Buffer solution (المحلول المنظم)

Buffer solutions resist changes in pH because of either dilution or small additions of strong acids or bases.

يعرف المحلول المنظم: بأنه المحلول الذي يقاوم التغير في قيمة الدالة الحامضية نتيجة التخفيف او اضافة كمية من حامض قوي او قاعدة قوية يعد المحلول منظما عندما لا تسبب اضافة الحامض القوي او القاعدة القوية تغيرا ملحوظا في قيمة الدالة الحامضية

If a solution of acetic acid is mixed with sodium acetate, a buffer solution of a certain pH value is formed. When diluting HCl is added, its H⁺ ions will react with the acetate ion, and acetic acid is formed, which is sparingly ionized and hence will not change the pH value. The same applies to NaOH solution; then OH⁻ ions will react with H⁺ ions of acetic acid to form water, and again, pH will not increase only a little.

عندما يخلط محلول حامض الخليك مع محلول خلات الصوديوم يتكون محلول منظم ذو قيمة دالة حامضية معينة. اذا اضيف اليه قليل من حامض الهيدروكلوريك المخفف فأن ايون الهيدروجين منه يتفاعل مع ايون الخلات في المحلول ليكون حامض الخليك الذي لا يتأين الا لدرجة قليلة فلا يقلل من قيمة الدالة الحامضية. وبنفس الاسلوب اذا اضيف محلول هيدروكسيد الصوديوم اليه فأن ايونات الهيدروكسيد منه يتفاعل مع ايونات الهيدروجين في المحلول ليكون الماء فلا تزداد قيمة الدالة الحامضية بصورة كبيرة.

$CH_3OOH \rightleftharpoons CH_3COO^- + H^+$

- Adding Strong Acid (e.g., HCl): $CH_3COO^- + H^+ \rightarrow CH_3COOH$
- Adding Strong Base (e.g., NaOH): $CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$

The capacity of the buffer solutions

قدرة (سعة) المحلول المنظم

Each buffer solution has a certain capacity to withstand amounts of strong acid or strong base without changing (or causing a little change) the pH value of the solution. This ability is called **the capacity of the buffer solution**.

Buffer solutions may also be formed during titration of weak acids like acetic acid with a strong base like NaOH. The solution will contain a mixture of acetic acid that is not titrated and sodium acetate that is formed by the

addition of NaOH and therefore the pH value is slightly changed. If all the acid is neutralized and the solution contains CH₃COONa then the pH value will rise suddenly at the endpoint of the reaction (equivalent point).

تتكون المحاليل المنظمة ايضا عند معايرة الحوامض الضعيفة مثل حامض الخليك مع قاعدة قوية مثل هيدروكسيد الصوديوم. اذا المحلول سيحتوي على مزيج من حامض الخليك الذي لم يسحح بعد وخلات الصوديوم التي نتجت عن اضافة القاعدة القوية اي التسحيح ولهذا لا تتغير قيمة الدالة الحامضية للمحلول في هذه المرحلة الا الشئ القليل. اما اذا تعادل كل الحامض واصبح المحلول محتويا على خلات الصوديوم فأن قيمة الدالة الحامضية ترتفع بشكل مفاجئ وحاد عند نقطة التعادل او التكافؤ.

Buffer Solution Capacity Depend on Two Factors:

تعتمد قيمة قدرة المحلول المنظم على عاملين :-

1. Acid-to-salt ratio of molecular concentration degree

The capacity will be at maximum when the concentration of the salt is equal to the concentration of the acid. This occurs in the middle of titration (pH = pKa). If 50 ml of NaOH solution is added to 100 ml of CH_3COOH solution (both at the same normality) then the mixture will contain equal concentrations of acetic acid and sodium acetate.

1- النسبة في درجة التركيز الجزيئي للملح والحامض، حيث تصل القدرة (السعة) الى اقصاها عندما يتساوى تركيز الملح مع تركيز الحامض ويحدث ذلك عند منتصف المعايرة حيث تكون قيمة الدالة الحامضية مساوية الى دالة تفكك الحامض pH = pKa).

