

→ تفاضل وتكامل ۲ م... → تفاضل وتكامل ۲ م... → المحتمد → المحدد → المحتمد → المحتمد → المحتمد → المحتمد → المحتمد → ال

THEOREM:

Let f be continuous on the symmetric interval [-a, a].

(a) If f is even, then
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$
.

(b) If
$$f$$
 is odd, then $\int_{-a}^{a} f(x) dx = 0$.

EXAMPLE: Evaluate
$$\int_{-2}^{2} (x^4 - 4x^2 + 6) dx$$
.

SOL: Since $f(x) = x^4 - 4x^2 + 6$ satisfies f(-x) = f(x), it is even on the symmetric interval [-2, 2]

$$\int_{-2}^{2} (x^4 - 4x^2 + 6) dx = 2 \int_{0}^{2} (x^4 - 4x^2 + 6) dx$$
$$= 2 \left[\frac{x^5}{5} - \frac{4}{3}x^3 + 6x \right]_{0}^{2}$$
$$= 2 \left(\frac{32}{5} - \frac{32}{3} + 12 \right) = \frac{232}{15}.$$

DEFINITION: If y = f(x) is nonnegative and integrable over a closed interval [a, b], then the area under the curve y = f(x) over [a, b] is the integral of f from a to b.

$$A = \int_{a}^{b} f(x) dx$$

If f(x) is negative then $A = \int_{a}^{b} |f(x)| dx$

EXAMPLE

Let $f(x) = x^2 - 4$, compute (a) the definite integral over the interval [-2,2], and (b) the area between the graph and the x-axis over [-2,2].

(a)
$$\int_{-2}^{2} f(x) dx = \left[\frac{x^3}{3} - 4x \right]_{-2}^{2} = \left(\frac{8}{3} - 8 \right) - \left(-\frac{8}{3} + 8 \right) = -\frac{32}{3}$$

(b) The area between the graph and the x-axis is $\left|-\frac{32}{3}\right| = \frac{32}{3}$

EXAMPLE: Find the area between the graph $f(x) = x^3 - 2x^2 - x$

SOL: f(x)=0 then $(x^2-1)(x-2)=0$ that is x=1, -1 and x=2

$$A = A_1 + A_2 = \int_{-1}^{1} |f(x)| dx + \int_{1}^{2} |f(x)| dx$$

$$= \left[\frac{x^4}{4} - 2\frac{x^3}{3} - \frac{x^2}{2} + 2x \right] + \left[\frac{x^4}{4} - 2\frac{x^3}{3} - \frac{x^2}{2} + 2x \right]$$

EXAMPLE: Let the function $f(x) = \sin x$ between x = 0 and $x = 2\pi$. Compute

- (a) the definite integral of f(x) over $[0, 2\pi]$.
- (b) the area between the graph of f(x) and the x-axis over $[0, 2\pi]$.

(b) To compute the area between the graph of f(x) and the x-axis over $[0, 2\pi]$ we should find the points in which f is intersect x-axis i.e. f(x)=0 this implies to $\sin x=0$ i.e. x=0, $x=\pi$ or $x=2\pi$ Now subdivide $[0, 2\pi]$ into two pieces: the interval $[0, \pi]$ and the interval $[\pi, 2\pi]$.

$$\int_{0}^{\pi} \sin x \, dx = -\cos x \Big]_{0}^{\pi} = -[\cos \pi - \cos 0] = -[-1 - 1] = 2$$

$$\int_{\pi}^{2\pi} \sin x \, dx = -\cos x \Big]_{\pi}^{2\pi} = -[\cos 2\pi - \cos \pi] = -[1 - (-1)] = -2$$

$$ea = |2| + |-2| = 4.$$

EXAMPLE:

Find the area of the region between the x-axis and the graph of

$$f(x) = x^3 - x^2 - 2x, \qquad -1 \le x \le 2$$

تفاضل وتكامل ٢ م...

