} {bcdda, bcdbd, cabda, cabbd}

= { abdbcdda, abdbcdbd, abdcabda, abdcabbd, bcdbcdda,

bcdbcdbd, bcdcabda, bcdcabbd }

Second, take the right side;

(UV) W = { abdbcd, abdcab, bcdbcd, bcdcab} {da , bd}

= { abdbcdda, abdcabda, bcdbcdda, bcdcabda, abdbcdbd,

abdcabbd, bcdbcdbd, bcdcabbd }

 U (VW) = (UV) W

-12-

Closure or Star Operation :-

This operation defines on a set S, a derived set S*, having as members
the empty word and all words formed by concatenating a finite number of
words in S, as shown below:-

S
*
S

0
∪ S

1
∪ S

2
∪

Where :-

S0  ε and Si  Si-1S for i 0

Example :-

Let S = {01, 11}, then

S*={ε , 01,11 , 0101,0111,1101,1111 , 010101 , 010111, ... }

S0 S1 S2

Formalization:-

A phrase structure grammar is of the form G= (N, T, S, P); where:-

N = A finite set of non-terminal symbols denoted by A, B, C,...

T = A finite set of terminal symbols denoted by a, b, c,...

With N ∪ T = V and N ∩ T= φ (null set).

P = A finite set of ordered pairs (, ) called the Production Rules, 

and  being the string over V* and  involving at least one symbol from

N.

S = is a special symbol called the Starting Symbol.

S3

-13-

Example :-

Let G= (N, T, S, P); N= {S, B, C}, T= {a, b}

P= {(S  aba), (SB b), (bbB), (bλ)}

This grammar is not a structure grammar because of the production

rule b bB because the left side of this rule containing only a terminal

symbol (b) and in any production rule the left side must involve at least

one non-terminal symbol.

Example :-

Let G= (N, T, S, P) where N= {S, A}, T= {a, b}

P= {(SaAa), (AbAb), (Aa)}

S  aAa  abAba  abbAbba  abbabba

Note :-

1. The production rules can be written in another form, for the above

example, the production rule is written as follows:-

P= {(S, aAa), (A, bAb), (A, a)}

2. Some times it may be that two different grammars G and Ğ

generated the same language L (G)=L(Ğ)  the grammars are said

to be equivalent.

Example :-

G= (N,T,S,P)

N= {number, integer, fraction, digit}

T= {., 0, 1, 2, 3, ..., 9}

S=number

P={(numberinteger fraction), (integerdigit), (integer integer digit),

(fraction.digit), (fractionfraction digit),(digit0), (digit1),

-14-

number

integer fraction

integer digit fraction digit

integer digit 3
. digit

digit 5

7

1

2

(digit2), (digit3), (digit4), (digit5), (digit6), (digit7), (digit8),

(digit9)}

Now we want to prove if the following number is accepted or not

-15-

By using BNF the grammar can be represented as follows:-

(For the previous example)

G= (N, T, S, P)

N= {<number>, <integer> , <fraction> , <digit>}

T= {., 0, 1, 2, 3, ..., 9}

S= <number>

Production rules P will be represented as follows:

<number> ::= <integer> <fraction>

<integer> ::= <digit>|<integer> <digit>

<fraction> ::= .<digit>|<fraction> <digit>

<digit> ::= 0|1|2|3|4|5|6|7|8|9

Regular Expression (R.E.)

The lexical analyzer needs to scan and identify only a finite set of
valid string/token/lexeme that belong to the language in hand. It
searches for the pattern defined by the language rules.

Regular expressions have the capability to express finite
languages by defining a pattern for finite strings of symbols. The
grammar defined by regular expressions is known as regular grammar.
The language defined by regular grammar is known as regular
language.

The various operations on languages are:

 Union of two languages L and M is written as

L U M = {s | s is in L or s is in M}

 Concatenation of two languages L and M is written as

LM = {st | s is in L and t is in M}

 The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

-16-

For example, R* is R.E. denoting

The main components of RE are

{  } ∪ L ∪ L
2

R R

∪ … ∪ L
R

1. ε or λ is R.E. denoting by L0={ε}=L

2. Any terminal symbol like a is R.E. denoting L={a}

3. [a-z] is all lower-case alphabets of English language.

4. [A-Z] is all upper-case alphabets of English language.

5. [0-9] is all natural digits used in mathematics.

Transformation of R.E. to Transition Diagram

(Formal Method)

1. For each non terminal NT draw a circle.

2. Connect with arrows between any two circles with respect to the

following rules:-

 If NTNT connect the two circles with arrow labeled λ or ε.

 If NTT NT connect the two circles with arrow labeled T.

 If NTT creates a new circle with a new NT (final) then

connect the left-hand side NT of the rule and the new NT

with arrow labeled T.

 If NTTs NT create circles (as the length of Ts-1).

n

-17-

Example :-

Let G= {{S, R, U},{a, b}, S, P}

P=
S  a

a S b

R

R  abaU Z
b a

U  b a ε

S  bU b
X

R  U

U  aS
U b

S  bR a Y

Transformation of BNF to Transition Diagram

(Informal Method)

1. Draw a separate transition diagram for each production rule.

2. Substitute each non-terminal symbol by its corresponding

transition diagrams.

Example :-

G= (N, T, S, P)

N= {<number>, <integer>, <fraction>, <digit>}

T= {., 0, 1, 2, 3, ..., 9}

S= <number>

P=
<number> ::= <integer> <fraction>

<integer> ::= <digit>|<integer> <digit>

<fraction> ::= .<digit>|<fraction> <digit>

<digit> ::= 0|1|2|3|4|5|6|7|8|9

-18-

<integer>

.

Now we take each production rule and draw to it a separate transition

diagram:-

<number> ::= <integer> <fraction>

-19-

Now we must substitute each non-terminal symbol by its corresponding

transition diagram.

<digit> <fraction>
⮞

<digit>

<digit> . <digit>

⮞

<digit> <digit>

.

⮞

College of Education for Pure Science Ibn-AL-Haithem/Dep. Of Computer Science
Third stage

Compilers / مترجمات
CHAPTER TWO

 عبدالمجيد محمد نادية .م.ا :الماده مدرس

2025 - 2026

Compilers
 2025-2026

Chapter Two

-22-

Transition Diagram

Lexical Analyzer Design

Lexical analysis is the first phase of a compiler. It takes modified

source code from language preprocessors that are written in the form of

sentences. The lexical analyzer breaks these syntaxes into a series of

tokens, by removing any whitespace or comments in the source code.

If the lexical analyzer finds a token invalid, it generates an error.

The lexical analyzer works closely with the syntax analyzer. It reads

character streams from the source code, checks for legal tokens, and

passes the data to the syntax analyzer when it demands.

The main sub-phases of the Lexical analyzer phase are shown below

in the following figure:-

Compilers

2025-2026

Chapter Two

-22-

 The grammar will converted to a Transition Diagram using special

algorithm.

 The converted Transition Diagram must be checked whether if it is

in NDFSA form or not; if so, the grammar must converted to DFSA

using algorithm which will be described in this chapter.

 The resulted grammar will be in DFSA form which must be

minimized to reduce the number of nodes depending on algorithm

designed for this purpose (fast searching and minimum memory

storage).

 The final sub-phase in lexical analyzer phase is to recognize if the

input string or statement is accepted or not depending on a specific

grammar.

Finite State Automata (FSA):-

Is a mathematical model consists of:-

1. A set of terminal symbols

2. Transition functions

3. One-Initial state (Start state)

4. One or Set of Final states

5. Finite set of elements called states

States : States of FSA are represented by circles. State names or

numbers are written inside circles.

Start state : The state from where the FSA starts, is known as the start

state. Start state has an arrow pointed towards it.

Compilers

2025-2026

Chapter Two

-22-

Final State :- If the input string is successfully parsed, the automata is

expected to be in this state. Final state is represented by double circles,

it is also called the Accepting State.

A transition :- Is denoted by an arrow connecting two states, the arrow

is labeled by the symbol (possibly e). The transition from one state to

another state happens when a desired symbol in the input is found. Upon

transition, automata can either move to the next state or stay in the same

state. Movement from one state to another is shown as a directed arrow,

where the arrows points to the destination state.

Two types of FSA :-

 Non-Deterministic Finite State Automata (NDFSA)

 Deterministic Finite State Automata (DFSA)

FSA is of NDFSA if one of these two conditions is satisfied:-

1. There are more than one transition have the same label from that

state to another states.

2. There is a ε - transition.

Compilers

2025-2026

Chapter Two

-23-

i f a

f

ε

ε
SQ FQ

SP FP

ε

i

ε

A transition, represent FSA of type

NDFSA.

