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CHAPTER SIX 

 

 

Binary Operations العمليات الثنائية 

 

Chapter Three Contents: 

 

1. Binary operation العملية الثنائية 

2. Properties of binary operations خواص العمليات الثنائية 

3. Group, Ring and Field الزمرة والحلقة والحقل 
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Definition 3.1: Let   be a nonempty set. Any mapping from     into   is 

called a binary operation on   . The binary operation is denoted by the 

symbols  , #, $, o, …. 

Mathematically, 

 

Example 3.2: Let           , let * be an operation on   such that 

                     

Is * binary operation on  ? 

Solution:  

Closure? Let              

                      is closure 

Well defined? Let             s.t.                        

      Since                        

            (def. of *) 

                  (     

                                

    is well defined  

*:       is a binary operation iff 

1.                 (closure condition) 

i.e.,              

2. if            s.t.             then          (well defined 

condition). 
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     is a binary operation on   

Example 3.3: Let           , let * be an operation on   such that 

                      

Is * binary operation on  ? 

Solution:  

Closure? Let              

If                  

Take                          

    is not closure 

  * is not a binary operation on   

Example 3.4: Let    , let # be an operation on   such that 

                      

Is # binary operation on  ? 

Solution: Closure? Let              

If                  

Take                          

   is not closure 

    is not a binary operation on   

Example 3.5: (H. W.)  Let    , let * be an operation on   such that 

                        

Is * binary operation on  ? 
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Example 3.6: (H. W.)  Let    , let * be an operation on   such that 

                      

Is * binary operation on  ? 

Example 3.7: (H. W.)  Let    , let * be an operation on   such that 

                      

Is * binary operation on  ? 

Example 3.8:  

1.  Let    ,                       

    ''+'' is a binary operation on   الجمع عملية ثنائية على مجموعة الاعداد الطبيعية 

2. ''+'' is a binary operation on         

3. ''-''  is a binary operation on         

4. '' ''  is a binary operation on             

5. '' ''  is a binary operation on              

6. '' ''  is not a binary operation on              

 

Properties of Binary Operations  خواص العمليات الثنائية 

1. Commutative Binary Operation   العملية الثنائية الابدالية  

 A binary operation * on a set   is called commutative iff       

            

Example 3.9: 

''+'' is a commutative binary operation on           

 ''.'' is a commutative binary operation on           
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''-'' is not commutative binary operation on           

Example 3.10: Let                     . Is * commutative 

binary operation on    

Solution: * binary operation? 

Closure? Let                      

 * is closure   

well-defined? Let             s.t.                        

 Since                        

               (def. of *) 

                                        

                    

     is well defined  

  * is a binary operation 

Commutative?                       

                              is commutative 

Example 3.11: Let              . Is $ commutative binary operation 

on    

Solution: $ binary operation? (H.W.) 

Comm.?        and       

      

Take   
 

 
 and     

    
 

 
 and       
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Example 3.12: Let                     . Is   commutative 

binary operation on       

Solution: * binary operation? 

Closure? Let                             

   is closure   

well-defined? Let                s.t.                     

   

                         

             (def. of *) 

                                     

                    

  * is well defined  

  * is a binary operation 

Commutative? (H.W.) 

2. Associative Binary Operation   العملية الثنائية التجميعية  

A binary operation * on a set   is called associative if and only if 

                                                       

 

Example 3.13: Let                    . Is ''.'' associative, 

commutative binary operation on    

Solution: ''.'' binary operation? (H.W.) 

Associative? Let                          
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                             (def. of .) 

                                   (def. of .) 

                                  

                                (def. of .) 

                                     (def. of .) 

                                     

From (1) &(2),                 

Commutative? (H.W.) 

Example 3.14: (H.W.) Let                     . Is   associative 

binary operation on       

Example 3.15: (H.W.) Let                     . Is   associative, 

commutative binary operation on       

 

3. Distributive Property التوزيع  خاصية  

Let * and # are two binary operations on a set  . Then * is distributive over 

# from the left if and only if 

                               

 

Also, * is distributive over # from the right if and only if 

                               

 

Remark 3.16:  

1.                    (in general) 
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2. If                  then we say that                           

 

Example 3.17: Let   be a binary operation on   such that 

                                          

 Let    be a binary operation on   such that                   

Is * distributive over # from left and from right? 

* distributive over # from left ? 

We must show if                                 

             (def. of *)…..(1) 

                 (def. of *) 

                                    (def. of #) 

                                ….(2) 

From (1) and (2),                       

  * is not distributive over # from left 

* distributive over # from, right ? 

We must show if                                

               (def. of *) 

                           (def. of #) ….(1) 

                    (def. of *) 

                                      (def. of #) ….(2) 

From (1) and (2),                       

  * is distributive over # from right 
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Example 3.18: (H.W.)  Let    be a binary operation on   such that     

            

      Let    be a binary operation on   such that                 

Is * distributive over # from left and from right? 