(b) To compute the area between the graph of f(x) and the x-axis over $[0, 2\pi]$ we should find the points in which f is intersect x-axis i.e. f(x)=0 this implies to $\sin x=0$ i.e. x=0, $x=\pi$ or $x=2\pi$ Now subdivide $[0, 2\pi]$ into two pieces: the interval $[0, \pi]$ and the interval $[\pi, 2\pi]$.

$$\int_{0}^{\pi} \sin x \, dx = -\cos x \Big]_{0}^{\pi} = -[\cos \pi - \cos 0] = -[-1 - 1] = 2$$
$$\int_{\pi}^{2\pi} \sin x \, dx = -\cos x \Big]_{\pi}^{2\pi} = -[\cos 2\pi - \cos \pi] = -[1 - (-1)] = -2$$

Area =
$$|2| + |-2| = 4$$
.

EXAMPLE:

Find the area of the region between the x-axis and the graph of

$$f(x) = x^3 - x^2 - 2x, \quad -1 \le x \le 2$$

Solution

First find the zeros of f. $f(x) = x^3 - x^2 - 2x = 0$

$$x(x^2 - x - 2) = 0$$

x = 0, -1, and 2. The zeros subdivide [-1,2] into two subintervals: [-I, 0], on which $f \ge 0$, and [0, 2], on which $f \le 0$. We integrate f over each subinterval and add the absolute values of the calculated integrals.

$$\int_{-1}^{0} (x^3 - x^2 - 2x) \, dx = \left[\frac{x^4}{4} - \frac{x^3}{3} - x^2 \right]_{-1}^{0} = 0 - \left[\frac{1}{4} + \frac{1}{3} - 1 \right] = \frac{5}{12}$$

$$\int_{0}^{2} (x^3 - x^2 - 2x) \, dx = \left[\frac{x^4}{4} - \frac{x^3}{3} - x^2 \right]_{0}^{2} = \left[4 - \frac{8}{3} - 4 \right] - 0 = -\frac{8}{3}$$

Total enclosed area
$$=\frac{5}{12} + \left| -\frac{8}{3} \right| = \frac{37}{12}$$

EXAMPLE: Find $\int_{-1}^{2} |x - \mathbf{1}| dx$

Since
$$|x-1| = \begin{cases} x-1 & x \ge 1 \\ -x+1 & x < 1 \end{cases}$$
 then $\int_{-1}^{2} |x-1| dx = \int_{-1}^{1} (-x+1) dx + \int_{1}^{2} (x-1) dx$

Indefinite Integrals and the Substitution Method

Since any two antiderivatives of f differ by a constant, the indefinite integral notation means that for any antiderivative F of f,

$$\int f(x) dx = F(x) + C,$$

where C is any arbitrary constant.

THEOREM:

The Substitution Rule If u = g(x) is a differentiable function whose range is an interval I, and f is continuous on I, then

$$\int f(g(x))g'(x) dx = \int f(u) du.$$

tion: Running the Chain Rule Backwards

ifferentiable function of x and n is any number different from -1, the Chain Rule tells us that

$$\left(\frac{1}{1}\right) = u^n \frac{du}{dx}.$$

Therefore $\int u^n \frac{du}{dx} dx = \frac{u^{n+1}}{n+1} + C.$

As well as $\int u^n du = \frac{u^{n+1}}{n+1} + C$, then $du = \frac{du}{dx} dx$

Find the integral $\int (x^3 + x)^5 (3x^2 + 1) dx$.

→ تفاضل وتكامل ۲ م... → تفاضل وتكامل ۲ م... → المحتمد → المحدد → المحتمد → المحتمد → المحتمد → المحتمد → المحتمد → ال

The Substitution Rule If u = g(x) is a differentiable function whose range is an interval I, and f is continuous on I, then

$$\int f(g(x))g'(x) dx = \int f(u) du.$$

Substitution: Running the Chain Rule Backwards

If u is a differentiable function of x and n is any number different from -1, the Chain Rule tells us that

$$\frac{d}{dx}\left(\frac{u^{n+1}}{n+1}\right) = u^n \frac{du}{dx}.$$
Therefore
$$\int u^n \frac{du}{dx} dx = \frac{u^{n+1}}{n+1} + C.$$

As well as
$$\int u^n du = \frac{u^{n+1}}{n+1} + C$$
, then $du = \frac{du}{dx} dx$

Find the integral $\int (x^3 + x)^5 (3x^2 + 1) dx$.