فإذا اضيف 50 مللتر من هيدروكسيد الصوديوم الى 100 مل من محلول حامض الخليك لهما نفس العيارية فأن المزيج يحتوي على تركيزين متساويين من حامض الخليك وخلات الصوديوم.

2. The second factor is the concentrations of acid and salt:

The buffer solution capacity is increasing with the increase in the acid and salt concentrations.

2- العامل الثاني هو تركيز الملح والحامض: حيث تزداد القدرة (السعة) مع زيادة تركيز الحامض والملح.

Types of the buffer solutions انواع المحاليل المنظمة

1- Buffer solutions of a weak acid and one of its salts:

1-المحلول المنظم لحامض ضعيف وأحد املاحه

2- Buffer solutions of a weak base and one of its salts.

2-المحلول المنظم لقاعدة ضعيفة وأحد املاحها

1- Buffer solutions of a weak acid and one of its salts:

This buffer is usually a mixture of an acid and one of its salts so to understand buffer action, consider first the equilibrium between a weak acid and its salt.

فالمحلول المنظم ، عادة ما يكون مزيجا من حامض وأحد أملاحه، لذلك من أجل فهم تأثير المنظم، أو لا نضع بالاعتبار التوازن بين حامض ضعيف وملحه.

The value of the dissociation constant Ka:

ان قيمة ثابت التفكك الحامض ، تحسب من العلاقة الاتية :-

$$Ka = \frac{[H^+][A^-]}{[HA]}$$
 , $[H^+] = Ka \frac{[HA]}{[A^-]}$

In a mixture of a weak acid and its salt, the dissociation of the acid is repressed by the common ion effect, and [H⁺] may be taken as negligibly small by comparison with [HA] and [MA].

في خليط من حامض ضعيف وملحه، يتم تقليل تفكك الحامض من خلال تأثير الايون المشترك،ويمكن اعتبار $[H^+]$ صغيرًا بشكل مهم بالمقارنة مع [HA] و [MA].

$$[H^+] = Ka \frac{[acid]}{[salt]}$$

by taking – logarithm of this equation

$$-\log [H^{+}] = -\log Ka + (-\log \frac{[acid]}{[salt]})$$

$$pH = pKa - log \frac{[acid]}{[salt]}$$

الحساب الدالة الحامضية لحامض ضعيف وملحه بوجود الايون المشترك :-
$$\mathbf{pH} = \mathbf{pKa} + \mathbf{log}\,\frac{[\mathit{salt}]}{[\mathit{acid}]}$$

تم تعويض تركيز الحامض الغير متأين وتركيز الملح في المعادلة اعلاه، حيث ان وجود الأيون المشترك سوف يحرف التفاعل نحو اليسار وهذا يقلل من تفكك الحامض لذا يكون تركيز ايون الهيدروجين قليل جدا (ممكن اهماله) مقارنة بتركيز الحامض الغير متأين. Ex: What is the pH of a buffer solution (0.1N HF and 0.1N NaF) if the pKa = 3.167, and what is the pH and change in pH (Δ pH) after adding 0.01 M HCl to the buffer solution?

$$HF \Longrightarrow H^{+} + F^{-}$$

$$NaF \longrightarrow Na^{+} + F^{-}$$

Common ion

$$pH = pKa + log \frac{[salt]}{[acid]}$$

$$pH = 3.167 + log \frac{0.1}{0.1} = 3.167$$

After addition, the strong acid, [H⁺] concentration is increased, and the reaction is directed to the left.