 

Example 3.19: (H.W.)  Let   be a binary operation on      such that 

                    

   Let    be a binary operation on      such that               

     

Is * distributive over # from left and from right? 

 

Definition: The Identity Element العنصر المحايد 

Let   be a binary operation on a set   and    , then   is called the 

identity element of   if and only if                   

Example 3.20: 

1. ''0'' is the identity element of the sets       with respect to (w.r.t.)  (+) 

 بالنسبة لعملية الجمع        الصفر هو العنصر المحايد للمجموعات 

                           

2.''0'' is not the identity element of the sets        with respect to (w.r.t.)  (-) 

 رحبالنسبة لعملية الط        الصفر لايمثل العنصر المحايد للمجموعات 

                                       

3.  ''1'' is the identity element of the sets         w.r.t. (.) 
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 بالنسبة لعملية الضرب         الواحد هو العنصر المحايد للمجموعات 

                             

4.   ''1'' is not the identity element of the sets              with respect 

to (w.r.t.)  (/) 

 بالنسبة لعملية القسمة             الواحد لايمثل العنصر المحايد للمجموعات 

                              
 

 
 

 

 
       

Example 3.21: Let   be a binary operation on        such that 

                          . Find the identity element of        

with respect to #. 

Solution: Let   be the identity element of        s.t.         

              

We must find  ? 

                 (def. of #) 

                        

                         

Either      

or                   يهمل 

            ….(1) 

                 (def. of #) 

                        

                         

Either      

or                   يهمل 
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           ….(2) 

From (1) and (2),     

Example 3.22: (H. W.)  Let   be a binary operation on         such that  

                           . Find the identity element of 

        with respect to  . 

Example 3.23: (H. W.)  Let   be a binary operation on   such that  

                    . Find the identity element of   with respect 

to *.  

Example 3.24:   Let   be a binary operation on      such that  

                     . Find the identity element of      with 

respect to *. 

Solution: Let   be the identity element of      s.t.         

            

    because                     

Example 3.25:  (H. W.)   Let   be a binary operation on      such that  

                     . Find the identity element of      with 

respect to *. 

Theorem 3.26:  Let   is the identity element of a set   with respect to *, 

then   is unique. 

Proof:  Let   is the identity element of a set   with respect to * 

Suppose    is another identity of   w.r.t. * 

Since   is the identity               ….(1)  

Since    is the identity               ….(2)  

From (1) and (2),      
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   is unique 

Definition: The Inverse Element النظير العنصر  

Let   be a binary operation on a set   and   is the identity element of  . Let 

   , then      is called the inverse element of   if and only if     

     . 

The inverse element   is denoted by    . So 

              

Example 3.27: Find the inverse element of each element in       w.r.t ''+'' 

Solution: The identity element     

                                      

AND,  

                                      

                   

Example 3.28: Find the inverse element of each element in             

w.r.t ''.'' 

Solution: The identity element     

                        
 

 
                  

AND,  

                        
 

 
                  

     
 

 
                    

 

 Example 3.29:  Let   be a binary operation on        such that 
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                         . Find the inverse element of each 

element in        (if exist). 

Solution: From Example 3.22,     

Let          and    is the inverse of   

                

                      

                                  

                          
 

   
 

                      

                                  

                          
 

   
   

فان نظيرهما عدد        هو عدد نسبي ماعدا        بصورة عامة نظير كل عدد في 

 صحيح

If                         

If          
 

  
                  

If   3      
 

 
        

     has no inverse 

         ,             

 

Example 3.30: (H. W.)  Let   be a binary operation on       such that  

                      . Find the identity element of       with 

respect to *.  
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Find the inverse of each element in       (if exist). 

  

Example 3.31: (H. W.)  Let   be a binary operation on   such that  

                    . Find the inverse of each element of   with 

respect to *. 

Group الزمرة 

Let   be a nonempty set and * be a binary operation on  . The pair       is 

called group if and only if * is associative, there is an identity element and 

each element have an inverse. 

Mathematically, 

(G, *) is called group iff  

1.     

2.  * is a binary operation on   

3. * is associative on   

4.   identity element     s.t.           

5.             s.t.               

 

Remark 3.32: If       is a group and * is a commutative then       is 

called commutative group. 

Mathematically, 

 

 

 

 

A group       is called commutative iff                   
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Example 3.33: Show that       is a commutative group 

1.     

2. + is associative binary operation on   

3.                              

4.                                    

       is a group 

                       

       is a commutative group 

Example 3.34: 

        is a comm. group 

 

                         

 

      is not a group 

 

      is not a group 

 

       is not a group 

 

          is a group 

 

      is not a group 
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Example 3.35: Show that       is a commutative group such that     

      

Solution:  

1. Closure: let                     closure is true 

 well-defined: let             s.t.                        

