(الاتزان الايونى) IONIZATION EQUILIBRIUM

Lecture 5

It is the dynamic situation between ions released by the weak electrolyte in their solutions with the electrolyte solution.

التوازن او الاتزان الايوني: هو حالة ديناميكية بين الايونات التي يطلقها الكتروليت ضعيف في محاليله مع الكتروليت الكتروليت الكتروليت المحلول.

Materials in its aqueous solution are classified into two types:

تقسم المواد في محاليلها المائية الى نوعين هما :-

• مواد الكتروليتية Electrolytes

• مواد غير الكتروليتية Non electrolytes

Materials Electrolytes divided into:

تقسم المواد الالكتروليتية الى :-

A. Strong Electrolyte materials

Materials that are totally ionized in their aqueous solutions are called strong electrolytes. These electrolytes are *good electricity* conductors and have high solubility, such as strong acids and bases.

أ- المواد الالكتروليتية القوية: هي المواد التي تتأين كليا في محاليها المائية. تمتاز هذه الكتروليتات بالتوصيلية الجيدة للتيار الكهربائي وذوبانيتها العالية ومن هذه المواد الحوامض والقواعد القوية.

NaOH
$$\longrightarrow$$
 Na⁺ + OH⁻, HCl \longrightarrow H⁺ + Cl⁻,
H₂O \longrightarrow NaCl \longrightarrow Na⁺ + Cl⁻ Ca(OH)₂ \longrightarrow Ca²⁺ + 2OH⁻

B. Weak electrolyte materials

Materials that are partially ionized in their aqueous solutions, until reaching ionic equilibrium, are called weak electrolytes. These electrolytes are *weak electricity conductors*, such as weak acids and bases.

ب- المواد الالكتروليتية الضعيفة: هي المواد التي تتاين جزئيا في محاليلها المائية بحيث تصل الى حالة الاتزان الايوني وتمتاز ايضا بالتوصيلية الكهربائية الضعيفة مثل الحوامض والقواعد الضعيفة.

$$H_2O$$
 HCN
 \longrightarrow
 $H^+ + CN^ CH_3COOH$
 \longrightarrow
 $CH_3COO^- + H^+$
 NH_4OH
 \longrightarrow
 $NH_4^+ + OH^-$

NON-ELECTROLYTE MATERIALS

المواد اللاالكتروليتية (غير الكتروليتية)

These are the materials that do not release any ions in their aqueous solutions such as ethanol or glucose.

المواد غير الكتروليتية: هي المواد التي لا تطلق اي ايون في محاليها المائية مثل الايثانول او سكر الكوكوز.

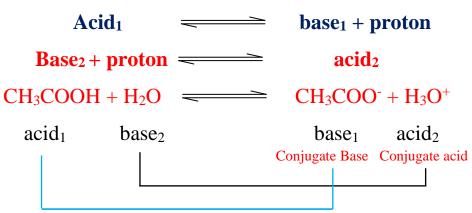
$$C_2H_5OH \xrightarrow{H_2O} C_2H_5OH$$
Glucose Glucose

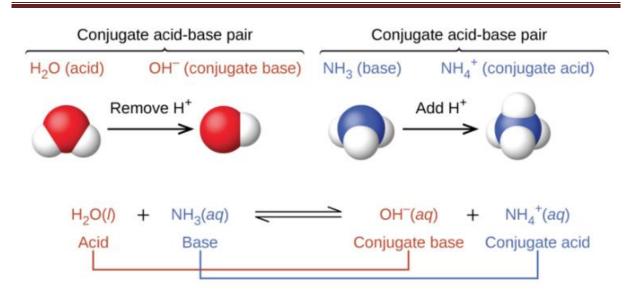
ACIDS AND BASES

الحوامض والقواعد

1. Arrhenius concept

An acid is a material that ionizes in water to give hydrogen ions (hydronium ions), while **a base** is a material that ionizes in water to give hydroxide ions.


1- مبدأ ارهينيوس: وفقا لهذا المبدأ فأن الحامض هو المادة التي تتأين في الماء لتعطي ايون الهيدروكسيد . الهيدروجين ، في حين ان القاعدة هي المادة التي تتأين في الماء لتعطي ايون الهيدروكسيد .


$$HCl \rightarrow H^+ + Cl^-$$
, $NaOH \rightarrow Na^+ + OH^-$

2. Bronsted and Lowry's concept

An acid is any substance that can donate to a proton, while **a base** is any substance that can accept a proton.

2- مبدأ برونشتد ولوري: حسب مبدأ برونشتد فأن الحامض هي اي مادة بامكانها منح بروتون والقاعدة هي اي مادة قادرة على اكتساب بروتون.

