Methods of expression of concentrations

1-Molarity (M):

Number of Grams of molecular weight (moles) of solute per liter of solution.

$$M = \frac{Wt}{M.Wt} x \frac{1000}{VmL}$$

$$M = \frac{wt (gm)}{M.Wt(\frac{gm}{mol})} / L = mole/L)$$

Wt يمثل وزن المادة المذابة بالغرام ، VmL حجم المحلول بالمللياتر .

Units: mole/L , mmole/mL

2-Normality (N):

Number of grams equivalent weight of solute per liter of solution.

$$N = \frac{Wt}{eq.wt} x \frac{1000}{VmL}$$

Units: eq/L , meq/mL

3- Formality (F):

Number of grams formula weight of solute per liter of solution.

$$F = \frac{Wt}{g.\,\mathrm{f}w}\,x\frac{1000}{VmL}$$

Units: fw/L , m.fw/mL

حيث : Wt يمثل وزن المادة المذابة بالغرام . fw يمثل وزن الصيغة للمادة المذابة . VmL حجم المحلول بالملليلتر .

4-Molality (m):

Number of moles of solute per kilogram (1000 g) of solvent.

$$m = \frac{Wt}{M.Wt} x \frac{1000}{Wt.solvent.(g)}$$

Units: Mole/kg or mmole/g

5- Mole Fraction:

The ratio of moles of solute or solvent to the total moles of solute and solvent.

$$X_1 = \frac{n_1}{n_1 + n_2}$$
 , $X_2 = \frac{n_2}{n_1 + n_2}$ ----- , $(X_1 + X_2 = 1)$

يمثل الكسر المولى للمذاب، x_2 يمثل الكسر المولى للمذيب، n_1 عدد مولات المذاب، x_2 عدد مولات المذيب x_1

6- Percentage Ratio: النسبة المئوية

A- Weight Volume Percentage (weigh to volume percent ratio):

It is the number of grams of solute in 100 ml of solution.

$$\frac{W}{V}$$
 % = $\frac{Wt (g) \text{ of solute}}{V (mL) \text{ of solution}} \times 100$

ملاحظة : حجم المحلول = حجم المذاب + حجم المذيب

B- Volume Percentage (volume percent ratio):

It is the number of milliliters of solute in 100 mL of solution

$$\frac{V}{V}$$
 % = $\frac{VmL \text{ of solute}}{VmL \text{ of solution}} \times 100$

ملاحظة : حجم المحلول = حجم المذاب + حجم المذيب

C- Weight Percentage (weight percent ratio):

It is the number of grams of solute in 100 g of solution.

$$\frac{W}{W}$$
 % = $\frac{Wt (g) \text{ of solute}}{Wt (g) \text{ of solution}} \times 100$

Ex1: Calculate the percentage ratio for solution result from dissolving 5 g of Sodium hydroxide in 0.25 L of solution

$$\frac{\text{W}}{\text{V}}$$
 % = $\frac{\text{Wt (g) of solute}}{\text{VmL of solution}} \times 100 = \frac{\text{W}}{\text{W}}$ % = $\frac{5}{250} \times 100 = 2$ %

Ex2: Calculate the percentage ratio for the solution from adding 200 mL of Methanol to 400 mL of distilled water.

$$\frac{V}{V} \% = \frac{VmL \text{ of solute}}{VmL \text{ of solution}} \times 100$$

$$\frac{V}{V}\% = \frac{200}{200 + 400} \times 100$$

= 33.3333 %

Ex3: Calculate the No. of grams of glucose solution in 800 mL of industrial solution, if its percentage ratio is 15 %

$$\frac{W}{V}\% = \frac{Wtg \text{ of solute}}{VmL \text{ of solution}} \times 100$$

$$15 = \frac{\text{Wtg of glucose}}{800} \times 100$$

$$= 120 g$$

7- Parts per thousand (ppt)