The new concentration of acid = original con. of acid + con. strong acid (added) التركيز الجديد للحامض = تركيز الحامض الاصلي + تركيز الحامض القوي المضاف

$$[Acid]_{new} = 0.1 + 0.01 = 0.11 M$$

The new concentration of salt = original con. of salt - con. acid (added)

التركيز الجديد للملح = تركيز الملح الاصلي – تركيز الحامض المضاف
$$[salt]_{new} = 0.1 - 0.01 = 0.09 M$$

$$pH = pKa + log \frac{[\mathit{salt}] - [\mathit{strong\ acid}]}{[\mathit{acid}\] + [\mathit{strong\ acid}\]}$$

القانون المستخدم لحساب الدالة الحامضية عند اضافة حامض قوي الى المحلول المنظم

$$pH = pKa + log \frac{[0.09]}{[0.11]}$$

$$pH = 3.167 + log \ 0.818$$

$$pH = 3.167 - 0.087 = 3.08$$

$$\Delta pH = pH_2 - pH_1 = 3.08 - 3.167 = 0.087$$

نلاحظ ان الفرق ضئيل بسبب الايون المشترك ولو ان هذه الاضافة كانت للماء ذو الدالة الحامضية 7 واصبح 4 أي بفارق 3 لعدم وجود الايون المشترك .

If strong base is addition

عند اضافة قاعدة قوية مثل هيدروكسيد الصوديوم فأن تركيز ايونات الهيدروكسيد الناتجة عن اضافة القاعدة القوية تعادل ايونات الهيدروجين الناتجة عن تفكك الحامض الضعيف فيسير التفاعل نحو اليمين (طرديا) لسد النقص في تركيز ايون الهيدروجين وهذا يؤدي الى نقصان بتركيز الحامض وزيادة بتركيز الملح ويتم حساب قيمة الدالة الحامضية كما في القانون ادناه :-

$$\mathbf{pH} = \mathbf{pKa} + \log \frac{[salt]}{[acid]}$$

$$pH = pKa + log \frac{[salt] + [strong base]}{[acid] - [strong base]}$$

تستخدم لحساب الدالة الحامضية للمحلول المنظم بعد اضافة قاعدة قوية له

- Q: Calculate the pH of the above solution after adding 0.01 M of NaOH to the buffer solution. (سؤال خارجي)
- 2. Buffer solutions of a weak base and one of its salts.

This buffer is usually a mixture of the base and its salts. To understand buffer action, consider first the equilibrium between a weak base and its salt.

The value of the dissociation constant K_b:

القوانين الاتية لحساب قيمة ثابت التفكك للقاعدة، وتركيز القاعدة في المحاليل المنظمة :-

$$K_b = \frac{[BH^+][OH^-]}{[B]}$$
 , $[OH^-] = K_b \frac{[B]}{[BH^+]}$

In a mixture of a weak base and its salt, the dissociation of the base is repressed by the common ion effect, and [OH⁻] may be taken as negligibly small by comparison with [B] and [BHA].

في خليط من قاعدة ضعيفة وملحها، يتم كبح تفكك القاعدة عن طريق تأثير الايون المشترك،ويمكن اعتبار $[OH^-]$ صغيرًا بشكل مهم بالمقارنة مع [BHA] .

$$[OH^-] = K_b \frac{[base]}{[salt]}$$

by taking – logarithm of this equation

$$-\log [OH^-] = -\log K_b + (-\log \frac{[base]}{[salt]})$$

$$\mathbf{pOH} = \mathbf{pK_b} - \log \frac{[base]}{[salt]}$$

$$\mathbf{pOH} = \mathbf{pK_b} + \mathbf{log} \ \frac{[salt]}{[base]}$$

القانون العام لحساب الدالة القاعدية للايون المشترك من قاعدة

ضعيفة وأحد املاحها ومن ثم تطبيق

pH + pOH = 14 لإيجاد الدالة الحامضية.

نلاحظ انه تم تعويض تركيز القاعدة الغير متأينة وتركيز الملح في المعادلة حيث ان وجود الايون المشترك سوف يحرف التفاعل نحو اليسار وهذا يقلل من تفكك القاعدة لذا يكون تركيز ايونات الهيدروكسيد قليلة جدا (يمكن اهمالها) مقارنة بتركيز القاعدة الغير متأينة .