A transition, represent FSA of type

DFSA.

Formal method for converting R.E. to NDFSA :-

 If we have an R.E.= ε then the NDFSA will be as follows:-

where i = initial state , f =final state

…………………………………….

 If we find a terminal symbol like a, then the NDFSA will be as

follows:-

…………………………………….

 If we have P|Q

i
ε

f

Compilers

2025-2026

Chapter Two

-22-

SP

FP

SQ

FQ

i ε
SQ FQ

ε f

ε

ε
1

a
2

b
3

c
4

ε

0 ε 9

ε
5 ε 6 d 7 ε 8 ε

ε

 If we have P.Q

 If we have Q*

ε

Example :-

R.E.= abc|d*

…………………………………….

Compilers

2025-2026

Chapter Two

-22-

ε ε ε

ε 0 ε 1 ε 0 ε

0 1 3 41 5 6
ε 1 0

7 81 9 10
ε

11

ε ε ε

Examples :-

1.
RE= letter (letter | digit)*

ε

2. R.E.= (a | b) *

…………………………………….

ε

2
a

3

ε
ε

0 1

ε

4
b

5

ε

ε

6
ε

7

ε

…………………………………….

3. R.E.= 0*1 0*1 0*

3
letter

4 ε

letter
0 1

ε
ε

2 7
ε

8

ε

5
digit

6 ε

ε

Compilers
 2025-2026

Chapter Two

-22-

 0-9

1 2

2 2 3

3 4

4 4

1 2 . 3 0-9 4

0-9 0-9

0-9

4. R.E.= ((λ | a) b*)*

ε

Data structure representation of FSA :-

 Transition Matrix

We must have a matrix with the number of its rows equal to the number

of the FSA states in the diagram while the number of its columns in this

matrix equal to the number of its inputs (labels).

This type of representation has a disadvantage that it contains many

blank spaces, while the advantage of this type is that the indexing is fast.

For example:-

ε
2

a
3 ε

ε

0
ε

1 6
ε

7
b

8
ε

9
ε

01

ε 4
λ

5 ε ε

ε

Compilers
 2025-2026

Chapter Two

-22-

 Graph Representation

In this representation we have a fixed number of columns which is equal

to 2 and the labels of these two columns are Input Symbol & Next State

while the number of rows differs from one transition diagram to another

and these rows are labeled by the number of states. The disadvantage of

this representation is that it takes a long time for searching (search slow)

while the advantage of this representation is that it is compact.

For the previous example:-

1 0-9 2 . 3 0-9 4

0-9 0-9

State

1 0-9 2

2 0-9 2

2 3

3 0-9 4

4 0-9 4

Compilers
 2025-2026

Chapter Two

-22-

Transformation of NDFSA to DFSA:-

Before we use an algorithm to convert the grammar which is NDFSA

form to DFSA form, we must deal with a special function known as ε-

Closure Function, which can be explained using the following

procedure:-

Function ℇ-Closure (M) :-

Begin

Push all states in M into stack;

Initialize ℇ-Closure (M) to M;

While stack is not empty do

Begin

Pop S;

For each state X with an edge labeled ε from S to X do

If X is not in ℇ-Closure (M) then

Begin

Push X;

Add X to ℇ-Closure (M);

End;

End;

End;

Compilers
 2025-2026

Chapter Two

-29-

1
a

2
b

3
c

4

0

Example :-

R.E.= abc|d*

ε ε

ε

ε

To compute randomly the ε-Closure for the following states:-

ℇ-Closure ({0}) = {0, 1, 5, 6, 8, 9}

ℇ-Closure ({1}) = {1}

ℇ-Closure ({7, 8}) = {7, 8, 9, 6}

ℇ-Closure ({2, 3, 4})={2, 3, 4, 9}

ε 9

5 ε 6 d 7 ε 8 ε

Compilers

Chapter Two

-32-

Algorithm for transforming NDFSA to DFSA:-

Initially let x= ℇ-Closure ({S0}) marked as the start state of DFSA, S0 is the

start state of NDFSA;

While there is unmarked states X = {S1, S2, ... ,Sn} of DFSA do

Begin

For each terminal symbol (a ∈ Σ) do

Begin

Let M be the set of states to which there is transition on a from

some states Si in X ;

Y = ℇ-Closure ({ M });

If Y has not yet been added to the set of states of DFSA then make

Y an unmarked state of DFSA;

Create an edge by adding a transition from X to Y labeled a if not

present;

End;

End;

End {algorithm}

Compilers
 2025-2026

Chapter Two

-32-

C

Examples:-

① R.E. = Letter (letter | digit)*

ε

ε-Closure ({ 0 }) = {0} Create a new node called for example A

A

B

3
letter

4 ε

0
letter

1
ε

ε
2 7

ε
8

ε
5

digit
6 ε

Start State

ε

letter ; M={1}; ℇ-Closure ({1})={1,2,3,5,8}

node called for example B (must be a final node because of node 8).

node called for example C (must be a final node because of node 8).

node called for example D (must be a final node because of node 8).

Compilers
 2025-2026

Chapter Two

-32-

A

D

Since of no nodes will be created and all the created nodes have been

manipulated, we will reach to the final step by which we have the DFSA,

this step will convert all the above work into a graph as follows:-

letter

letter

B

D

C

Compilers

Chapter Two

-33-

node called for example B (must be a final node because of node 10).

node called for example C (must be a final node because of node 10).

C

b ; M={8}; No need to create a new node because ℇ-Closure ({8})

A

B

② R.E. = ((ε| a) b*)* ε

ε-Closure ({0}) = {0,1,2,4,5,6,7,9,10} Create a new node called for

example A(must be a final node because of node 10).

ε
2

a
3 ε

ε

0
ε

1 6
ε

7
b

8
ε

9
ε

01

ε 4
ε

5 ε ε

ε

Compilers
 2025-2026

Chapter Two

-32-

B

Since of no nodes will be created and all the created nodes have been

manipulated, we will reach to the final step by which we have the DFSA,

this step will convert all the above work into a graph as follows:-

a

a

b

③ R.E. = (a|b)*abb

A

C

Compilers
 2025-2026

Chapter Two

-32-

Minimizing of DFSA:-

The purposes of minimization are:-

1. Efficiency.

2. Optimal DFSA.

Algorithm:-

1. Construct an initial partition Л of the set of states with two groups:

the accepting states F and the non accepting states S-F; where S is

the set of all states of DFSA.

2. for each group G of Л do

Begin

partition G into subgroups such that two states S and T of G are in

the same subgroup if and only if for all input symbols a, and states S

and T have transitions on a to states in the same group of Л, replace G

in Лnew by the set of all subgroups formed .

End

3. If Лnew = Л, let Лfinal = Л and continue with step (4), otherwise

repeat step (2) with Л := Лnew

4. Choose one state in each group of the partition Лfinal as the

representative for that group.

Compilers
 2025-2026

Chapter Two

-32-

A

B

Example :-

The DFSA for the R.E. = Letter (letter | digit)* is as follows:-

Group1= {A} which represents the set of not final nodes while Group2 =

{B,C,D} which represents the set of final nodes.

Always minimization acts on the nodes of the same type (on the nodes of

one group)

After applying the previous algorithm, the minimization figure will be as

follows:-

letter

digit

B

D

C

Compilers
 2025-2026

Chapter Two

-32-

A

Another example :-
b

Group1= {A,B,C,D} which represents the set of not final nodes while

Group2 = {E} which represents the set of final nodes.

Always minimization acts on the nodes of the same type (on the nodes of

one group)

After applying the previous algorithm, the minimization figure will be as

follows:-

a

Compilers
 2025-2026

Chapter Two

-32-

FSA Accepter (Recognizer):-

This will represents the final sub-phase for the lexical analyzer ,by using

a specific algorithm shown below we can specify the input string or

statement is accepted or not depending on a given grammar.

Never can apply the algorithm unless the grammar will be in minimized

form.

First, a transition matrix must be created for a given FSA, then doing a

table having two columns, the first represents the number of states while

the other represents the symbols for a given input string.

Algorithm :-

Begin

State = Start State of the FSA;

Symbol = First Input Symbol;

If Matrix [State, Symbol] ≠ Error Indication then

Begin

State = Matrix [State, Symbol];

Symbol = Next Input Symbol;

End

Else Input is not accepted

If State is a Final State of FSA then Input is accepted

Else Input is not accepted

End;

Compilers

2025-2026

Chapter Two

-39-

1 2 3
0-9

4

0-9 0-9

0-9 .

Example :- Having the following FSA representation shown below:-

Depending on the above representation, for 1.3$ and 37$,you asked to

recognize which one is accepted and which one is not accepted?

