CHAPTER SIX

العمليات الثنائية Binary Operations

Chapter Three Contents:

- 1. Binary operation العملية الثنائية
- 2. Properties of binary operations خواص العمليات الثنائية
- 3. Group, Ring and Field الزمرة والحلقة والحقل

<u>Definition</u> 3.1: Let A be a nonempty set. Any mapping from $A \times A$ into A is called a binary operation on A. The binary operation is denoted by the symbols *, #, \$, o,

Mathematically,

*: $A \times A \rightarrow A$ is a binary operation iff

1. $*((a,b)) = a * b \in A$ (closure condition)

i.e., $\forall a, b \in A \Rightarrow a * b \in A$

2. if $a, b, c, d \in A$ s.t. (a, b) = (c, d) then a * b = c * d (well defined condition).

Example 3.2: Let $A = \{0,1,-1\}$, let * be an operation on A such that

$$a * b = b^2 \quad \forall a, b \in A$$

Is * binary operation on *A*?

Solution:

Closure? Let $a, b \in A \implies a * b \in A$?

$$\forall a, b \in A \implies a * b = b^2 \in A \implies * \text{ is closure}$$

Well defined? Let $a, b, c, d \in A$ s.t. $(a, b) = (c, d) \implies a * b = c * d$?

Since
$$(a, b) = (c, d) \Rightarrow a = c \land b = d$$

$$a * b = b^2 \text{ (def. of *)}$$

= $d^2 \text{ (b = d)}$
= $c * d \text{ (def. of *)}$

∴ * is well defined

 \therefore * is a binary operation on *A*

Example 3.3: Let $A = \{0,1,-1\}$, let * be an operation on A such that

$$a * b = a - b \quad \forall a, b \in A$$

Is * binary operation on *A*?

Solution:

Closure? Let $a, b \in A \implies a * b \in A$?

If
$$a, b \in A \Longrightarrow a * b = a - b \notin A$$

Take
$$a = 1, b = -1 \implies a * b = a - b = 1 + 1 = 2 \notin A$$

∴ * is not closure

 \therefore * is not a binary operation on A

Example 3.4: Let A = N, let # be an operation on N such that

$$a \# b = a - b \quad \forall a, b \in N$$

Is # binary operation on *N*?

Solution: Closure? Let $a, b \in N \implies a \# b \in N$?

If
$$a, b \in \mathbb{N} \Longrightarrow a \# b = a - b \notin \mathbb{N}$$

Take
$$a = 2, b = 5 \implies a \# b = a - b = 2 - 5 = -3 \notin N$$

∴ # is not closure

 \therefore # is not a binary operation on *N*

Example 3.5: (**H. W.**) Let A = Z, let * be an operation on Z such that

$$a * b = a + b + 1 \quad \forall a, b \in Z$$

Is * binary operation on Z?

Example 3.6: (H. W.) Let A = E, let * be an operation on E such that

 $a * b = 2ab \quad \forall a, b \in E$

Is * binary operation on E?

Example 3.7: (H. W.) Let A = 0, let * be an operation on O such that

 $a * b = a + b \quad \forall a, b \in O$

Is * binary operation on *O*?

Example 3.8:

1. Let A = N, a * b = a + b $\forall a, b \in N$

"+" is a binary operation on N الجمع عملية ثنائية على مجموعة الأعداد الطبيعية

- 2. "+" is a binary operation on Z, R, Q, E
- 3. "-" is a binary operation on Z, R, Q, E
- 4. " \times " is a binary operation on Z, R, Q, E, O, N
- 5. " \div " is a binary operation on $R\setminus\{0\}$, $Q\setminus\{0\}$
- 6. " \div " is not a binary operation on $N\setminus\{0\}$, $Z\setminus\{0\}$

خواص العمليات الثنائية Properties of Binary Operations

1. Commutative Binary Operation العملية الثنائية الابدالية

A binary operation * on a set *A* is called **commutative** iff a * b = b * a $\forall a, b \in A$

Example 3.9:

"+" is a commutative binary operation on N, Z, \mathbb{R} , Q, E

"." is a commutative binary operation on N, Z, \mathbb{R}, Q, E

د. عقيل فالح - ست سماهر مرز

"-" is not commutative binary operation on N, Z, \mathbb{R}, Q, E

Example 3.10: Let $a * b = a + b + ab \quad \forall a, b \in Z$. Is * commutative binary operation on Z?