The proton donor characteristic of an acid is demonstrated only in the presence of a proton acceptor.

$$HNO_3 + H_2O \longrightarrow NO_3^- + H_3O^+$$
 $Acid_1 \ base_2 \ base_1 \ acid_2$
 $Conjugate \ Base \ Conjugate \ acid$
 $NH_3 + H_2O \longrightarrow NH_4^+ + OH^ Conjugate \ acid_2 \ Conjugate \ Base$

Water is an amphiprotic solvent because it exhibits both acidic and basic properties

After an acid has donated a proton the species that remains can accept a proton to reform the original acid then every acid is paired with its corresponding base which is called a conjugate base.

3. Lewis Concept

Acid is any material capable of accepting a pair of electrons such as AICI_{3.} BF₃, base is any substance that can donate a pair of electrons such as F⁻, NH₃

<u>3- مبدأ لويس</u>: حسب مبدأ لويس فأن الحامض هو اي مادة لها القابلية على تقبل زوج الكتروني والقاعدة هي اي مادة قادرة على منح زوج الكتروني .

$$BF_3 + :NH_3 \rightarrow F_3B :NH_3$$

ION PRODUCT CONSTANT OF WATER

ثابت الحاصل الايوني للماء

Aqueous solutions contain small amount of hydronium ion H_3O^+ and hydroxide ion OH^-

المحاليل المائية تحتوي على كمية قليلة من ايون الهيدر ونيوم وايون الهيدر وكسيد.

$$2H_2O = H_3O^+ + OH^-$$

Water dissociates to H⁺ and OH⁻ ions in aqueous solutions which are in strong contact with water molecules. Applying mass product law gives the following equation.

يتفكك الماء الى ايوني الهيدروجين والهيدروكسيد اللذان يكونان في حالة تماس مع جزيئات الماء وبتطبيق قانون فعل الكتلة نحصل على :-

$$K = \frac{[H_3 O^+][OH^-]}{[H_2 O]^2}$$

The concentration of water is enormous (each liter of water is equal to 55.5 M) when compared with the concentration of hydrogen and hydroxide ions. Therefore, water concentration can be considered constant.

أن تركيز الماء كبير جدا مقارنة بتراكيز ايونات الهيدروجين والهيدروكسيد المتواجدة في النظام المتوازن ولهذا يمكن اعتبارها قيمة ثابتة .

$$K [H_2O]^2 = Kw = [H_3O^+] [OH^-] \text{ or } Kw = [H^+][OH^-]$$

$$H_2O \longrightarrow H^+ + OH^-$$

Where the constant $[H^+]$. $[OH^-] = K_{[H2O]} = K_w$ is the ion-product constant for water, and by using water concentration:

$$K (55.5)^2 = K_w = 1.008 \times 10^{-14}$$
 at 25 °C

The approximation at room temperature is $K_w \approx 1.0 \times 10^{-14} \text{ mole/L}$

Kw depends on temperature (i.e., Kw increases with the temperature increase (at $50^{\circ}\text{C} = 5.47 \times 10^{-14}$ and at $100^{\circ}\text{C} = 49 \times 10^{-14}$).

The ion-product constant for water permits easy finding of the aqueous solutions' hydronium and hydroxide ion concentrations.

Kw = ion product constant of water

$$Kw = [H^+][OH^-] = 1.0 \times 10^{-14} \text{ mole}^2/L^2$$
 in case of pure water.

$$Kw = [H^+]. [OH^-] = 1.0 \times 10^{-14}$$

$$\sqrt{kw} = [H^+] = [OH^-] = 10^{-7} \text{ mole/L} = M$$

By taking the logarithm of this equation

$$pKw = pH + pOH = 14$$

if pH < 7 then the solution is acidic.

if pH > 7 then the solution is basic.

if pH = 7 then the solution is equilibrium.

Ex:1) Calculate the pH and pOH values of a solution in which the hydronium ion $[H_3O^+]$ concentration is $2.0 \times 10^{-3} (0.002)$ M.

Sol)

$$[H^+] = [H_3O^+] = 2.0 \times 10^{-3} \text{ mole/L}$$

 $pH = -\log [H^+]$
 $= -\log [2.0 \times 10^{-3}] = 2.699$

$$pH + pOH = 14$$
 then $pOH = 14- pH$
= $14 - 2.699 = 11.301$

Lecture 5

Ex.2) Calculate the hydronium and hydroxide ion concentration of pure water at 25°C and 100 °C [if $K_w = 1.00 \times 10^{-14}$ at 25 °C and $K_w = 49.00 \times 10^{-14} \text{ at } 100^{\circ}\text{C}$].