Solution:-

The Transition Matrix for the above FSA:-

1

0-9 .

2 #

2 2 3

3 4 #

4 4 #

For the String = 1.3 $

It is accepted
because state

number 4 is a final

 State

1 1

2

3 3

4

Compilers
 2025-2026

Chapter Two

-22-

For the String = 37 $

State Input symbol

1 3

2 7

2 $

This algorithm was slow and overlapping token, so a new algorithm can

be used to recognize the overlapping token.

For example:-

Suppose that we have this language:

{"bit" , "byte" , "item" , "tem"}

Now if we take the word items, we will find two words overlapping with

each other, these words are: item and tem

tem

items

item

Compilers
 2025-2026

Chapter Two

-22-

0

1

2
t

3

4
t

5

6

t

7
t

8

9

10

11

12

13

The new algorithm is known as AHO Algorithm and depends on the

following steps:-

(For the above example)

Step 1:- Constructing Tree-Structured DFSA.

(Always the input for the first node is all letters except the letters that are

outputted from it).

Step 2:- Determine fall back function f (Q) =R which is calculated as

follows:-

 Find largest route  which lead to Q from a state that is not

the start state.

 Find the route  but this time from the start state and

finished in R.

 F(Q)=R.

Compilers
 2025-2026

Chapter Two

-22-

Q

F(Q)

Step 3:- Construct the Matrix Representation for the DFSA, the

number of rows in it equal to the number ob nodes found in DFSA,

while the number of columns equal to the number of characters that

form the input language.

 b i t m y e

0 1 7 11 0 0 0

1 # 2 # # 4 #

2 # # 3 # # #

3 # # # # # #

4 # # 5 # # #

5 # # # # # 6

6 # # # # # #

7 # # 8 # # #

8 # # # # # 9

9 # # # 10 # #

10 # # # # # #

11 # # # # # 12

12 # # # 13 # #

13 # # # # # #

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 7 8 0 11 12 0 11 12 13 0 0 0

Compilers
 2025-2026

Chapter Two

-23-

Step 4:- Apply the steps of AHO Algorithm which is shown below:-

Algorithm :-

Begin

State = Start State;

Ch = First Character of Input;

While input symbols are not already exhausted do

If Matrix [State, Ch] ≠ error indication then

Begin

State = Matrix [State, Ch];

Ch = next Character;

End

Else begin

If State is a Final State then Signal;

If State = 0 then Ch= Next Character & State = Same State

Else State= f (State) & Ch=Same Character

End;

End;

Compilers
 2025-2026

Chapter Two

-22-

0

1

2

3

8

9

bit

item

tem

0

0

13

10

t

Example :-

Input String = bitemk$ for the same language {"bit" , "byte" , "item" ,

"tem"}

After constructing Tree-Structured DFSA, and create a Transition Matrix

for it with computing the value of the fall back function

Compilers
 2025-2026

Chapter Two

-22-

0

13
W

12

11

10

9

8

W

7

6

5

4

3

2

1

Example :-

If you have the following language:-

{"WHAT", "WHERE"," WHEN"," WHERES","HOW"," WHY"} and you

asked to apply AHO algorithm on it to specify the words that are

overlapped with each other in this string:- (WHYOWNSE$)

Step 1:- Constructing Tree-Structured DFSA.

Compilers
 2025-2026

Chapter Two

-22-

Step 2:- Compute fall back function f (Q) as follows:-

Q 0 1 2 3 4 5 6 7 8 9 10 11 12 13

F(Q) 0 0 11 0 0 0 0 0 0 0 0 0 0 1

Step 3:- Construct the Matrix Representation for the DFSA, the

number of rows in it equal to the number ob nodes found in DFSA,

while the number of columns equal to the number of characters that

form the input language.

 W H A E Y N O S R

0 1 11 0 0 0 0 0 0 0

1 # 2 # # # # # # #

2 # # 3 5 10 # # # #

3 # # # # # # # # #

4 # # # # # # # # #

5 # # # # # 9 # # 6

6 # # # 7 # # # # #

7 # # # # # # # 8 #

8 # # # # # # # # #

9 # # # # # # # # #

10 # # # # # # # # #

11 # # # # # # 12 # #

12 13 # # # # # # # #

13 # # # # # # # # #

Compilers
 2025-2026

Chapter Two

-22-

Step 4:- Apply the steps of AHO Algorithm on the string :-

(WHYOWNSE$).

0

1

2

10

0

0

1

0

0

W

WHY

 0

0

College of Education for Pure Science Ibn-AL-Haithem/Dep. Of Computer Science
Third stage

Compilers / مترجمات
CHAPTER THREE

 عبدالمجٌد محمد نادٌة .م.ا :الماده مدرس

0202-0202

Compilers

Chapter Three

-84-

Syntax Analyzer

When an input string (source code or a program in some

language) is given to a compiler, the compiler processes it in

several phases, starting from lexical analysis (scans the input and

divides it into tokens) to target code generation.

Syntax Analysis or Parsing is the second phase, i.e. after

lexical analysis. It checks the syntactical structure of the given

input, i.e. whether the given input is in the correct syntax (of the

language in which the input has been written) or not. It does so

by building a data structure, called a Parse Tree or Syntax Tree.

The parse tree is constructed by using the pre-defined

Grammar of the language and the input string. If the given input

string can be produced with the help of the syntax tree (in the

derivation process), the input string is found to be in the correct

syntax. If not, error is reported by syntax analyzer.

Example (1):-

Suppose Production rules for the Grammar of a language are:

S ⟶ cAd

A ⟶ bc|a

And the input string is “cad”.

Now the parser attempts to construct syntax tree from this

grammar for the given input string. It uses the given production

rules and applies those as needed to generate the string. To

generate string “cad” it uses the rules as shown in the given

diagram:-

Compilers

Chapter Three

-84-

In the step (3) above, the production rule A⟶bc was not a

suitable one to apply (because the string produced is “cbcd” not

“cad”), here the parser needs to backtrack, and apply the next

production rule available with A which is shown in the step (4),

and the string “cad” is produced.

Thus, the given input can be produced by the given

grammar; therefore the input is correct in syntax. But backtrack

was needed to get the correct syntax tree, which is really a

complex process to implement.

Example (2):-

G= ({<exp>, <operand>, <id>},{a , b , c , + , - , (,) },<exp>, P)

T= {a , b , c , + , - , (,) }

P=
<exp> ::= <operand> | <exp> + <operand> | <exp> - <operand>

<operand> ::= <id> | (<exp>)

<id> ::= a | b |c

(1) (2) (3) (4)

Compilers
 2025-2026

Chapter Three

-05-

Syntax analyzer utilizes syntax trees to determine whether a

statement is accepted or not. Check if a-(b+c) accepted?

<exp>

<exp>

<operand>

<id>

a

<operand>
-

<exp>

<exp> <operand>

+

<operand>

<id>

b

<id>

c

We can use another method to determine whether a statement is

accepted or not, this method is called (Derivation Method).

There are two types of derivation:-

1. Leftmost derivation

2. Rightmost derivation

Compilers
 2025-2026

Chapter Three

-05-

Example (3):-

Let G be a grammar with this components ({S , E , F , P , R , L},{a , b , (,

) , + , - , × , ̂ , /}, S ,P)

P=

S� E S� +E S� -E E� T

T� F F� P P� b R� a(L)

E� E+T E�T×F F� F^P L� S

S� E-T E�T/F P� a P� (S)

Is a×(b+a) accepted or not?

Leftmost derivation :-

S� E� T×F � F×F � P×F � a×F � a×P � a× (S) � a×(E)� a×(E+T) �

a×(T+T) � a×(F+T) � a×(P+T) � a×(b+T) � a×(b+F) � a×(b+P)

�a×(b+a) ∴ a×(b+a) is accepted

Rightmost derivation :-

S � E � T×F � T×P � T×(S) � T×(E) � T×(E+T) � T×(E+F) �T×(E+P) �

T×(E+a) � T×(T+a) � T×(F+a) � T×(P+a) � T×(b+a) �F×(b+a) �

P×(b+a) � a×(b+a) ∴ a× (b+a) is accepted

Context-Free Grammars:

The syntax of a programming language is described by

context-free grammar (CFG). CFG consists of a set of terminals, a

set of non-terminals, a start symbol, and a set of productions.

Compilers
 2025-2026

Chapter Three

-05-

Ambiguity

A grammar that produces more than one parse tree for some

sentence is said to be ambiguous.

Example:-

consider a grammar

S ⟶ aS | Sa | a

Now for string aaa, we will have 4 parse trees, hence ambiguous

Compilers
 2025-2026

Chapter Three

-05-

Parser Techniques

Types of Parsers in Compiler Design:-

The parser is that phase of the compiler which takes a token

string as input and with the help of existing grammar, converts it

into the corresponding Intermediate Representation. The parser

is also known as Syntax Analyzer.