Solution: * binary operation?

Closure? Let $a, b \in Z \implies a + b \in Z \implies a + b + ab \in Z$

* * is closure

well-defined? Let $a, b, c, d \in Z$ s.t. $(a, b) = (c, d) \implies a * b = c * d$?

Since
$$(a, b) = (c, d) \Rightarrow a = c \land b = d$$

$$\Rightarrow a * b = a + b + ab \text{ (def. of *)}$$

$$= c + d + cd \quad (a = c \land b = d)$$

$$= c * d$$

∴ * is well defined

∴ * is a binary operation

Commutative? a * b = a + b + ab = b + a + ba = b * a

* is commutative

Example 3.11: Let $a\$b = a \ \forall a, b \in Q$. Is \$ commutative binary operation on Q?

Solution: \$ binary operation? (H.W.)

Comm.? a\$b = a and b\$a = b

$$\Rightarrow a \neq b$$

Take
$$a = \frac{1}{3}$$
 and $b = 5$

$$a$b = \frac{1}{3} \text{ and } b$a = 5$$

Example 3.12: Let $A * B = A \cup B \quad \forall A, B \in P(X)$. Is \cup commutative binary operation on P(X)?

Solution: * binary operation?

Closure? Let $A, B \in P(X) \Longrightarrow A * B = A \cup B \subseteq X \Longrightarrow A * B \in P(X)$

... U is closure

well-defined? Let $A, B, C, D \in P(X)$ s.t. $(A, B) = (C, D) \implies A * B = C * D$?

$$(A,B)=(C,D)\Longrightarrow A=C \wedge B=D$$

$$\Rightarrow A * B = A \cup B \quad (\text{def. of } *)$$

$$= C \cup D \quad (A = C \land B = D)$$

$$= C * D$$

∴ * is well defined

∴ * is a binary operation

Commutative? (H.W.)

2. Associative Binary Operation العملية الثنائية التجميعية

A binary operation * on a set A is called **associative** if and only if

$$(a*b)*c = a*(b*c) \forall a,b,c \in A$$

Example 3.13: Let $a.b = a + b - 2 \quad \forall a, b \in Z$. Is "." associative, commutative binary operation on Z?

Solution: "." binary operation? (**H.W.**)

Associative? Let $a, b, c \in Z$, (a.b).c = a.(b.c)?

$$(a.b).c = (a + b - 2).c$$
 (def. of .)
 $= (a + b - 2) + c - 2$ (def. of .)
 $= a + b + c - 4....(1)$
 $a.(b.c) = a.(b + c - 2)$ (def. of .)
 $= a + (b + c - 2) - 2$ (def. of .)
 $= a + b + c - 4....(2)$

From (1) &(2), (a.b).c = a.(b.c)

Commutative? (H.W.)

Example 3.14: (**H.W.**) Let $A * B = A \cup B \quad \forall A, B \in P(X)$. Is \cup associative binary operation on P(X)?

Example 3.15: (**H.W.**) Let $A * B = A \cap B \quad \forall A, B \in P(X)$. Is \cap associative, commutative binary operation on P(X)?