Addition of strong acid or strong base

a) عند اضافة حامض قوي

عند اضافة الحامض القوي سوف يؤدي الى معادلة ايونات الهيدروكسيد الناتجة من تفكك القاعدة الضعيفة وبالتالي يجعل التفاعل طرديا (باتجاه اليمين) لسد النقص في تركيز ايونات الهيدروكسيد ويزداد تركيز الملح ويتم حساب الدالة الحامضية كما يلي:-

$$pOH = pK_b + log \frac{[salt]}{[base]}$$

$$\mathbf{pOH} = \mathbf{pK_b} + \log \frac{[salt] + [strong\ acid]}{[base] - [strong\ acid]}$$

By <u>addition of a strong base</u> then [OH⁻] coming from this strong base will increase the [OH⁻] from the weak base which means the reaction will be directed to the left.

b) اضافة قاعدة قوية

عند اضافة القاعدة القوية سوف يؤدي الى ازدياد تركيز ايونات الهيدروكسيد الناتجة من تفكك القاعدة الضعيفة وبالتالي يجعل التفاعل عكسيا (نحو اليسار) ويقل تركيز الملح.

و يتم حساب الدالة الحامضية كما يلي :-

$$pOH = pK_b + log \frac{[salt]}{[base]}$$

pOH = pK_b + log
$$\frac{[salt] - [strong\ base]}{[base] + [strong\ base]}$$

Ex: A buffered solution contains (0.5 M) ammonium hydroxide (Kb = 1.8×10^{-5}) and (0.5 M) ammonium chloride, calculate:

- a. The pH of this solution?
- b. The change in pH that occurs when adding (0.1M) NaOH to the buffered solution?
- c. The change in pH that occurs when adding (0.2M) HCl to the buffered solution?

أمثلة محلولة عن المحلول المنظم Solved problems about buffer solution

Q1: How many grams of potassium acetate CH₃COOK must be added to 1 L of 0.2 M acetic acid solution to give buffer solution of pH = 4.6 (pKa CH₃COOH = 4.745) (if the M.Wt CH₃COOK= 98 g / mole

* المطلوب ايجاد عدد غرامات خلات البوتاسيوم ونلاحظ بالسؤال ان تركيز الملح غير موجود لذلك يجب حسابه كما يلي ؛

Sol)
$$pH = pK_a + log \frac{[salt]}{[acid]}$$

$$4.6 = 4.745 + \log \frac{[salt]}{0.2}$$

$$4.6 = 4.745 - \log 0.2 + \log [salt]$$

$$4.6 = 4.745 + 0.699 + \log [salt]$$

$$4.6 = 5.444 + \log [salt]$$

Log [salt] =
$$4.6 - 5.444 = -0.844$$
, \leftrightarrow [Salt] = 0.143 M

[salt] =
$$\frac{wt}{M.wt} \times \frac{1000}{1000}$$
 , $0.143 = \frac{wt}{98} \times \frac{1000}{1000}$, $wt_{(gm)} = 14.014 g$

Q2: What is the pH of a solution that contains 0.5 M benzoic acid and 10 g/L of sodium benzoate C_6H_5COONa , IF $Ka_{(C6H5COOH)} = 6.28x10^{-5}$, (M. Wt. for sodium benzoate = 144 g/mole).

$$M_{[salt]} = \frac{wt}{M.wt} \times \frac{1000}{1000}$$

$$M_{[salt]} = \frac{10}{144} \times \frac{1000}{1000} = 0.069 \text{ mole / L}$$

$$H_{[salt]} = \frac{10}{144} \times \frac{1000}{1000} = 0.069 \text{ mole / L}$$

$$pH = pKa + log \frac{|salt|}{|acid|} \rightarrow pH = -log Ka + log \frac{|salt|}{|acid|}$$

$$H = -log Ka + log \frac{|salt|}{|acid|}$$

$$pH = 4.202 + log \frac{[0.069]}{[0.5]}$$

$$pH = 4.202 + log \ 0.138$$

$$=4.202-0.86=3.342$$

Q3: Calculate the pH of a solution prepared by adding 10 ml of 0.1 M CH_3COOH solution to 20 ml of 0.1 M CH_3COONa . If Ka of $CH_3COOH = 1.8 \times 10^{-5}$