Types of Parser:

The parser is mainly classified into two categories, i.e. Top-

down Parser, and Bottom-up Parser. These are explained below:-

Parser (Syntax Analyzer)

Top-down parser
(Predictive Parser)

Bottom-Up parser
(Operator-Precedent

Parser)

With
Backtracking

Without
Backtracking

1- Top-Down Parser:

The top-down parser is the parser that generates parse for

the given input string with the help of grammar productions by

expanding the non-terminals i.e. it starts from the start symbol

and ends on the terminals. It uses left most derivation.

Compilers
 2025-2026

Chapter Three

-08-

Further Top-down parser is classified into two types: Recursive

parser, and Non-recursive parser.

1. Recursive parser is also known as the backtracking parser.

It basically generates the parse tree by using backtracking.

2. Non-recursive parser is also known as LL(1) parser or

predictive parser or without backtracking parser. It uses a parsing

table to generate the parse tree instead of backtracking.

2- Bottom-up Parser:

Bottom-up Parser is the parser that generates the parse tree

for the given input string with the help of grammar productions

by compressing the non-terminals i.e. it starts from non-

terminals and ends on the start symbol. It uses the reverse of the

rightmost derivation. Further Bottom-up parser is classified into

two types: LR parser, and Operator precedence parser.

LR parser is the bottom-up parser that generates the parse

tree for the given string by using unambiguous grammar. It

follows the reverse of the rightmost derivation.

LR parser is of four types:-

(a) LR(0)

(b) SLR(1)

(c) LALR(1)

(d) CLR(1)

Operator precedence parser generates the parse tree form given

grammar and string but the only condition is two consecutive

Compilers
 2025-2026

Chapter Three

-00-

Parser
LL(1) parser

Operator

Precedence

parser

non-terminals and epsilon never appear on the right-hand side of

any production.

LR(0) SLR(1) LALR(1) CLR(1)

Steps of parsing in LL(1) parser or predictive parser with or

without backtracking:-

1- Remove left recursion, because ambiguous not allowed in

LL(1).

2- Compute FIRST and FOLLOW sets.

3- Construct the predictive parsing table using algorithm.

4- Parse string or statement using parser.

Compilers

2025-2026

Chapter Three

-05-

Backtracking manipulating (Removing Left

Recursion)

 Elimination Left-Recursion الأٌمن الطرف ٌسارى ألص فً العنصر تكرار اءغإل

E � E+A

Left Recursion Elimination :-

Left Recursion Elimination is of two types:-

1. Immediate Left-Recursion Elimination.

2. Not-Immediate Left-Recursion Elimination.

Immediate Left-Recursion Elimination

A grammar is left recursive if it has a nonterminal

(variable) S such that there is a derivation

S ⟶ S𝘢 | β

Where α and β (sequence of terminals and non-terminals

that do not start with S)

Due to the presence of left recursion some top-down

parsers enter into an infinite loop so we have to eliminate left

recursion.

If we have a production of the form:-

A � Aα1│ Aα2│ Aα3│…│Aαm│ℬ1 │ ℬ2│…│ℬn Where

no βi begins with an A. The main rule for removing the

immediate backtracking is by generating two rules as follows:-

Compilers

2025-2026

Chapter Three

-05-

A � ℬ1Á │ ℬ2Á │…│ ℬnÁ (the first one depends on the part

of the previous rule exactly on the

part that not begins with A)

Á � α1Á │α2Á │α3Á │…│αmÁ │ℇ (the second one depends on

the part of the initial rule exactly

on the part that begins with A)

Example (1):-

S ⟶ S a b| S c d | S e f | g |h

Sol.

S ⟶ g S′| h S′

S′ ⟶ a b S′ | c d S′ | e f S′ | ε

Example (3):-

S ⟶ (L) |a (No left recursion)

L ⟶ L c S | S (left recursion)

Sol.

L ⟶ S L′

L′ ⟶ c S L′ | ε

Example (2):-

E � a b c │d e f │E r x

Sol.

É � a b c │ d e f É

É � r x É│ℇ

Example (4):-

exp � exp or term│term

term � term and factor│factor

factor � not factor|(exp)│true│false

Sol.

exp � term exp´

exp´ � or term exp´│ℇ

term � factor term´

term´ � and factor term´│ℇ

factor � not factor │(exp)│true│false

Compilers
 2025-2026

Chapter Three

-04-

Not Immediate Left-Recursion Elimination

Algorithm:-

Arrange NT in any order;

For I :=2 to n do

For J := 1 to i-1 do

Begin

Replace each production of the form Ai � AJ α by the production

Ai � ∂1 α /∂2 α /∂3 α /…/∂k α;
Where
AJ � ∂1/∂2/∂3/…/∂k are the current AJ productions;

End;

Eliminate the immediate left recursion among the Ai productions;

End;{of algorithm}

Example (1):-

B � A c/d

A � Br/x

Solution:-

A1=B A2=A

A � A c/d
1 2

A2 � A1r/ x

A2 � A1r ∴ α = r
……………..

Ai � ∂1 α /∂2 α /∂3 α /…/∂k α

Compilers
 2025-2026

Chapter Three

-04-

A2 � ∂1 α /∂2 α

A1 � ∂1/∂2

∵ A1� A2c/d ∴ ∂1= A2c and ∂1= d

I = 2 J = 1 α = r ∂1= A2c ∂2 = d

A2 � ∂1 α /∂2 α

∴ A2 � A2c r /d r/ x

A1� A2c/d

A2 � A2c r /d r/ x

B� Ac/d

A � Ac r /d r/ x

The result will be:-

B � Ac/d

A � d r Á / x Á

Á � c r Á /ɛ

……………..

Example (2):-

S � A b / b

A � Ac / Sd/ e

Compilers
 2025-2026

Chapter Three

-55-

Another method to convert not immediate left recursion to

immediate left recursion is by using substitution, as shown in the

following example:-

S � A b / b

A � Ac / Sd/ e

The values of prameters i, j, α, 𝜕1 , 𝜕2 , 𝜕3 , ….

 Usually, (i) refers to the rule that contains the not immediate

left recursion (rule no. 2), while (j) refers to the first rule

(rule no.1).

 (α) represent the element next to the non terminal that

causes the not immediate left recursion.

 (𝜕1 , 𝜕2 , 𝜕3 , ….) these values can get them from rule no.1 (the

first rule), through taking the right hand side of the rule.

Now, depending on the notes above,

Rule no. 1 S � A b / b (j=1) from this rule we can get

the values of (𝜕1 , 𝜕2 , 𝜕3 , ….), so 𝜕1 = Ab and 𝜕2 = b

Rule no. 2 A � Ac / Sd/ e

value of α = d

(i=2), from this rule we can get the

i=2 j=1 𝜕1 = Ab 𝜕2 = b α = d

S � A b | b

A � Ac | Sd | e

…………………..

S � A b | b

A � Ac | (A b | b) d | e

Compilers
 2025-2026

Chapter Three

-55-

S � A b | b

A � Ac | A b d | b d | e

…………………..

S � A b | b

A � b d A′ | e A′

A′ � c A′ | b d A′ | ɛ

…………………..

Example (2):-

B � A c|d rule no.1

A � B r|x rule no. 2

i=2 j=1 𝜕1 = A c 𝜕2 = d α = r

B � A c|d

A � (A c|d) r|x

…………………..

B � A c|d

A � A c r|d r|x

…………………..

B � A c|d

A � d r A′|x A′

A′ � c r A′ | ɛ

Compilers
 2025-2026

Chapter Three

-55-

Predicative Parsing (Top Down Parser)

 Predictive parsing is a special case of recursive descent

parsing where no backtracking is required.

 The key problem of predictive parsing is to determine the

production to be applied for a non-terminal in case of

alternatives

Non-recursive predictive parser architecture:-

The table-driven predictive parser has an input buffer, stack, a

parsing table and an output stream.

Input buffer:- It consists of strings to be parsed, followed by $

to indicate the end of the input string.

Stack:- It contains a sequence of grammar symbols preceded by

$ to indicate the bottom of the stack. Initially, the stack

contains the start symbol on top of $.

Parsing table:- It is a two-dimensional array M[A, a], where „A‟ is

a non-terminal and „a‟ is a terminal.

Compilers
 2025-2026

Chapter Three

-55-

Previously, we talk about the steps of top-down parser with or

without backtracking, as shown below:-

1- Remove left recursion, because ambiguous not allowed in

LL(1). (note that, this step is previously explained)

2- Compute FIRST and FOLLOW sets.