خاصية التوزيع <u>3. Distributive Property</u>

Let * and # are two binary operations on a set A. Then * is distributive over # from the left if and only if

$$a * (b#c) = (a * b)#(a * c) \forall a, b, c \in A$$

Also, * is distributive over # from the right if and only if

$$(b#c)*a = (b*a)#(c*a) \forall a, b, c \in A$$

Remark 3.16:

1.
$$a * (b#c) \neq (b#c) * a$$
 (in general)

2. If a * (b#c) = (b#c) * a then we say that * is distributive over #

Example 3.17: Let * be a binary operation on Z such that

$$a * b = a \ \forall a, b \in Z$$

Let # be a binary operation on Z such that $a\#b = a + b - 2 \ \forall a,b \in Z$ Is * distributive over # from left and from right?

* distributive over # from left ?

We must show if
$$a * (b#c) = (a * b)#(a * c) \forall a,b,c \in \mathbb{Z}$$

 $a * (b#c) = a \text{ (def. of *).....(1)}$
 $(a * b)#(a * c) = a#a \text{ (def. of *)}$
 $= a + a - 2 \text{ (def. of #)}$
 $= 2a - 2 \dots (2)$

From (1) and (2), $a * (b#c) \neq (a * b)#(a * c)$

∴ * is not distributive over # from left

* distributive over # from, right?

We must show if $(b\#c)*a = (b*a)\#(c*a) \ \forall a,b,c \in A$

$$(b#c) * a = b#c$$
 (def. of *)

$$= b + c - 2$$
 (def. of #)(1)

$$(b * a) \# (c * a) = b \# c \pmod{*}$$

$$= b + c - 2$$
 (def. of #)(2)

From (1) and (2),
$$(b#c)*a = (b*a)#(c*a)$$

∴ * is distributive over # from right

Example 3.18: (H.W.) Let * be a binary operation on N such that $a*b=ab \ \forall a,b \in N$

Let # be a binary operation on N such that $a\#b = a + b \ \forall a, b \in N$ Is * distributive over # from left and from right?

Example 3.19: (H.W.) Let * be a binary operation on P(X) such that $A*B=A\cup B \ \forall A,B\in P(X)$

Let # be a binary operation on P(X) such that $A \# B = A \cap B \ \forall A, B \in P(X)$

Is * distributive over # from left and from right?

Definition: The Identity Element العنصر المحايد

Let * be a binary operation on a set A and $e \in A$, then e is called **the** identity element of A if and only if $a * e = e * a = a \quad \forall a \in A$

Example 3.20:

1. "0" is the identity element of the sets Z, Q, \mathbb{R} with respect to (w.r.t.) (+)

الصفر هو العنصر المحايد للمجموعات
$$Z,Q,\mathbb{R}$$
 بالنسبة لعملية الجمع

$$i.\,e.\,,a+0=0+a\quad\forall a\in Z,Q,\mathbb{R}$$

2."0" is not the identity element of the sets Z, Q, R with respect to (w.r.t.) (-)

الصفر لايمثل العنصر المحايد للمجموعات
$$Z,Q,\mathbb{R}$$
 بالنسبة لعملية الطرح

$$i.\,e.,\ \exists a\in Z,Q,\mathbb{R}\ s.\,t.\ a-0\neq 0-a$$

3. "1" is the identity element of the sets N, Z, Q, \mathbb{R} w.r.t. (.)

الواحد هو العنصر المحايد للمجموعات N, Z, Q, \mathbb{R} بالنسبة لعملية الضرب

 $i.e., a. 1 = 1.a \quad \forall a \in N, Z, Q, \mathbb{R}$

4. "1" is not the identity element of the sets $Q - \{0\}$, $\mathbb{R} - \{0\}$ with respect to (w.r.t.) (/)

الواحد لايمثل العنصر المحايد للمجموعات $Q-\{0\}, \mathbb{R}-\{0\}$ بالنسبة لعملية القسمة

i.e., $\exists a \in Q - \{0\}, \mathbb{R} - \{0\} \text{ s.t. } \frac{a}{1} \neq \frac{1}{a}$

Example 3.21: Let # be a binary operation on $\mathbb{R}\setminus\{-1\}$ such that

 $a\#b = a+b+ab \quad \forall a,b \in \mathbb{R}\setminus\{-1\}$. Find the identity element of $\mathbb{R}\setminus\{-1\}$ with respect to #.