في هذه الحالة يجب حساب تراكيز كل من الحامض وملحه بعد مزجهما اي بعد تخفيف المحلول . Sol)

$$V_T = 20 + 10 = 30 \text{ mL}$$

For CH₃COOH

$$M_1V_1 = M_2V_T$$
, $0.1 \times 10 = M_2 \times 30$, $M_2 = 0.033 M$ [acid]

For CH₃COONa

$$\begin{split} M_1 V_1 &= M_2 V_T \quad , 0.1 \times 20 = M_2 \times 30 \quad , \qquad M_2 = \underline{0.067 \ M} \quad \text{[salt]} \\ pH &= pKa + log \frac{[salt]}{[acid]} \\ pH &= -log \ Ka + log \frac{[salt]}{[acid]} \\ pH &= -log \ 1.8 \times 10^{-5} + log \frac{0.067}{0.033} \\ pH &= 4.745 + 0.308 = 5.053 \end{split}$$

Q4: Calculate the pH of a solution that:

- a) $0.1 \text{ M CH}_3\text{COOH} + 0.01 \text{ M CH}_3\text{COONa}$, pKa $\text{CH}_3\text{COOH} = 4.745$
- **b)** $0.1 \text{ M NH}_4\text{OH} + 0.2 \text{ M NH}_4\text{Cl}, \text{ pKb NH}_4\text{OH} = 4.745$

SOL)

a)
$$pH = pKa + log \frac{[salt]}{[acid]}$$

 $= 4.745 + log \frac{0.01}{0.1} = 4.745 - 1 = \boxed{3.745}$
b) $pOH = pKb + log \frac{[salt]}{[base]}$
 $pOH = 4.745 + log \frac{0.2}{0.1} = 4.745 + 0.301 = 5.046$
 $pH = pKw - pOH = 14 - 5.046 = \boxed{8.954}$

Q5: Calculate the pH of a solution that is $0.5 \text{ M NH}_4\text{OH}$ solution $+ 0.3 \text{ M NH}_4\text{Cl}$ solution pK_b= 4.745.

$$\begin{aligned} & pOH = pK_b + log \frac{[\mathit{salt}]}{[\mathit{base}]} \\ & pOH = 4.74 + log \frac{0.3}{0.5} = 4.745 - 0.222 = 4.52 \\ & pH + pOH = pK_w \quad \Longrightarrow pH = pK_w - pOH \\ & pH = 14 - 4.523 = 9.477 \end{aligned}$$

Q6: What is the pH value of a solution that is 0.04 F in formic acid and 0.1 F sodium format (HCOONa)? Ka (HCOOH) = 1.8×10^{-4} .

pH = pKa + log
$$\frac{[salt]}{[acid]}$$

= 3.745 + log $\frac{0.1}{0.04}$
pH = 3.745 + 0.398 = 3.347

Q7: Calculate the percentage of CH_3COONa / CH_3COOH which give a solution of pH =5, Ka (CH_3COOH) =1.8 × 10⁻⁵.

$$pH = pKa + log \frac{[salt]}{[acid]}$$
if the ratio $\frac{[salt]}{[acid]}$ is $= (x)$, $5 = 4.745 + log X$

$$log X = 5 - 4.745 \quad , \quad log x = 0.255$$

$$X = 1.799 \sim 1.8$$
(or) $CH_3COOH \longrightarrow CH_3COO^+ + H^+$

$$CH_3COONa \longrightarrow CH_3COO^-$$

$$log X = 0.255$$

$$X = 1.799 \sim 1.8$$

ایون مشترك
$$Ka = \frac{[H^+][CH3COO-]}{[CH3COOH]}$$
 $pH = 5 \rightarrow [H^+] = 10^{-5} \text{ M}$
 $1.80 \times 10^{-5} = \frac{10^{-5}[Ac^-]}{[HAc]} , \frac{[Ac^-]}{[HAc]} = \frac{1.8 \times 10^{-5}}{10^{-5}} = 1.8$
 $pH = 5$ وهذا يعني يتم مزج خلات الصوديوم مع حامض الخليك بنسبة $\frac{1.8}{1}$ ليعطي محلول بفر $\frac{1.8}{1}$