3- Construct the predictive parsing table using algorithm.

4- Parse string or statement using parser.

Predictive parsing table construction

The construction of a predictive parser is aided by two functions

associated with a grammar:-

1. FIRST

2. FOLLOW

FIRST Set in Syntax Analysis

FIRST(X) for a grammar symbol X is the set of terminals that

begin the strings derivable from X.

Rules to compute FIRST set:-

1. If x is a terminal, then FIRST(x) = { „x‟ }

2. If x ⟶ Є, is a production rule, then add Є to FIRST(x).

3. If X is non-terminal and X → a 𝘢 is a production then add (a) to

FIRST(X).

4. If X ⟶ Y1 Y2 Y3….Yn is a production,

a. FIRST(X) = FIRST(Y1)

b. If FIRST(Y1) contains Є then FIRST(X) = { FIRST(Y1) – Є }

U { FIRST(Y2) }

Compilers
 2025-2026

Chapter Three

-58-

c. If FIRST (Yi) contains Є for all i = 1 to n, then add Є to

FIRST(X).

Example (1):-

Consider the following grammar:-

E → E+T | T

T → T*F | F

F → (E) | id

Sol.:-

Before calculating the first and follow functions, eliminate Left

Recursion from the grammar, if present.

E → TE′

E′ → +TE‟ | ε

T → FT‟

T′ → *FT′ | ε

F → (E) | id

Production Rules of

Grammar

FIRST sets

E ⟶ TE′ ⟹ FIRST(E) = FIRST(T) = { (, id }

E′ ⟶ +T E′|Є ⟹ FIRST(E′) = { +, Є }

T ⟶ F T′ ⟹ FIRST(T) = FIRST(F) = { (, id }

T′⟶ *F T′ | Є ⟹ FIRST(T′) = { *, Є }

F ⟶ (E) | id ⟹ FIRST(F) = { (, id }

Compilers
 2025-2026

Chapter Three

-50-

S → A

A → aB / Ad

B → b

C → g

Sol.:-

Before calculating the first and follow functions, eliminate Left

Recursion from the grammar, if present.

S → A

A → aBA‟

A‟ → dA‟ / ∈

B → b

C → g

 FIRST sets

P

ro

S → A ⟹ First(S) = First(A) = { a }

 d
u

c
tio

n
 R

u
le

s
 o

f

G
ra

m
m

a
r

A → aBA‟ ⟹ First(A) = { a }

A‟ → dA‟ / ∈ ⟹ First(A‟) = { d , ∈ }

B → b ⟹ First(B) = { b }

C → g ⟹ First(C) = { g }

Compilers
 2025-2026

Chapter Three

-55-

Example (3):- Consider the following grammar:-

E → E + T / T

T → T x F / F

F → (E) / id

Sol.:-

Before calculating the first and follow functions, eliminate Left

Recursion from the grammar, if present.

E → TE‟

E‟ → + TE‟ / ∈

T → FT‟

T‟ → x FT‟ / ∈

F → (E) / id

 FIRST sets

P
ro

E → TE‟ ⟹ First(E) = First(T) = First(F) = { (, id }

d
u

c
tio

n
 R

u
le

s
 o

f

G
ra

m
m

a
r

E‟ → + TE‟ /∈ ⟹ First(E‟) = { + , ∈ }

T → FT‟ ⟹ First(T) = First(F) = { (, id }

T‟ → x FT‟ / ∈ ⟹ First(T‟) = { x , ∈ }

F → (E) / id ⟹ First(F) = { (, id }

Compilers
 2025-2026

Chapter Three

-55-

FOLLOW Set in Syntax Analysis

Follow (X) to be the set of terminals that can appear immediately

to the right of Non- Terminal X in some sentential form. That is

mean; we calculate the follow function of a non-terminal by

looking where it is present on the Right Hand Side (RHS) of a

production rule.

 :-مهمة ملاحظات

 (rule).تعتمد على الجزء الامٌن من كل (Follow)مجموعة 1-

 ($).سٌاوي ٌدائما (start)للعنصر (Follow)ة ٌمل 2-

 (∋). على (Follow) مجموعة تحتوي ان الممكن رٌ ٌغ من 3-

 :-له (Follow) ةٌمل جٌادٌا المطلوب للعنصر الامٌن المجاور العنصر عن البحث مٌت دائما 4-

 العنصر هذا نفس ستكون (Follow) مٌةٌل فان (terminal) نوع من العنصر كان اذا -أ

.(terminal T)

مٌة ٌلم ٌةٌ مساو ًه العنصر لهذا (Follow) مٌةٌل تكون فسوف امٌن مجاور عنصر هنالن نٌك لم اذا -ب

(Follow) سٌر من ٌالجزء الا ًللعنصر الموجود ف.(rule)

 (Follow) مٌةٌل فان NT) terminal (non نوع من مٌنٌالا المجاور العنصر كان اذا -ت

 مٌةٌل مع حذف الامٌن المجاور للعنصر (First) مجموعة من كل اتحاد عن عبارة ستكون العنصر لهذا

 من سٌرٌالا الجزء ًف الموجود للعنصر (Follow) مجموعة الى بالاضافة (∋)

(rule)

Rules For Calculating Follow Function:-

1- If S is a start symbol, then FOLLOW(S) contains $, means, for

the start symbol S, place $ in Follow(S). {Means put $ (the

end of input marker) in Follow(S) (S is the start symbol)}

2- If there is a production A → αBβ, then everything in FIRST(β)

except ε is placed in Follow (B), means Follow(B) = First(β)

Compilers
 2025-2026

Chapter Three

-54-

3- If there is a production A → αB, or a production A → αBβ

where FIRST(β) contains ε, then everything in FOLLOW(A) is

in FOLLOW(B), means Follow(B) = Follow(A)

4- ∈ will never appear in the follow function of a nonterminal.

Example (1):- Consider the following grammar:-

E → E + T / T

T → T × F / F

F → (E) / id

Sol.:-

The given grammar is left recursive. So, we first remove left

recursion from the given grammar. After eliminating left

recursion, we get the following grammar-

Rule First Set Follow Set

E → TE′ First(E) = First(T) = First(F)
= { (, id }

Follow(E) = { $,) }

E′→ +TE′/ ∈ First(E′) = { + , ∈ } Follow(E′) = Follow(E) = { $,) }

T → FT′ First(T) = First(F) = { (, id }
FOLLOW(T)={First(E′) – ∈}∪ Follow(E′)

= { +, $,) }

T′→ ×FT′/∈ First(T′) = { × , ∈ } Follow(T′) = Follow(T) = { + , $,) }

F → (E) / id First(F) = { (, id }
Follow(F) = {First(T′) – ∈} ∪ Follow(T)

= { ×, +, $,) }

Compilers
 2025-2026

Chapter Three

-54-

Example (2):- Consider the following grammar:-

S → A

A → aB / Ad

B → b

C → g

Sol.:-

The given grammar is left recursive. So, we first remove left

recursion from the given grammar. After eliminating left

recursion, we get the following grammar-

Rule First Set Follow Set

S → A First(S) = First(A) = { a } Follow(S) = { $ }

A → aBA′ First(A) = { a } Follow(A) = Follow(S) = { $ }

A′ →dA′/∈ First(A′) = { d , ∈ } Follow(A′) = Follow(A) = { $ }

B → b First(B) = { b }
Follow(B) = {First(A′) –∈ } ∪ Follow(A)

= { d , $ }

C → g First(C) = { g } Follow(C) = empty set

Compilers

2025-2026

Chapter Three

-55-

Algorithm for construction of predictive parsing
table

Method :

1- For each production A → α of the grammar, do steps 2 and 3.

2- For each terminal a in FIRST(α), add A → α to M[A, a].

3- If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in

FOLLOW(A). If ε is in FIRST(α) and $ is in FOLLOW(A) , add A

→α to M[A, $].