Solution: Let *e* be the identity element of $\mathbb{R}\setminus\{-1\}$ s.t. $a\#e = e\#a = a \quad \forall a \in \mathbb{R}\setminus\{-1\}$

We must find *e*?

$$a\#e = a \implies a+e+ae = a \text{ (def. of #)}$$

 $\implies e+ae = 0$
 $\implies e(1+a) = 0$

Either e = 0

or
$$1 + a = 0 \Rightarrow a = -1 \notin R \setminus \{-1\}$$
 يهمل

$$\therefore e = 0 \in R \setminus \{-1\} \dots (1)$$

$$e#a = a \implies e + a + ea = a \text{ (def. of #)}$$

 $\implies e + ea = 0$
 $\implies e(1 + a) = 0$

Either e = 0

or
$$1 + a = 0 \Rightarrow a = -1 \notin R \setminus \{-1\}$$
 يهمل

 $\therefore e = 0 \in R \setminus \{-1\}....(2)$

From (1) and (2), e = 0

Example 3.22: (H. W.) Let # be a binary operation on $Z \setminus \{-1\}$ such that $a \# b = a + b + ab \quad \forall a, b \in Z \setminus \{-1\}$. Find the identity element of $Z \setminus \{-1\}$ with respect to #.

Example 3.23: (**H. W.**) Let * be a binary operation on N such that $a*b=a+b-1 \quad \forall a,b \in N$. Find the identity element of N with respect to *.

Example 3.24: Let * be a binary operation on P(X) such that $A * B = A \cup B \quad \forall A, B \in P(X)$. Find the identity element of P(X) with respect to *.

Solution: Let *e* be the identity element of P(X) s.t. $A * e = e * A = A \quad \forall A \in P(X)$

 $e = \emptyset$ because $A \cup \emptyset = \emptyset \cup A = A \quad \forall A \in P(X)$

Example 3.25: (**H. W.**) Let * be a binary operation on P(X) such that $A*B=A\cap B \quad \forall A,B\in P(X)$. Find the identity element of P(X) with respect to *.

Theorem 3.26: Let e is the identity element of a set A with respect to *, then e is unique.

Proof: Let *e* is the identity element of a set *A* with respect to *

Suppose e' is another identity of A w.r.t. *

Since e is the identity \implies e * e' = e' * e = e'(1)

Since e' is the identity $\implies e' * e = e * e' = e \dots (2)$

From (1) and (2), e = e'

∴ e is unique

Definition: The Inverse Element العنصر النظير

Let * be a binary operation on a set A and e is the identity element of A. Let $a \in A$, then $b \in A$ is called **the inverse element of** a if and only if a * b = b * a = e.

The inverse element b is denoted by a^{-1} . So

$$a * a^{-1} = a^{-1} * a = e$$

Example 3.27: Find the inverse element of each element in Z, Q, \mathbb{R} w.r.t "+"

Solution: The identity element e = 0

$$a * a^{-1} = 0 \Longrightarrow a + a^{-1} = 0 \Longrightarrow a^{-1} = -a \quad \forall a \in \mathbb{Z}, \mathbb{Q}, \mathbb{R}$$

AND.

$$a^{-1} * a = 0 \Longrightarrow a^{-1} + a = 0 \Longrightarrow a^{-1} = -a \quad \forall a \in \mathbb{Z}, \mathbb{Q}, \mathbb{R}$$

$$\therefore a^{-1} = -a \quad \forall a \in \mathbb{Z}, \mathbb{Q}, \mathbb{R}$$

Example 3.28: Find the inverse element of each element in $Q \setminus \{0\}$, $\mathbb{R} \setminus \{0\}$ w.r.t "."