Q8: A 50 mL Buffered solution containing 0.15 M Formic acid (HCOOH) Ka= 1.8x10⁻⁴ and 0.1 M sodium format (HCOONa) Calculate:

- **1-** The pH of the solution
- 2- The pH after the addition of 10 mL of 0.2 M HCl Solution
- 3- The change in pH after the addition of 5 mL of 0.3 M NaOH solution

1)
$$pH = pKa + log \frac{[salt]}{[acid]}$$

 $pH = -log 1.8x10^{-4} + log \frac{0.1}{0.15}$
 $pH = 3.745 - 0.176$
 $= 3.569$

2- عند اضافة الحامض (بحجم وتركيز معينين) فأن المحلول سوف يتم تخفيفه لذا يجب حساب تراكيز كل من الحامض والملح المكون للبفر وتركيز الحامض المضاف بعد التخفيف

$$\begin{split} &V_T = 50 + 10 = 60 \text{ mL} \\ &\underline{\text{For} \, [\text{HCOOH}]}, \qquad M_1 \, V_1 \!\!=\!\! M_2 V_T \,\, , \quad 0.15 \, x \, 50 = M_2 \, x \, 60 \,\, , \quad \underline{M_2} \!\!=\!\! 0.125 \, \underline{M} \\ &\text{For} \, [\text{HCOONa}], \qquad M_1 \, V_1 \!\!=\!\! M_2 V_T \,\, , \quad 0.1 \, x \, 50 \, = \, M_2 \, x \, 60 \,\, , \quad \underline{M_2} \!\!=\!\! 0.083 \, \underline{M} \\ &\text{For} \, [\text{HCI}] \qquad , \qquad M_1 \, V_1 \!\!=\!\! M_2 V_T \,\, , \quad 0.2 \, x \, 10 \, = \, M_2 \, x \, 60 \,\, , \quad \underline{M_2} \!\!=\!\! 0.033 \, \underline{M} \\ &pH = pKa + log \, \frac{[salt] - [strong \, acid]}{[acid] + [strong \, acid]} \\ &\qquad \qquad [0.083 - 0.033] \end{split}$$

pH = -log 1.8x10⁻⁴ + log
$$\frac{[0.083-0.033]}{[0.125+0.033]}$$

$$pH = 3.745 + \log \frac{0.05}{0.158}$$

$$pH = 3.745 + log \ 0.316$$

$$pH = 3.745 - 0.5$$
$$= 3.245$$

3- The change in pH after the addition of 5 mL of 0.3 M NaOH solution

$$V_T = 50 + 5 = 55 \text{ mL}$$

For [HCOOH],
$$M_1 V_1 = M_2 V_T$$
, $0.15 \times 50 = M_2 \times 55$, $M_2 = 0.136 M$

For [HCOONa],
$$M_1 V_1 = M_2 V_T$$
, $0.1 \times 50 = M_2 \times 55$, $M_2 = 0.090 M$

For [NaOH] ,
$$M_1 V_1 = M_2 V_T$$
 , $0.3 \times 5 = M_2 \times 55$, $M_2 = 0.027 M$

$$pH = pKa + log \frac{[salt] + [strong base]}{[acid] - [strong base]}$$

pH = -log 1.8x10⁻⁴ + log
$$\frac{[0.090]+[0.027]}{[0.136]-[0.027]}$$

$$pH = -log \ 1.8x10^{-4} + log \ \frac{(0.117)}{(0.109)}$$

$$pH = 3.745 + \log \frac{(0.117)}{(0.109)}$$

$$pH = 3.745 + 0.031$$

$$pH = 3$$

$$\Delta pH = pH2 - pH1$$

$$\Delta pH = 3.569 - 3.000$$

$$\Delta pH = 0.569$$