4- Make each undefined entry of M be error.

 table) (Parsing جدول استحداث ةٌ ٌخوارزم

 terminal) (Non العناصر عدد اويسٌٌ اسطر بعدد اوجدول مصفوفة تكونٌ 1-

 ($) العنصر الى بالاضافة (Terminal) عناصر عدد اويسٌٌ الجدول ً ف الاعمدة عدد 2-

 الجدول حمول ء ًمل ًف (First) مٌ ٌل على كامل بشكل الاعتماد تمٌ 3-

E�E+T / T

T�T×F / F

F�(E) / id

 يةبعمل دءالب قبيل الخلفي الرجوع معالج من بدّ لاف المباشر نوع من خلف رجوع عل القواعد هذه تحتوي

 Follow (و) First (ميق وحساب الإعراب

Rule First Set Follow Set

E → TE′ First(E) = { (, id } Follow(E) = { $,) }

E′→ +TE′/ ∈ First(E′) = { + , ∈ } Follow(E′) = { $,) }

T → FT′ First(T) = { (, id } Follow(T) = { +, $,) }

T′→ ×FT′/∈ First(T′) = { × , ∈ } Follow(T′) = { + , $,) }

F → (E) / id First(F) = { (, id } Follow(F) = { ×, +, $,) }

Compilers

2025-2026

Chapter Three

-55-

We must find or construct now the predictive parsing table

 Id + × () $

E E � TE´ E �TE´

E´ E´ �+TE´ E´�ε E´�ε

T T �FT´ T �FT´

T´ T´ �×FT´ T´�ε T´�ε

F F � id F � (E)

Predictive parsing program

Algorithm:-

Set IP (Input Pointer) point to the first symbol of the input string W$

Repeat

Let X be the top stack symbol and (a) be the symbol pointed by IP;

If X is a terminal or $ then

If X = a then

Pop X from the stack and advance IP

Else error()

Else

if M[X,a] = X � Y
1

Y
2

… Y
k

then

Begin

Pop X from the stack

push Y
1

Y
2

… Y
k

on to stack with Y
1

on top

Compilers

2025-2026

Chapter Three

-55-

Output the production X � Y
1

Y
2

… Y
k

End

Else error();

Until X=$;

 كانت فإذا (Backtracking). ًالخلف الرجوع من المواعد خلو هو (Top-Down) ةبطرٌمٌ للإعراب ً الأساس الشرط

 النوع من كان إذا ماٌف الخلف الرجوع نوع من التأكد من بّدلاف ًالخلف الرجوع ى عل تحتوي المواعد

رٌغ المباشر (Not-Immediate Backtracking) لن رشابالم (Immediate Backtracking) أو

 .مسبما حهاشر تم ًالت قالطر وفك ةمعالجت ٌتم

 . Pop & Push تمثل بها والتً هالخاصٌ اتٌوالعمل Stack وجود ىإل ٌهالخوارزم هذه ًف نحتاج

 أن ثٌحوالأعمدة الأسطر من بعدد Parse) (table جدول تكوٌن اجل من First) follow) and مٌ ٌل حساب ٌتم

 .مسبما ٌهحسب ما تم التطرق الTerminalر عناص لفتمث دةالأعم رعناص وأ ملٌ اأم Non-Terminal رعناص لتمث طرالأس رعناص

 :- هالطرٌمٌ بهذه الإعراب لبل ما خطوات

 أعمدة بخمسٌ جدول تكوٌن

 . Stack of Top ٌمثل والذي X الرمز ٌمثل الأول العمود 1.

 بهإعرا وبالمطل مٌ الكلا ى إل رٌٌش مؤشر ٌمثل والذي a الرمز ٌمثلً الثان العمود 2.

 . Stackالعمود الثالث ٌمثل 3. .

 .بالكامل اهباأعر المطلوب الجملٌ عناصر ٌمثل الرابع العمود 4.

 رالعناص نبٌ ام تلالاالع علً يوٌحت والٌذي Output ٌمثٌل ٌروالأخ امسالخ العمود 5.

. Non-terminal والعناصر terminal

.

Compilers

2025-2026

Chapter Three

-55-

.

 :-الإعراب طرٌكٌ

 X=a كان إذا محّظٌ من بِد Terminal نوع من X ٌكون عندما 1.

 التال العنصر خذونأ Stack of Top ٌمثل والذي X لجمٌ سحب بعملجٌ نموم الشرط تحمك إذا⇚

لجمٌ العمود الثالث وأٌضا Input الرابع العمود لجمٌ تتػجر وكذلن تتػجر a العمود لجمٌ إن أي(إعرابوا المطلوب الجملٌ ف

). Stackوالذي ٌمثل

 ممبولٌ غجر تكون إعرابوا المطلوب الجملٌ أن معناه)a ≠ X(إن أي أعهّ الشرط ٌتحمك لم إذا⇚

.(Not accepted)

 أي table) (Parse الجدول ف a مع X عك عن فنبحث Not-Terminal نوع من X ٌكون عندما 2.

 العنصر Stackمن وسحب الخامس العمود ف إضافتوا ٌتم سوف العك تلن وان a العمود مع X السطر تماطع

بدون تػججر وكذلن حمل aحمل وٌبمً بٌالمملوب ولكن العك من الأٌمن للطرف Push وعمل الممٌ ف الموجود

.Input

 . Stack ≠ $ لجمٌ طالما والثانجٌ الأول الخطوات بتكرار نستمر 3.

Example :-

Having the following grammar:-

E�E+T / T

T�T×F / F

F�(E) / id

Show the moves made by the Top-Down Parser on the input=id+id×id$

Sol.

1- We must solve the left recursion and left factoring if it founded

in the grammar

ً الرجوع معالجٌ من فبّد المباشر نوع من خلف رجوع عل المواعد هذه تحتوي ًٌ البٌدء لبٌل الخلف .الإعراببعملج

Compilers
 2025-2026

Chapter Three

-58-

E � T E´

E´� +T E´ / ε

T � F T´

T´� ×F T´ / ε

F � (E) / id

2- We must find the first and follow to the grammar:

Rule First Set Follow Set

E → TE′ First(E) = { (, id } Follow(E) = { $,) }

E′→ +TE′/ ∈ First(E′) = { + , ∈ } Follow(E′) = { $,) }

T → FT′ First(T) = { (, id } Follow(T) = { +, $,) }

T′→ ×FT′/∈ First(T′) = { × , ∈ } Follow(T′) = { + , $,) }

F → (E) / id First(F) = { (, id } Follow(F) = { ×, +, $,) }

3- We must find or construct now the predictive parsing table

 Id + × () $

E E � TE´ E �TE´

E´ E´ �+TE´ E´�ε E´�ε

T T �FT´ T �FT´

T´ T´ � ε T´ �×FT´ T´�ε T´�ε

F F � id F � (E)

Compilers
 2025-2026

Chapter Three

-50-

X a Stack Input Output

E id $E id+id×id$ ----------

T id $E´T id+id×id$ E � TE´

F id $E´ T´ F id+id×id$ T �FT´

id id $E´ T´ id id+id×id$ F � id

T´ + $E´ T´ +id×id$ Pop id

E´ + $E´ +id×id$ T´ � ε

+ + $E´ T+ +id×id$ E´ �+TE´

T id $E´ T id×id$ Pop +

F id $E´ T´ F id×id$ T �FT´

id id $E´ T´ id id×id$ F � id

T´ × $E´ T´ ×id$ Pop id

× × $E´ T´ F× ×id$ T´ �×FT´

F id $E´ T´ F id$ Pop ×

id id $E´ T´ id Id$ F � id

T´ $ $E´ T´ $ Pop id

E´ $ $E´ $ T´�ε

$ $ $ $ E´�ε

Stop

Compilers
 2025-2026

Chapter Three

-55-

Example :-

Having the following grammar:-

exp � exp or term | term

term � term and factor | factor

factor � not factor | (exp) | true | false

Parse the following statement:- not (true or false) $

Sol.

1- We must solve the left recursion and left factoring if it founded

in the grammar

exp � term exp'

exp' � or term exp | ϵ

term � factor term'

term' � and factor term'| ϵ

factor � not factor | (exp) | true | false

2- We must find the first and follow to the grammar:

Rule First Set Follow Set

exp � term exp' First (exp)={not,(,true,false} Follow (exp) = { $,) }

exp' � or term exp' | ϵ First(exp′) = {or,∈ } Follow (exp′) = { $,) }

term � factor term'

First(term)={not,(,true,false}
Follow (term) = first
((exp')-∈) ∪ follow
(exp)= { or , $,) }

term' � and factor term'|ϵ First(term′) = {and , ∈}
Follow(term′) = follow
(term)= { or , $,) }

factor � not factor | (exp) |

true | false
First(factor)={not,(,true,false}

Follow(factor) = first
((term')-∈) ∪ follow
(term)= {and, or , $,)}

Compilers
 2025-2026

Chapter Three

-55-

3- We must find or construct now the predictive parsing table

 not or and () true false $

exp

exp→

term

exp’

 exp→

term

exp’

 exp→

term

exp’

exp→

term

exp

exp’
 exp’→

or term

exp’

exp’→ϵ

exp’→ϵ

term

term→

factor

term’

 term→

factor

term’

 term→

factor

term’

term→

factor

term’

term’

 term’
→ and

factor

term’

term’→ϵ

term’→ϵ

factor factor→

not

factor

 factor

→ (exp)
 factor→

true

factor

→ false

4- Apply parsing algorithm to parse the statement not (true or

false) $

X a Stack Input Output

exp not $exp not (true or false) $ ----------

term not $ exp‟ term not (true or false) $ exp→ term exp‟

factor not $ exp‟ term‟ factor not (true or false) $ term→ factor term‟

not not $ exp‟ term‟ factor not not (true or false) $ factor→ not factor

factor ($ exp‟ term‟ factor (true or false) $ pop not

(($ exp‟ term‟) exp ((true or false) $ factor→ (exp)

exp true $ exp‟ term‟) exp true or false) $ pop (

term true $ exp‟ term‟) exp‟ term true or false) $ exp→ term exp‟

and so on until we reach to to stop condition when stack=$ only

Compilers
 2025-2026

Chapter Three

-54-

Bottom Up Parser (Shift-Reduce Parser)

Constructing a parse tree for an input string beginning at the

leaves and going towards the root is called bottom-up parsing.