Sol.)

Because OH⁻ and H₃O⁺ are formed only from the dissociation of water, their concentration must be equal:

$$[H^{+}] = [OH^{-}]$$
 $Kw = [H^{+}] \cdot [OH^{-}]$
 $\sqrt{Kw} = [H^{+}] = [OH^{-}] = 10^{-7} \text{ mole/L or } (M)$

A t 25°C

$$[H^+] = [OH^-]$$

= $\sqrt{1.00 \times 10^{-14}}$
= 1.00×10^{-7} mole/L

A t 100°C

$$[H^{+}] = [OH^{-}]$$

= $\sqrt{49.00 \times 10^{-14}}$
= 7.00×10^{-7} mole/L

EQUILIBRIUM CONSTANTS FOR PAIR ACIDS AND BASES ثابت الاتزان لزوج الحامض والقاعدة

Calculation of hydronium and hydroxide ions for strong acids and bases and weak acids and bases.

1- Strong acids:

The strong acids will be completely ionized in its aqueous solution, as shown by one arrow.

1- الحوامض القوية
$$-$$
: تتأين الحوامض القوية تأينا كليا في محاليها المائية وتمثل بسهم واحد في معادلة التفاعل .
$$HA \to H^+ + A^+ \quad , \quad \text{therefore} \quad [H^+] = [A^+]$$

Ex.1) Calculate [H⁺] and pH of 0.01 M HCl solution

before ionization
$$0.01 \longrightarrow H^+ + Cl^-$$
before ionization $0.01 \longrightarrow 0.01$
after ionization $0.01 \longrightarrow 0.01$

$$[H^+] = 0.01 \text{ M}$$

$$pH = -log [H^+]$$

$$= -log 0.01 = 2$$

Ex:2) Calculate pH and pOH for 0.15 M H₂SO₄

before ionization 0.15 0 0
after ionization 0 2 x 0.15 0.15

$$[H^{+}] = 2 \times 0.15 \longrightarrow [H^{+}] = 0.3 \text{ M}$$
 $pH = -\log [H^{+}]$
 $= -\log 0.3$
 $pH = 0.523$
 $Kw = pH + pOH = 14$
 $pOH = 14 - 0.523$
 $pOH = 13.477$

2- Week acids:

The Weak Acids will incompletely ionize (partial ionization) in their aqueous solution, as shown by two reverse arrows. So, ionic equilibrium is occurring.

$$2$$
- الحوامض الضعيفة تتأين جزئيا في محاليها المائية وتمثل بسهمين متعاكسين في معادلة التفاعل ، وتحدث فيها حالة الاتزان الايوني .

 $CH_3COOH + H_2O \longrightarrow H_3O^+ + CH_3COO^-$

$$K_a = \frac{a_{H_3O^+} \cdot a_{CH_3COO^-}}{a_{CH_3COOH}} a_{H_{2O}}$$

 $a = c \cdot f$ for dilute solutions f = 1, then

$$K_a = \frac{[H_3O^+] \cdot [CH_3C00^-]}{[CH_3COOH] \cdot [H_2O]}$$

$$K_a = \frac{[H_3O^+] \cdot [CH_3C00^-]}{[CH_3C0OH]}$$
, since $[H_2O] = Constant$

Ka is the ratio between the ionized part of the acid and the unionized part of the weak acid Ka is a constant provided temperature and pressure are constant and called acid ionization or dissociation constant.

$$K_b = \frac{K_w}{K_a}$$
 for Conjugate Base

Ex. Calculate $[H^+]$ of 0.1 M CH₃COOH at 25 °C (Ka = 1.8×10^{-5})

$$CH_3COOH + H_2O \longrightarrow CH_3COO^- + H_3O^+$$

$$K_a = \frac{[H_3O^+] \cdot [CH_3C00^-]}{[CH_3C00H] \cdot}$$

Before ionization 0.1 0

After ionization 0.1 - x x

$$K_a = \frac{[H_3O^+] \cdot [CH_3C00^-]}{[CH_3C0OH]}$$

$$Ka = 1.8 \times 10^{-5} = \frac{(x)(x)}{0.1 - x}$$

$$1.8 \times 10^{-5} = \frac{X^2}{0.1}$$

1.8 × 10⁻⁵ = $\frac{X^2}{0.1}$ x is a small value and hence it is neglected

$$x^2 = 1.8 \times 10^{-6}$$
 $x = \sqrt{1.8 \times 10^{-6}}$

$$x = 1.342 \times 10^{-3} \text{ mole/L} = [H^+]$$

CALCULATION OF HYDROXIDE ION CONCENTRATION

1. Strong bases

The strong bases will completely ionize in its aqueous solution as shown by one arrow.