 Since                        

              (def. of *) 

                                       

                    

     is well defined  

  * is a binary operation 

2. associative (H.W.) 

3. Identity: let     we find     such that           

       

          

       …(1) 

Similarly,        

          

       …(2) 

From (1) &(2) ,     

4. Inverse:      , we find       such that               
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            …(1) 

Similarly,          

            

             …(2) 

From (1) &(2) ,          

 

       is a group 

Commutative: (H.W.) 

Example 3.36: Is          group? 

Solution: 

1.   is a binary operation (see Example 3.12) 

2.   is associative (see Example 3.14) 

3.         s.t.           

         

4. Inverse:         , we find          such that           

    

                     If     then       s.t.         

When     then there is no inverse to   

  المجموعة الوحيدة التي يوجد لها نظير هي ال 

          is not a group 

Example 3.37: (H.W.)  Is          group? 

                                    Is          group? 
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Example 3.38: Let               is bijective map.  

let * be an operation on      s.t.         

Is          commutative group? 

 Solution:  

1. Closure: let                         

              is bijective 

              is bijective 

         is bijective  

Closure is true 

 well-defined: let                    s.t.                         

       

 Since                                 

                (def. of *) 

                                           

                      

     is well defined  

  * is a binary operation 

2. associative:             

                      (by theorem 4.26(4), chapter4) 

3. Identity:         is bijective such that                 

    (by thm 4.25, ch4) 
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4. Inverse:                 is bijective 

                              is bijective            

Such that                  (by thm 4.26(2), ch4) 

          is a group 

Commutative:  

Since       and       

         

          is a commutative group 

 

Semi Group  شبه الزمرة 

Let   be a nonempty set and * be a binary operation on  . The pair       is 

called semi group if and only if * is associative. 

Mathematically, 

(A, *) is called semi group iff  

1.     

2.  * is a binary operation on   

3. * is associative on   

Example 3.39:  

      is a semi group but not a group 

      is a semi group but not a group 

 

Remark 3.40: Every group is a semi group. 
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 Ring الحلقة 

Let   be a nonempty set and * and # be two binary operations on  . The 

ordered triple         is called ring if and only if  

1.     

2.        is a commutative group 

3.       is a semi group 

4. # is distributed over * (from left and right) 

 

Example 3.41:         is a ring 

1.       is a commutative group 

2.       is a semi-group 

3.                               (distribution from left) 

                                   (distribution from right) 

Example 3.42:         is a ring 

                              is a ring  

 

Commutative Ring الحلقة الابدالية 

A ring         is called commutative iff                    

 الابدال يجب ان يتحقق على العملية الثانية 

               is a commutative ring because         .43: 3 Example 

                                is a commutative ring 

                              is a commutative ring  

 Ring with Identity Element الحلقة ذات العنصر المحايد 
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A triple         has an identity element with respect to (#) if and only if 

                  

 

Example 3.44:                         are rings with     because 

          

Ordered Ring  الحلقة المرتبة 

A triple         is called totally ordered ring if and only if there is a totally 

ordered relation        such that  

1.         is a ring 

2. The relation        is totally ordered relation T.O.R 

3.        if         then                     

4.        if       then                     

The totally ordered relation is denoted by            

 

Example 3.45:           is a totally ordered ring since 

1.         is a ring (from Example 3.38) 

2.       is T.O.R    (see Example 3.85 from Mathematical logic and set 

theory) 

3.        and     if      T.P.          

Let                

                                     and     

                          

4.        and       if       then          
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Let                

                                      

                                     

                          

 

Example 3.46: (H.W.) Show that            is a totally ordered ring 

Definition: Field الحقل 

Let   be a nonempty set and * and # be two binary operations on  . The 

ordered triple         is called field if and only if  

1.     

2.        is a commutative group 

3.           is a commutative group 

Where   is the identity w.r.t. * 

4. # is distributed over * (from left and right) 

Example 3.47:           is field since 

1.       is comm. Group 

2.           is a commutative group 

3. (.)  dist. over (+) 

Example 3.48:  (H.W.) Show that         is field  

 Ordered field  الحقل المرتب 

A triple         is called totally ordered field if and only if there is a 

totally ordered relation        such that  

1.         is a field 
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2. The relation       is totally ordered relation T.O.R 

3.        if              then               ,         

4.        if              then               ,          

The totally ordered relation is denoted by           

 

Example 3.49:           is a totally ordered field since 

1.       is a comm. Group 

2.           is a comm. Group 

3. (.) is distributive over (+) 

4.       is T.O.R    (see Example 3.86 from Mathematical logic and set 

theory) 

5.        and     if      then          (see example 3.42) 

6.        and       if       then               (see example 3.42) 

Example 3.50: show that           is a totally ordered field 

                      show that           is a totally ordered field 

                      show that           is a totally ordered field 

 

 

 

 

 

 

 