There is a general style of bottom-up syntax analysis, known

as shift reduces parsing.

Is a right most derivation for a sentential form in reverse order.

Conditions for Bottom-Up Parser:-

1. No ɛ-rules (i.e., A � ε).

2. It must be operator grammar (i.e., no adjacent non-terminal).

Example :- E � E A E / (E) / -E / id

Since of this production rule, the

grammar is not operator grammar

(E=NT, A=NT, E=NT).

Compilers
 2025-2026

Chapter Three

-54-

Example :- E � E + E / E-E

 This grammar is an operator grammar (E is

NT, + is T, E is NT).

SHIFT-REDUCE PARSING (Operator Precedence Parser)

Shift-reduce parsing is a type of bottom-up parsing that attempts

to construct a parse tree for an input string beginning at the

leaves (the bottom) and working up towards the root (the top).

Example: Consider the grammar:

S → aABe

A → Abc | b

B → d

The sentence to be recognized is abbcde.

We need to do a table with three fields (Stack, Input, action

{which will be either shift or reduce}).

Compilers
 2025-2026

Chapter Three

-45-

Actions in SHIFT-REDUCE PARSING

 Shift - The next input symbol is shifted onto the top of the

stack

 Reduce – the parser replaces the handle within a stack with a

non-terminal.

 Accept – the parser announces successful completion of

parsing.

 Error – the parser discovers that a syntax error has occurred

and calls an error recovery routine.

Initial value for stack=$.

Initial value for input=the sentence which we want to parse.

Initial value for action = Shift.

We need to know the meaning of the handle.

Definition: a handle is a substring that:-

1- Matches a right hand side of a production rule in the grammar

2- Whose reduction to the non-terminal on the left hand side of

that grammar rule is a step along the reverse of a rightmost

derivation.

 بطرٌكٌ للإعراب الأساس الشرط (Bottom-Up) من المواعد خلو هو (ɛ) word Empty وان

 -Non نٌوع مٌن متجٌاورة عناصٌر وجٌود عٌدم أي grammar) (Operator عنٌو مٌن تكٌون

.Terminal

 ِِ معوا التعامل المطلوب المواعد ف خلف رجوع وجود عدم أو بوجود الطرٌكٌ هذه توتم.

 وجود إل الخوارزمجٌ هذه ف نحتاج Stack تمثل والت بوا الخاصٌ والعملجات Pop & .Push

Compilers
 2025-2026

Chapter Three

-45-

 :- ارزمجٌ الخو خطوات

 أعمدة بثث جدول تكوٌن-:






Shift &

 . Stack ٌمثل الأول العمود 1.

 (Input). بالكامل أعربوا المطلوب الجملٌ عناصر ٌمثل الثان العمود 2.

 همٌا أساسٌجتجن عملجتٌجن ٌمثٌل والٌذي Action ٌمثٌل والأخجٌر الثالٌث العمٌود 3.

.Reduce

 ٌالمجم ٌِ $. عل فمط تحتوي (Stack) الأول ودللعم ابِتداجُ

 ٌالمجم ٌِ .إعرابوا المطلوب الجملٌ ه (Input) الثان للعمود ابِتداجُ

 ٌالمجم ٌِ ٌسار العمود الثان ألص ف الموجود للعنصر Push عملجٌ وتمثل Shift تكون والأخجر الثالث للعمود ابِتداجُ

 Stack. ودفع العنصر ف

 تطبجك من بِد Derivation Most Right المعطاة المواعد عل.

 بً ٌسم ما تحدٌد ٌتم علجوا وباعِتماد مباشرة السابكٌ الخطوة بعد (Handle) علجوا لجم العمود الثالث ٌعتمٌد سٌوف والت

.(Action)

 باستخدام المواعد اشتماق .(Tree)

 إل وإضافتى إعرابوا المطلوب ملٌ الج ٌسار ألص ف الموجود العنصر إضافٌ حالٌ تمثل مرحلٌ أول

.(Top of Stack)

 ٌإلً إضٌافتى تٌم الٌذي العنصٌر كٌان إذا محّظStack) of (Top ً ِ أم (Handle) هٌو هٌل السٌابكٌ الخطٌوة ف كان إذا ِِ

(Handle) ٌكن لم وإذا أصلى إل العنصر إرجاع فجتم (Handle) فجتم

.(Top of Stack) إضافتى إل

 الأول الحمل لجمٌ تكون ان ال السابكٌ بالخطوات مرنست)Symbol $Start.(Stack=



Example :-

S � S×S / S+S / id

Sol.

Input = id×id+id$

 Derive this grammar using right most derivation

S � S×S � S×S+S � S×S+id � S×id+id � id×id+id

Compilers
 2025-2026

Chapter Three

-45-

Specify the handles (using the above derivation)

S � S×S � S× S+S � S×S+ id � S× id +id � id ×id+id

Doing Syntax tree (parse tree)
S

S × S

id
S + S

id id

Doing Parse table

Stack Input Action

$ id×id+id$ Shift

$ id ×id+id$ Reduce S �id

$ S ×id+id$ Shift

$ S× id+id$ Shift

$ S×id +id$ Reduce S �id

$ S×S +id$ Shift

$ S×S+ id$ Shift

$ S×S+id $ Reduce S �id

$ S×S+S $ Reduce S �S+S

$ S×S $ Reduce S �S×S

$ S $ Accept

Compilers
 2025-2026

Chapter Three

-45-

Example :-

E � T / E+T / E-T / -T

T � F / T×F/ T⁄F

F � (E) / id

Solution :-

E � -T

� -F

� -(E)

� -(T)

�-(T⁄F)

�-(T⁄ id)

�-(T×F ⁄ id)

�-(T× (E) ⁄id)

� -(T×(E-T) ⁄id)

Input = -(id×(id-id) ⁄ id)$

E

- T

F

(E)

T

T ⁄ F

� -(T×(E - F) ⁄id) T

� -(T×(E - id) ⁄id)

� -(T×(T - id) ⁄id)
F

� -(T×(F - id) ⁄id) id

� -(T×(id - id) ⁄id)

� -(F × (id - id) ⁄id)

� -(id × (id - id) ⁄id)

id
× F

(E)

E - T

T F

F id

id

Compilers
 2025-2026

Chapter Three

-48-

Stack Input Action

$ -(id×(id-id) ⁄ id)$ Shift

$- (id×(id-id) ⁄ id)$ Shift

$-(id×(id-id) ⁄ id)$ Shift

$-(id ×(id-id) ⁄ id)$ Reduce F �id

$-(F ×(id-id) ⁄ id)$ Reduce T �F

$ -(T ×(id-id) ⁄ id)$ Shift

$ -(T× (id-id) ⁄ id)$ Shift

$ -(T×(id-id) ⁄ id)$ Shift

$ -(T×(id -id) ⁄ id)$ Reduce F �id

$ -(T×(F -id) ⁄ id)$ Reduce T �F

$ -(T×(T -id) ⁄ id)$ Reduce E �T

$ -(T×(E -id) ⁄ id)$ Shift

$ -(T×(E- id) ⁄ id)$ Shift

$ -(T×(E-id) ⁄ id)$ Reduce F �id

$ -(T×(E-F) ⁄ id)$ Reduce T �F

$ -(T×(E-T) ⁄ id)$ Reduce E �E-T

$-(T×(E) ⁄ id)$ Shift

$-(T×(E) ⁄ id)$ Reduce F � (E)

$-(T×F ⁄ id)$ Reduce T �T×F

$-(T ⁄ id)$ Shift

$-(T⁄ id)$ Shift

Compilers
 2025-2026

Chapter Three

-40-

$-(T⁄id)$ Reduce F �id

$-(T⁄F)$ Reduce T �T⁄F

$-(T)$ Reduce E � T

$-(E)$ Shift

$-(E) $ Reduce F � (E)

$-F $ Reduce T �F

$-T $ Reduce E � -T

$E $ Accept

LR Parser

Compilers
 2025-2026

Chapter Three

-45-

Types of LR Parsing method:-

Let us see the comparison between SLR, CLR, and LALR Parser.