NaOH
$$\rightarrow$$
 Na⁺ + OH⁻
Ca(OH)₂ \rightarrow Ca²⁺ + 2OH⁻

Ex 1: Calculate the hydronium and hydroxide ion concentrations in 0.2 M aqueous NaOH solution. if $Kw = 1 \times 10^{-14}$

NaOH
$$\longrightarrow$$
 Na⁺ + OH⁻

$$0.2 \qquad 0 \qquad 0$$

$$0 \qquad 0.2 \qquad 0.2$$

$$[OH^{-}] = 0.2 M$$

$$Kw = [H +][OH^-]$$

$$[H^+] = \frac{Kw}{[OH^-]} = \frac{1.00 \times 10^{-14}}{0.2}$$

$$[H^+] = 5.00 \times 10^{-14} \text{ mole /L}$$

2. Week bases:

The Weak Bases will incompletely ionize (partial ionization) in its aqueous solution and shown by two arrows. So Ionic equilibrium is occurring.

القواعد الضعيفة :- هي المواد التي تتأين جزئيا في محاليها المائية وتمثل بسهمين متعاكسين في معادلة التواعد التفاعل وتحدث فيها حالة الاتزان الايوني .

$$NH_3 + H_2O$$
 \longrightarrow NH_4OH \longrightarrow $NH_4^+ + OH^-$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_4 OH]}$$

$$POH = -log [OH^{-}]$$

Kb is the base ionization constant

$$K_a = \frac{K_w}{K_h}$$
 for Conjugate Acid

Ex: Calculate $[OH^-]$, pH, and pOH of 0.1 M ammonia solution at 25 °C if Kb =1.8 × 10⁻⁵.

Sol)

$$NH_4OH \longrightarrow NH_4^+ + OH^-$$

Before ionization 0.1 M zero zero

After ionization 0.1- x x x

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

$$\mathbf{K_b} = \frac{(x)(x)}{0.1-x} = 1.8 \times 10^{-5}$$
 (x is ignored)

$$1.8 \times 10^{-5} = \frac{x^2}{0.1}$$

$$x = [OH^{-}] = 1.342 \times 10^{-3}$$

$$pOH = -log[OH^{-}]$$

= $-log 1.342 \times 10^{-3}$

$$= 2.872$$

$$pH = 14 - pOH$$

= $14 - 2.872$
= 11.128

Ex: Calculate the pH and pOH value of 1.0×10⁻³ M acetic acid at 25 °C if Ka = 1.8×10^{-5} .

$$K_a = \frac{[H_3O^+] \cdot [CH_3C00^-]}{[CH_3C0OH]}$$

 $CH_3COOH \longrightarrow CH_3COO^- + H^+$

Before ionization

0.001

zero

zero

After ionization

0. 001-x

Χ

Χ

$$1.8 \times 10^{-5} = \frac{x \cdot x}{0.001 - x}$$
 x is ignored

$$1.8 \times 10^{-5} = \frac{x^2}{0.001}$$
 $x^2 = 1.8 \times 10 - 8$

$$x^2 = 1.8 \times 10 - 8$$

$$x^2 = 1.8 \times 10 - 8$$

$$x = \sqrt{1.8} \times 10 - 8$$

pH = -log [H] = -log
$$1.3416 \times 10^{-4}$$

= -log $1.3416 \times log 10^{-4}$
= 0.5104

$$pOH = 14 - pH$$

= 14 - 0.5104
= 13.4896

Ex.1) Calculate [OH-], pH, and pOH of 0.1 M ammonia solution at 25 $C(k_b = 1.8 \times 10^{-5})$ (note: solution in the same lecture 5)

Ex.2): Calculate pOH and pH for 0.15 M Ca(OH)₂

المصطلح بالانكليزي	معناه بالعربي
Concentration	معناه بالعربي تركيز
ionization	تأين
Dynamic	حركي
Electrolyte	الكتروليت
Released	اطلاق
Classified	تصنف
Aqueous	مائي
Electricity conductor	مائي موصل كهربائيا
Partially ionized	متأين جزئيا
Solution	محلول
Common	مشترك
Concept	مبدأ
Donate	تهب
Accept	تقبل
Reform	يعيد التكوين
Conjugate	قرين
Pair	زوج
Dissociate	يتفكك
Associate	يترابط
Invariant	ثابت (غیر متغیر)
Enormous	كبير الحجم
Approximation	كبير الحجم تقريبي
Ratio	نسبة
Ignored	يهمل
part	جز ء
Relation	العلاقة
Value	قيمة