Sol: let
$$u = x^3 + x$$
. then $du = \frac{du}{dx} dx = (3x^2 + 1) dx$,

so that by substitution we have:

$$\int (x^3 + x)^5 (3x^2 + 1) dx = \int u^5 du$$
Let $u = x^3 + x$, $du = (3x^2 + 1) dx$.
$$= \frac{u^6}{6} + C$$
Integrate with respect to u .
$$= \frac{(x^3 + x)^6}{6} + C$$
Substitute $x^3 + x$ for u .

EXAMPLE:

Find the integral $\int \sqrt{2x+1} \, dx.$

SOL: let u=2x+1 and n=1/2,
$$du = \frac{du}{dx} dx = 2 dx$$

because of the constant factor 2 is missing from the integral. So we write

$$\int \sqrt{2x+1} \, dx = \frac{1}{2} \int \sqrt{\frac{2x+1}{u}} \cdot \frac{2}{du} dx$$

$$= \frac{1}{2} \int u^{1/2} \, du \qquad \qquad \text{Let } u = 2x+1, du = 2 \, dx.$$

$$= \frac{1}{2} \frac{u^{3/2}}{3/2} + C \qquad \qquad \text{Integrate with respect to } u.$$

$$= \frac{1}{3} (2x+1)^{3/2} + C \qquad \qquad \text{Substitute } 2x+1 \text{ for } u.$$

EXAMPLE: Find
$$\int \sec^2 (5t + 1) \cdot 5 dt$$
.

SOL: Let u = 5t + 1 and du = 5 dx. Then,

$$\int \sec^2(5t+1) \cdot 5 dt = \int \sec^2 u du$$

$$= \tan u + C$$

$$= \tan (5t+1) + C$$
Substitute $5t + 1$, $du = 5 dt$.

Substitute $5t + 1$ for u .

EXAMPLE:
$$\int \cos (7\theta + 3) d\theta$$
.

SOL: Let $u = 7\theta + 3$ so that $du = 7 d\theta$. The constant factor 7 is missing from the $d\theta$ term in the integral. We can compensate for it by multiplying and dividing by 7. Then,

$$\int \cos (7\theta + 3) d\theta = \frac{1}{7} \int \cos (7\theta + 3) \cdot 7 d\theta \qquad \text{Place factor 1/7 in front of integral.}$$

$$= \frac{1}{7} \int \cos u \, du \qquad \text{Let } u = 7\theta + 3, du = 7 \, d\theta.$$

$$= \frac{1}{7} \sin u + C \qquad \text{Integrate.}$$

$$= \frac{1}{7} \sin (7\theta + 3) + C \qquad \text{Substitute } 7\theta + 3 \text{ for } u.$$

$$\mathbf{LE:} \int x^2 \sin (x^3) \, dx = \int \sin (x^3) \cdot x^2 \, dx$$

$$= \int \sin u \cdot \frac{1}{3} \, du \qquad \text{Let } u = x^3, du = 3x^2 \, dx,$$

$$= \int \sin u \cdot \frac{1}{3} du$$

$$= \int \sin u \cdot \frac{1}{3} du$$

$$= \frac{1}{3} \int \sin u du$$

$$= \frac{1}{3} (-\cos u) + C$$
Integrate.
$$= -\frac{1}{3} \cos(x^3) + C$$
Rep ice u by x^3 .

$$=\frac{1}{3}(-\cos u)+C$$

$$= -\frac{1}{3}\cos\left(x^3\right) + C$$