Solution: The identity element e = 1

$$a * a^{-1} = e \Longrightarrow a. a^{-1} = 1 \Longrightarrow a^{-1} = \frac{1}{a} \quad \forall a \in Q \setminus \{0\}, \mathbb{R} \setminus \{0\}$$

AND.

$$a^{-1} * a = 1 \Longrightarrow a^{-1}$$
 $a = 1 \Longrightarrow a^{-1} = \frac{1}{a} \quad \forall a \in Q \setminus \{0\}, \mathbb{R} \setminus \{0\}$

$$\therefore a^{-1} = \frac{1}{a} \quad \forall a \in Q \setminus \{0\}, \mathbb{R} \setminus \{0\}$$

Example 3.29: Let # be a binary operation on $\mathbb{Z}\setminus\{-1\}$ such that

 $a\#b = a+b+ab \quad \forall a,b \in Z \setminus \{-1\}$. Find the inverse element of each element in $Z \setminus \{-1\}$ (if exist).

Solution: From **Example 3.22**, e = 0

Let $a \in \mathbb{Z} \setminus \{-1\}$ and a^{-1} is the inverse of a

$$\Rightarrow a * a^{-1} = a^{-1} * a = e$$

$$a * a^{-1} = e \Longrightarrow a + a^{-1} + aa^{-1} = 0$$

$$\Rightarrow a^{-1} = -\frac{a}{1+a}$$

 \Rightarrow a + a⁻¹(1 + a) = 0

$$a^{-1} * a = e \Longrightarrow a^{-1} + a + a^{-1}a = 0$$

$$\Rightarrow a + a^{-1}(1+a) = 0$$

$$\implies$$
 $a^{-1} = -\frac{a}{1+a} \in Q$

بصورة عامة نظير كل عدد في $Z \setminus \{-1\}$ هو عدد نسبي ماعدا a=0,-2 فان نظير هما عدد صحيح

If
$$a = 0 \Longrightarrow a^{-1} = 0 \in \mathbb{Z} \setminus \{-1\} \Longrightarrow 0^{-1} = 0$$

If
$$a = -2 \Rightarrow a^{-1} = \frac{2}{-1} = -2 \Rightarrow a^{-1} = -2 \in \mathbb{Z} \setminus \{-1\}$$

If
$$a = 3 \Longrightarrow a^{-1} = -\frac{3}{4} \notin \mathbb{Z} \setminus \{-1\}$$

 $\therefore a = 3$ has no inverse

$$\therefore \forall \alpha \neq 0, -2, \alpha^{-1} \notin Z \setminus \{-1\}$$

Example 3.30: (**H. W.**) Let * be a binary operation on $Q \setminus \{0\}$ such that $a * b = 2ab \quad \forall a, b \in Q \setminus \{0\}$. Find the identity element of $Q \setminus \{0\}$ with respect to *.

Find the inverse of each element in $Q \setminus \{0\}$ (if exist).

Example 3.31: (**H. W.**) Let * be a binary operation on Z such that

 $a*b=a+b+5 \quad \forall a,b \in \mathbb{Z}$. Find the inverse of each element of \mathbb{Z} with respect to *.

الزمرة Group

Let G be a nonempty set and * be a binary operation on G. The pair (G,*) is called **group** if and only if * is associative, there is an identity element and each element have an inverse.

Mathematically,

(G, *) is called **group** iff

- 1. $G \neq \emptyset$
- 2. * is a binary operation on *G*
- 3. * is associative on *G*
- 4. ∃ identity element e ∈ G s.t. a * e = e * a = a
- 5. $\forall a \in G, \exists a^{-1} \in G \text{ s.t. } a * a^{-1} = a^{-1} * a = e$

Remark 3.32: If (G,*) is a group and * is a commutative then (G,*) is called **commutative group**.