<u> جزء لكل الف جزء</u>

$$ppt = \frac{Wt. \ of \ solute \ (eji) \ location}{Wt. \ of \ solution} \times 10^3$$

(or) ppt =
$$\frac{Wt \ of \ solute \ (g)}{Volume \ of \ solution \ (L)} = \frac{mg}{mL}$$

8- Parts per million (ppm)

جزء لكل مليون جزء

$$ppm = \frac{Wt.of \ solute \ (eji) \ half \ below \ (eji) \ half \ below \ below$$

(or) ppm =
$$\frac{Wt \ of \ solute \ (mg)}{Volume \ of \ solution \ (L)} = \frac{\mu g}{mL}$$

9- (Parts per billion) ppb

جزء لكل بليون جزء

$$ppb = \frac{Wt of solute (e(i) ballow)}{Wt of solution (e(i) ballow)} \times 10^9$$

(or) ppb =
$$\frac{Wt \ of \ solute \ (\mu g)}{Volume \ of \ solution \ (L)} = \frac{ng}{mL}$$

Gram (g) =	1000 Milligram (mg)		
Milligram (mg) =	1000 Microgram (μg)		
Microgram (μg) =	1000 Nanogram (ng)		
Liter (L) =	1000 Milliliter (mL)		
Milliliter (mL) =	1000 Microliter (μL)		
Microliter (μL) =	1000 Nanoliter (nL)		

Part	liquid in liquid	Solid in liquid	Solid in solid
ppt	$mL/L = \mu L/mL$	g/L = mg/mL	g/kg = mg/g
ppm	$\mu L/L = nL/mL$	$mg/L = \mu g/mL$	$mg/kg = \mu g/g$
ppb	nL/L	$\mu g/L = ng/mL$	$\mu g/kg = ng/g$

10- يمكن استخدام القوانين الاتية لإيجاد تراكيز المحاليل السائلة من معرفة نسبتها المئوية ووزنها النوعى:

$$\mathbf{M} = \frac{\% \times sp.gr \times 1000}{M \, wt}$$

$$M = \frac{1000 imes 1000 imes 10000 imes 1000 imes 1000 imes 1000 imes 1000 imes 1000 imes 1$$

$$N = \frac{\% \times sp. gr \times 1000}{eg. wt}$$

$$imes 1000 imes 1000 imes 1000$$
 الوزن المكافئ $imes N$

$$F = \frac{\% \times sp.\,gr \times 1000}{g.\,fw}$$

الوزن النوعي
$$imes$$
 النسبة المئوية $imes$ وزن الصيغة

Also, these laws:

$$N_1 V_1 = N_2 V_2$$
 , $M_1 V_1 = M_2 V_2$, $F_1 V_1 = F_2 V_2$

Density
$$(d) = \frac{Wt(g)}{V(mL)} = (unit: \frac{g}{ml} \text{ or } \frac{Kg}{L})$$

Specific gravity
$$(sp. gr) = \frac{density \ of \ substance}{density \ of \ water}$$

$$\frac{21}{1}$$
 النوعي = $\frac{21}{1}$ النوزن النوعي = $\frac{21}{1}$

ملاحظة: الوزن النوعي للمادة خالي من الوحدات

Ex1: Calculate the normality (N) of the solution resulting from the dilution of 100 mL of 0.25 N Nitric Acid to 250 mL

$$N_1V_1 = N_2V_2$$

0.25 x 100 = N_2 x 250 $\Rightarrow N_2 = 0.1$ N

Ex2: How can you prepare 0.1 N of 250 mL Sulfuric Acid if you know Sp.Gr. 1.84, percentage ratio 96 %, and M.Wt. 98 g/mole

$$eq.wt(acid) = \frac{M.wt}{no. of \ H \ ions \ ready \ to \ substituted}$$
$$= \frac{98}{2} = 49$$

$$N = \frac{\% \times sp.gr \times 1000}{eg.wt} = \frac{0.96 \times 1.84 \times 1000}{49} = 36.049 N$$

$$N_1 V_1 = N_2 V_2$$

$$36.049 \times V_1 = 0.1 \times 250$$

$$V_1 = 0.694 \text{ mL}$$

By adding 0.694 mL of acid in a 250 mL volumetric flask then complete the volume up to the mark with distilled water