College of Education for Pure Science Ibn-AL-Haithem/Dep. Of Computer Science
Third stage

Compilers / مترجمات
CHAPTER FOUR

 عبدالمجيد محمد نادية .م.ا :الماده مدرس

0202-0202

Compilers
 2025-2026

Chapter Four

-78-

Semantic Analysis

Immediately followed the parsing phase (Syntax Analyzer). A

semantic analyzer checks the source program for semantic errors.

Type-checking is an important part of semantic analyzer.

The Semantic Analysis of the Compiler is implemented in two

passes. The first pass handles the definition of names (check for

duplicate names) and completeness (consistency) checks. The

second pass completes the scope analysis (check for undefined

names) and performs type analysis.

Example :- newval = oldval + 12

The type of the identifier newval must match with type of the

expression (oldval+12).

If the declaration part for a any programming language segment

code for example declares the type of newval as integer type and

through the running of the program the value of oldval has a type

of real then the Semantic Analysis of the Compiler is

implemented through the first pass by giving an error message

refers to the type inconsistency (type mismatch).

Two types of semantic Checks are performed within this

phase these are:-

1. Static Semantic Checks are performed at compile time like:-

 Type checking.

 Every variable is declared before used.

 Identifiers are used in appropriate contexts.

Compilers

2025-2026

Chapter Four

-77-

2. Dynamic Semantic Checks are performed at run time, and the

compiler produces code that performs these checks:-

 Array subscript values are within bounds.

 Arithmetic errors, e.g. division by zero.

 A variable is used but hasn’t been initialized.

Intermediate Code Generator

After syntax and semantic analysis, some compilers generate an

explicit intermediate representation of the source program. This

representation should be easy to produce and easy to translate

into the target program. These intermediate codes are generally

machine (architecture independent). But the level of intermediate

codes is close to the level of machine codes.

The forms of codes that are generated in the Intermediate Code

Generator phase are:-

1. Polish Notation:- which can be performed through the

following:

 Infix Notation :- In which the operation must be in the

middle of the expression (between two operands) like A+B.

 Prefix Notation :- In which the operation must prior the

operands (in the left hand side of the operands) like +AB.

 Postfix Notation :- In which the operation must be in the

right hand side of the operands like AB+.

Example 1:- Having the following expression

Compilers
 2025-2026

Chapter Four

-79-

M= ((D∗E) – ((F + G) / (H + I)))

For Infix Notation the expression will be as same because the

operation is between the two operands.

For Prefix Notation the expression will be as shown step by step

depending on the notation of the prefix rule which make the

operation prior the operand by moving these operations to the

left hand side of the operand as shown:-

1- M= ((D∗E) – ((F + G) / (H + I)))

2- M= (∗(DE) – (+(FG) / +(HI)))

3- M= (∗(DE) – /(+(FG) +(HI)))

4- M= – (∗(DE) /(+(FG) +(HI)))

For Postfix Notation the expression will be as shown step by step

depending on the notation of the postfix rule moves the

operations to the right hand side of the operand as shown below:-

1- M= ((D∗E) – ((F + G) / (H + I)))

2- M= ((DE)∗ – ((FG)+ / (HI)+))

3- M= ((DE) – ((FG)+ (HI)+)/)

4- M= ((DE)∗ ((FG)+ (HI)+)/) –

Compilers
 2025-2026

Chapter Four

-99-

Example 2:- Having the following expressions in infix form

convert them to the two others forms:-

1. U+A∗B 2. (W∗L)-(A/(C∗D)) 3. (A+B)∗(C+D)

2. Quadruples:- In which each expression is performed using

the following format:-

Operator, operand1, operand2, result

Example :- Having the following expression M= (A ∗ B) + (Y + Z)

The Quadruple format will be:-

+ , Y , Z , T1

∗ , A , B , T2

+ , T1 , T2 , T3

3. Triples:- In which each expression is performed using the

following format:-

Operator, operand1, operand2

Example 1:- Having the following expression M= (A ∗ B) + (Y + Z)

The Triples format will be:-

Steps

(1) + , Y , Z

(2) ∗ , A , B

(3) + , (1) , (2)

Compilers
 2025-2026

Chapter Four

-91-

Example 2:- Having the following expression

X= (X1 + X2) ∗ (X2 + X3) ∗ (X3 + X4)

The Quadruple format will be:-

OP. Operand1 Operand2 Result Meaning

+ X1 X2 Temp1 ADD X1, X2 ,Temp1

+ X2 X3 Temp2 ADD X2, X3 ,Temp2

+ X3 X4 Temp3 ADD X3, X4 ,Temp3

∗ Temp1 Temp2 Temp4 MULT Temp1, Temp2,Temp4

∗ Temp4 Temp3 Temp5 MULT Temp4, Temp3,Temp5

= Temp5 ---------- --------- MOV Temp5, X

The Triple format will be:-

Steps Operation Operand1 Operand2

(0) + X1 X2

(1) + X2 X3

(2) + X3 X4

(3) ∗ (0) (1)

(4) ∗ (3) (2)

= X (4)

Compilers
 2025-2026

Chapter Four

-92-

Three Address Code Is a sequence of statements typically of

the general form A = B op C, where A,B and C are temporary

operands and op is the operation. The cause of naming this

format by Three Address Code is that each statement or

expression usually contains three addresses, two for

operands and one for the result.

The following expression X= (X1 + X2) ∗ (X2 + X3) ∗ (X3 + X4) will

performed using Three Address Code as shown below:-

Steps

T1 + , X1 , X2

T2 + , X2 , X3

T3 + , X3 , X4

T4 ∗ , T1 , T2

T5 ∗ , T4 , T3

X = T5

Compilers
 2025-2026

Chapter Four

-93-

Code Optimization

Optimization is a program transformation technique,, which tries

to improve the code by making it consume less resources (i.e..

CPU, Memory) and deliver high speed.

In Optimization, high--level general programming constructs are

replaced by very efficient low-level programming codes. A code

Optimization process must follow the three rules given bellow:

1- The output code must not change the meaning of the

program.

2- Optimization should increase the speed of the program and if

possible, the program should demand less number of

resources.

3- Optimization should itself be fast and should not delay the

overall compiling process.

Efforts for an Optimized code can be made at various levels of

compiling the process.

At the beginning, users can change/rearrange the code or use

better algorithms to write the code.

After generating intermediate code, the compiler can modify the

intermediate code by address calculations and improving loops.

While producing the target machine code, the compiler can make

use off memory hierarchy and CPU registers.

Optimization can be categorized into two types:-

 Machine independent and

 Machine dependent.

Compilers
 2025-2026

Chapter Four

-99-

Symbol

table

Front end Code

Optimizer

Code Generation

The final phase in compiler is the code generator. It takes as

input an intermediate representation of the source program and

produces as output an equivalent target program, as indicated in

Figure below:-

Source

program
Intermediate

code
Intermediate

code
Code

Generator
Target

Program

Position of code generator

Code generation takes a linear sequence of 3-address

intermediate code instructions, and translates each instruction

into one or more instructions.

The big issues in code generation are:-

1. Instruction selection

2. Register allocation and assignment

Instruction selection: for each type of three-address statement,

we can design a code skeleton that outlines the target code to be

generated for that construct.

Compilers
 2025-2026

Chapter Four

-95-

Example: every three address statement of the form X = Y + Z,

where X,Y and Z are statically allocated, can be translated into

the code sequence

Mov Y , R0 /* load Y into register R0 */

Add Z , R0 /* add Z to R0 */

Mov R0 , X /* store R0 into X */

Register allocation and assignment

The efficient utilization of registers involving operands is

particularly important in generating good code. The use of

registers is often subdivided into two sub problems:

1. Register allocation: selecting the set of variables that will

reside in registers at each point in the program

2. Resister assignment: selecting specific register that a

variable reside in, the goal of these operations is generally to

minimize the total number of memory accesses required by

the program.

Compilers

2025-2026

Chapter Four

-99-

Example:- Consider the statement d= (a-b) + (a-c) + (a-c)

This may be translated into the following three-address code, with

the corresponding the final target code:-

Statement Three-Address Code The code

(a-b)

T = a – b

Mov R0,a

Mov R1,b

Sub R1,R0

(a-c) U = a - c
Mov R2,c

Sub R0,R2

(a-b) + (a-c) + (a-c) V = T + U
Add R1 , R0

Add R0 , R1

 d = V + U Mov d, R0