Mathematically,

A group (G,*) is called **commutative** iff $a*b=b*a \quad \forall a,b \in G$

Example 3.33: Show that (Z, +) is a commutative group

$$1. Z \neq \emptyset$$

2. + is associative binary operation on Z

3.
$$\exists e = 0 \in Z \text{ s. t. } a + 0 = 0 + a = a \quad \forall a \in Z$$

4.
$$\exists a^{-1} = -a \in Z \ \forall a \in Z \ s.t. \ a + a^{-1} = a^{-1} + a = 0$$

$$\therefore$$
 (Z, +) is a group

$$\forall a, b \in Z \quad a+b=b+a$$

 \therefore (Z, +) is a commutative group

Example 3.34:

- (Q, +) is a comm. group
- (R, +) is a comm. group
- (N, +) is not a group
- (Z,.) is not a group
- (0,+) is not a group
- $(\mathbb{R}\setminus\{0\},.)$ is a group
- $(\mathbb{R},.)$ is not a group

Example 3.35: Show that (Z,*) is a commutative group such that a*b=a+b-5

Solution:

1. Closure: let $a, b \in Z \implies$ a * b = $a + b - 5 \in Z \implies$ closure is true

well-defined: let $a, b, c, d \in Z$ s.t. $(a, b) = (c, d) \implies a * b = c * d$?

Since $(a, b) = (c, d) \Rightarrow a = c \land b = d$

$$\Rightarrow a * b = a + b - 5 \text{ (def. of *)}$$

$$= c + d - 5 \quad (a = c \land b = d)$$

$$= c * d$$

- ∴ * is well defined
- ∴ * is a binary operation
- 2. associative (H.W.)
- 3. **Identity:** let $a \in Z$ we find $e \in Z$ such that a * e = e * a = a

$$a * e = a$$

$$\Rightarrow a + e - 5 = a$$

$$\Rightarrow e = 5 \in Z \dots (1)$$

Similarly, e * a = a

$$\Rightarrow e + a - 5 = a$$

$$\Rightarrow e = 5 \in Z \dots (2)$$

From (1) &(2), e = 5

4. **Inverse:** $\forall a \in \mathbb{Z}$, we find $a^{-1} \in \mathbb{Z}$ such that $a * a^{-1} = a^{-1} * a = e$

$$a*a^{-1}=e$$

$$\Rightarrow a + a^{-1} - 5 = 5$$

$$\Rightarrow a^{-1} = 10 - a \in Z \dots (1)$$

Similarly, $a^{-1} * a = e$

$$\Rightarrow a^{-1} + a - 5 = 5$$

$$\Rightarrow a^{-1} = 10 - a \in Z \dots (2)$$

From (1) &(2), $a^{-1} = 10 - a$

 \therefore (Z,*) is a group

Commutative: (H.W.)

Example 3.36: Is $(P(X), \cup)$ group?

Solution:

- 1. ∪ is a binary operation (see Example 3.12)
- 2. U is associative (see Example 3.14)

3.
$$\exists \emptyset \in P(X)$$
 s.t. $A \cup \emptyset = \emptyset \cup A = A$

$$\therefore e = \emptyset$$

4. **Inverse:** $\forall A \in P(X)$, we find $A^{-1} \in P(X)$ such that $A \cup A^{-1} = A^{-1} \cup A = \emptyset$

If
$$A = \emptyset$$
 then $A^{-1} = \emptyset$ s.t. $A \cup A^{-1} = \emptyset$

When $A \neq \emptyset$ then there is no inverse to A

المجموعة الوحيدة التي يوجد لها نظير هي ال
$$\emptyset$$

 \therefore (P(X), \cup) is not a group

Example 3.37: (H.W.) Is $(P(X), \cap)$ group?

Is
$$(P(X), \setminus)$$
 group?

Example 3.38: Let $F(A) = \{f, f: A \rightarrow A \text{ is bijective map.}\}$

let * be an operation on F(A) s.t. $f * g = f \circ g$

Is (F(A),*) commutative group?