Qخارجي) How can you prepare 0.5 N of 500 mL Hydrochloric Acid if you know Sp. Gr. 1.184, percentage ratio 37 %, and A.wt. H=1 Cl=35.5

Solved questions on concentrations

Q1- What is the formal concentration of NaCl solution (M.Wt 58.5 g/mole) if 0.1753 g of the salt is dissolved in a sufficient amount of water to give 240 mL of solution?

$$F = \frac{Wt}{g. \text{ fw}} x \frac{1000}{VmL}$$

$$F = \frac{0.1735}{58.5} x \frac{1000}{240}$$

$$= 0.0125 F (mfw/mL)$$

Q2- Calculate the molality (m) of a solution which is 10 % by weight NaOH (M.Wt 40 g/mole), supposing that we take 100 gm of solution.

Sol.

In 100 g of solution: 10 g NaOH + 90 g H₂O

$$m = \frac{Wt}{M.Wt} x \frac{1000}{Wt.solvent.(g)}$$

$$\frac{10}{40} \times \frac{1000}{90} = 2.778 \ m(mmole/g)$$

Q3- Calculate the molarity and normality of a solution containing 10.6 g of sodium carbonate Na_2CO_3 (M.Wt 106 g/mole) in one liter of the aqueous solution.

$$M = \frac{n}{V(Liter)}$$

$$n = \frac{wt}{Mwt} = \frac{10.6}{106} = 0.1 \text{ mole}$$

$$M = \frac{0.1}{1} = 0.1 M \left(\frac{mole}{l}\right)$$

حل آخر

$$M = \frac{wt}{Mwt} \times \frac{1000}{V(ml)}$$
 $M = \frac{10.6}{106} \times \frac{1000}{1000} = 0.1 M \ (mmole/mL)$

 $eq.wt(salt) = \frac{\textit{m.wt}}{\textit{no. of cations} \times \textit{roxidation number of cations}}$

eq.wt (
$$Na_2CO_3$$
) = $\frac{106}{2\times 1}$ = 53 g/eq

$$N = \frac{no.ofeq}{V(liter)}$$
, $no.ofeq = \frac{Wt}{eq.wt} = \frac{10.6}{53} = 0.2 eq$

$$N = \frac{0.2}{1} = 0.2 N(eq/L)$$

(or)

$$N = \frac{Wt}{eq.wt} x \frac{1000}{VmL} = \frac{10.6}{53} x \frac{1000}{1000} = 0.2N(meq/mL)$$

Q4- 16 grams of KNO₃ dissolved in 84 g of water, give 16 % (w/w) KNO₃ solution express the concentration in ppm.

$$ppm = \frac{wt \ of \ solute}{wt \ of \ solution} \times 10^6$$

$$ppm = \frac{16}{84} \times 10^6 = 0.1905 \ ppm \ (\frac{\mu g}{g})$$

Q5- Calculate the number of grams of solute in:

a- 1 liter of 0.2 N Ba (OH)₂ solution.

b- 5 liters of 0.2 N (NaOH) solution.

a) eq.wt. Ba(OH)₂ =
$$\frac{171}{2}$$
 = 85.5 g / eq

$$N = \frac{Wt}{eq.wt} x \frac{1000}{VmL} \Rightarrow Wt = \frac{N x eq.wt x Vml}{1000}$$

$$Wt = \frac{0.2 \times 85.5 \times 1000}{1000} = 17.1 \text{ g}$$

$$\underline{\mathbf{b}}) \qquad \qquad \mathbf{eq.wt} \text{ (base)} = \frac{M.Wt}{no.of \ hydroxide \ atoms \ ionized \ (OH^{-})}$$

eq.wt NaOH =
$$\frac{40}{1}$$
 = 40 g/eq

$$N = \frac{Wt}{eq.wt} x \frac{1000}{VmL} \Rightarrow Wt = \frac{N x eq.wt x Vml}{1000}$$

$$Wt = \frac{0.2 \times 40 \times 5000}{1000} = 40 \text{ g}$$

Q6- How can you prepare:

- a- 250 mL of 0.25 F HCl, if the sp. gravity of HCl a=1.184 and containing about 37 % HCl by weight.
- b- 250 ml of 0.1 M H₂SO₄. if the sp. Gravity = 1.84 and containing about 96 % H₂SO₄.

$$F = \frac{\% x sp. gr x 1000}{g. fw} = \frac{0.37 x 1.184 x 1000}{36.5} = 12.002F$$

هذا يمثل تركيز الحامض الاصلى ولتحضير محلول مخفف منه تطبق قانون التخفيف وكما يلي:-

$$F_1V_1 = F_2V_2$$

$$12.002 \times V_1 = 0.25 \times 250$$

$$v_1 = \frac{0.25 \times 250}{12.002} = 5.207 \ mL$$

By adding 5.207 mL of acid and in 250 mL volumetric flask then complete the volume up to the mark with distilled water.

<u>b-</u>

$$M = \frac{\% x sp. gr x 1000}{M.Wt} = \frac{0.96 x 1.84 x 1000}{98} = 18.024M$$

 $M_1V_1 = M_2V_2$

$$18.024 \times V_1 = 0.1 \times 250$$

$$v_1 = \frac{25 \times 250}{18.024} = 1.387 \ mL$$

By adding 1.378 mL of acid in a 250 mL volumetric flask then complete the volume up to the mark with distilled water.

Q7- Calculate the normality (N) of a 500 ml solution containing 20 g of NaOH (M.Wt 40 g/mole).

$$N = \frac{Wt}{eq.wt} x \frac{1000}{VmL} = \frac{20}{40} x \frac{1000}{500} = 1N(meq/mL)$$

Q8- Find the molarity (M) of NaCl solution if 1.17 % (W/V), M.Wt = 58.5 g/mole Sol.

% W/V = No. of grams of solute (1.17 g) in 100 ml of solution

$$M = \frac{Wt}{M.Wt} x \frac{1000}{VmL}$$

$$M = \frac{1.17}{58.5} x \frac{1000}{100}$$

$$M = 0.2 M \text{ (mmole/mL)}$$

Department of Chemistry

Q9- Calculate the mole fraction of 15 % by weight of aqueous sugar solution (15 % $(w/w) C_6H_{12}O_6$).

Sol.

M.Wt: $C_6H_{12}O_6 = 180 \text{ g/mole}$, $H_2O = 18 \text{ g/mole}$

In 100 g of solution: 15g C₆H₁₂O₆ + 85 g H₂O

 $mole\ fraction\ of\ sugar(X_1) =$

No. of moles of sugar + No. of moles of water

No. of moles of water

 $mole\ fraction\ of\ water(X_2) = \underline{\hspace{1cm}}$

No. of moles of sugar+ No. of moles of water

Numbers of mole of $C_6H_{12}O_6$ (n₁) =

$$n_1 = \frac{Wt}{M.Wt} = \frac{15}{180} = 0.083 \ mole$$

Numbers of the mole of water (n_2) =

$$n_2 = \frac{Wt}{M.Wt} = \frac{85}{180} = 4.722 \ mole$$

$$X_1 = \frac{n_1}{n_1 + n_2} = \frac{0.083}{4.805} = 0.017$$
 (mole fraction of sugar)

$$X_2 = \frac{n_2}{n_1 + n_2} = \frac{4.722}{4.805} = 0.983$$
 (mole fraction of water)

$$X_1 + X_2 = 1$$

$$0.017 + 0.983 = 1$$