Solution:

1. Closure: let $f, g \in F(A) \Longrightarrow f * g = f \circ g \in F(A)$?

$$f \in F(A) \Longrightarrow f: A \to A$$
 is bijective

$$g \in F(A) \Longrightarrow g: A \to A$$
 is bijective

 $\therefore fog: A \rightarrow A$ is bijective

Closure is true

well-defined: let $f_1, f_2, g_1, g_2 \in F(A)$ s.t. $(f_1, f_2) = (g_1, g_2) \implies f_1 * f_2 = g_1 * g_2$?

Since
$$(f_1, f_2) = (g_1, g_2) \Longrightarrow f_1 = g_1 \land f_2 = g_2$$

$$\Rightarrow f_1 * f_2 = f_1 o f_2 \text{ (def. of *)}$$

$$= g_1 o g_2 \quad (f_1 = g_1 \land f_2 = g_2)$$

$$= g_1 * g_2$$

∴ * is well defined

∴ * is a binary operation

2. associative: $\forall f, g, h \in F(A)$

 $(f \circ g) \circ h = f \circ (g \circ h)$ (by theorem 4.26(4), chapter 4)

3. **Identity:** $\exists i_A : A \to A$ is bijective such that $foi_A = i_A of = f \ \forall f \in F(A)$ (by thm 4.25, ch4)

$$\therefore e = i_A$$

4. **Inverse:** $\forall f \in F(A) \Longrightarrow f: A \to A \text{ is bijective}$

$$\exists f^{-1}: A \to A \text{ is bijective} \Longrightarrow f^{-1} \in F(A)$$

Such that $f \circ f^{-1} = f^{-1} \circ f = i_A$ (by thm 4.26(2), ch4)

 \therefore (F(A), o) is a group

Commutative:

Since $f: A \rightarrow A$ and $g: A \rightarrow A$

$$fog = gof$$

 \therefore (F(A), o) is a commutative group

شبه الزمرة Semi Group

Let A be a nonempty set and * be a binary operation on A. The pair (A,*) is called **semi group** if and only if * is associative.

Mathematically,

(A, *) is called **semi group** iff

 $1. A \neq \emptyset$

2. * is a binary operation on A

3. * is associative on A

Example 3.39:

(N, +) is a semi group but not a group

(Z,.) is a semi group but not a group

Remark 3.40: Every group is a semi group.

الحلقة Ring

Let R be a nonempty set and * and # be two binary operations on R. The ordered triple (R,*,#) is called **ring** if and only if

- $1. R \neq \emptyset$
- 2. (R,*) is a commutative group
- 3. (R, #) is a semi group
- 4. # is distributed over * (from left and right)

Example 3.41: (Z, +, .) is a ring

- 1. (Z, +) is a commutative group
- 2. (Z, .) is a semi-group
- 3. $a.(b+c) = a.b + a.c \quad \forall a,b,c \in R$ (distribution from left)

$$(b+c)$$
. $a = b$. $a + c$. $a \forall a, b, c \in R$ (distribution from right)

Example 3.42: (Q, +, .) is a ring

$$(\mathbb{R}, +, .)$$
 is a ring

الحلقة الإبدالية Commutative Ring

A ring (R, *, #) is called **commutative** iff $a \# b = b \# a \quad \forall a, b \in R$

Example 3.43: (Z, +, .) is a commutative ring because $a. b = b. a \ \forall a, \in Z$

(Q, +, .) is a commutative ring

 $(\mathbb{R}, +, .)$ is a commutative ring

الحلقة ذات العنصر المحايد Ring with Identity Element

A triple (R,*,#) has an identity element with respect to (#) if and only if

$$a#e = e#a = a \quad \forall a \in R$$

Example 3.44: $(Z, +, .), (Q, +, .), (\mathbb{R}, +, .)$ are rings with e = 1 because a, 1 = 1, a

الحلقة المرتبة Ordered Ring

A triple (R,*,#) is called **totally ordered ring** if and only if there is a totally ordered relation such that

- 1. (R,*,#) is a ring
- 2. The relation \leq is totally ordered relation T.O.R
- 3. $\forall a, b \in R \text{ if } a \leq b \text{ then } a * c \leq b * c, \forall c \in \mathbb{R}$
- 4. $\forall a, b \in R \text{ if } a \leq b \text{ then } a\#c \leq b\#c, \forall c \geq 0$

The totally ordered relation is denoted by $(R,*,#, \leq)$

Example 3.45: $(Z, +, ., \le)$ is a totally ordered ring since

- 1. (Z, +, .) is a ring (from Example 3.38)
- 2. (Z, \leq) is T.O.R (see Example 3.85 from Mathematical logic and set theory)
- 3. $\forall a, b \in Z \text{ and } c \in Z \text{ if } a \leq b \text{ T.P. } a + c \leq b + c$

Let
$$a \le b \Rightarrow a = b - r$$
, $r \ge 0$
 $\Rightarrow a + c = (b + c) - r$, $c \in Z$ and $r \ge 0$
 $\Rightarrow a + c \le b + c$

4. $\forall a, b \in Z \text{ and } c \ge 0$, if $a \le b$ then $a. c \le b. c$

Let
$$a \le b \Rightarrow a = b - r$$
, $r \ge 0$
 $\Rightarrow a.c = b.c - cr \quad \forall c \ge 0$
 $\Rightarrow a.c = b.c - cr \quad cr \ge 0$
 $\Rightarrow a.c \le b.c$

Example 3.46: (H.W.) Show that $(Z, +, ., \ge)$ is a totally ordered ring

Definition: Field الحقل

Let F be a nonempty set and * and # be two binary operations on F. The ordered triple (F,*,#) is called **field** if and only if

- $1. F \neq \emptyset$
- 2. (F,*) is a commutative group
- 3. $(F \setminus \{e\}, \#)$ is a commutative group

Where *e* is the identity w.r.t. *

4. # is distributed over * (from left and right)

Example 3.47: $(\mathbb{R}, +, .)$ is field since

- 1. $(\mathbb{R}, +)$ is comm. Group
- 2. ($\mathbb{R}\setminus\{0\}$,.) is a commutative group
- 3. (.) dist. over (+)

Example 3.48: (H.W.) Show that (Q, +, .) is field

الحقل المرتب Ordered field

A triple (F,*,#) is called **totally ordered field** if and only if there is a totally ordered relation such that

1. (F, *, #) is a field

- 2. The relation is totally ordered relation T.O.R
- 3. $\forall a, b \in F \text{ if } a \leq b \text{ then } a * c \leq b * c, \forall c \in \mathbb{R}$
- 4. $\forall a, b \in F \text{ if } a \leq b \text{ then } a \neq c \leq b \neq c, \forall c \geq 0$

The totally ordered relation is denoted by $(F,*,\#,\leq)$

Example 3.49: $(\mathbb{R}, +, ., \leq)$ is a totally ordered field since

- 1. $(\mathbb{R}, +)$ is a comm. Group
- 2. ($\mathbb{R}\setminus\{0\}$,.) is a comm. Group
- 3. (.) is distributive over (+)
- 4. (\mathbb{R} , \leq) is T.O.R (see Example 3.86 from Mathematical logic and set theory)
- 5. $\forall a, b \in \mathbb{R}$ and $c \in \mathbb{R}$ if $a \le b$ then $a + c \le b + c$ (see example 3.42)
- 6. $\forall a, b \in \mathbb{R}$ and $c \ge 0$, if $a \le b$ then $a. c \le b. c$ (see example 3.42)

Example 3.50: show that $(\mathbb{R}, +, ., \geq)$ is a totally ordered field

show that $(Q, +, ., \ge)$ is a totally ordered field

show that $(Q, +, ., \le)$ is a totally ordered field