
Bias:

In Artificial Neural Networks (ANNs), a bias term is an additional parameter that is added
to the weighted sum of the inputs before passing through the activation function. While
weights determine the strength of the connections between neurons and inputs, the bias
term allows the activation function to be shifted, influencing the output of the neuron
regardless of the input.

Including a bias term enables the neural network to capture patterns in the data that
might not necessarily pass through the origin (0,0) on a graph. It essentially allows the
activation function to be flexible in terms of its positioning, which can be crucial for
learning complex relationships in the data.

Mathematically, the weighted sum of inputs plus bias can be represented as:

Adding the bias term allows the neural network to model more complex functions and
improve its ability to fit the training data. During training, just like weights, the bias term is
also updated through optimization algorithms such as gradient descent to minimize the
error between the predicted output and the actual output.

let's illustrate the difference using a simple example of a perceptron for binary
classification. Suppose we have a perceptron with two inputs and no bias initially, and we
want to classify points in a 2D space into two classes, class 0 and class 1.

Perceptron without Bias:

Let's define our perceptron without bias with the following parameters:

- Inputs: x1 and x2
- Weights: w1 and w2
- Activation function: Step function (outputs 0 if the weighted sum is negative, and 1 if
positive)

Suppose we have a training dataset with the following points:

Now let's compute the output of the perceptron for the first point:

And similarly for the other points. Then we apply the step function to determine the class.

Adding Bias:

Now, let's add a bias term b to the perceptron. So the new equation for the weighted sum
becomes:

We'll set b = 1 for simplicity.

Effect of Bias:

Adding a bias term essentially allows the decision boundary to shift. Without a bias term,
the decision boundary must pass through the origin (0,0). With a bias term, the decision
boundary can be shifted in any direction.

This means that the addition of the bias term provides more flexibility to the perceptron to
learn and classify data that may not necessarily pass through the origin.

By adjusting the bias term during training, the perceptron can learn to shift the decision
boundary as needed to better separate the classes in the data space.

let's continue with the example and compute the output of the perceptron for both
scenarios: without using bias and then adding bias.

Perceptron without Bias:
Given the inputs x1 and x2, and weights w1 and w2, the weighted sum is calculated as:

Now, let's apply the step function:

So, without using a bias term, the perceptron classifies the points as follows:
- Point (1, 2): Class 0
- Point (-1, 1): Class 0
- Point (3, -2): Class 1

Now, let's repeat the process with a bias term.

Adding Bias:

Let's b = 1. The new equation for the weighted sum becomes:

Perceptron with Bias:

Now, let's apply the step function:

So, with the addition of a bias term, the perceptron classifies the points as follows:
- Point (1, 2): Class 1
- Point (-1, 1): Class 0
- Point (3, -2): Class 1

As you can see, the introduction of the bias term has shifted the decision boundary, leading
to a different classification for the points. This demonstrates how the presence of a bias term
affects the output of a perceptron and allows it to learn more complex patterns in the data.

- They are limited to linearly separable problems and can only learn linear decision
boundaries.
- Often used for binary classification tasks.

- They can learn complex non-linear relationships between inputs and outputs.
- Activation functions are typically applied to the output of each neuron to introduce non-
linearity into the model.
- MLPs are universal function approximators, meaning they can approximate any function
given enough neurons and appropriate activation functions.
-Widely used for various tasks including regression, classification, and function
approximation.

 غٌر رسائل إلى الإلكترونً البرٌد لتصنٌف قطة، أو كلب على تحتوي صورة كانت إذا لتحدٌد استخدامها ٌمكن-
 .المنزل وعمر والموقع المساحة مثل متغٌرات عدة إلى استنادًا منزل سعر لتقدٌر أو هامة، ورسائل فٌها مرغوب

Recurrent Neural Networks (RNNs) are an important class of neural networks specialized in
handling sequential data, where there is a temporal relationship between inputs. RNNs are
particularly useful in tasks such as text analysis and machine translation, music
composition, stock prediction, and many other applications where context changes over
time.

RNNs typically consist of recurrent neural units connected to each other to form a loop or
sequence. This means they can take current inputs along with the previous internal state
(memory) and combine them together to produce the current output. This design allows
RNNs to retain information about previous context and use it in predicting the future.

AND OR

Example #1: Python code that trains to perform AND Gate table. It will continue training
until all predictions are correct. And it will prints weights and bias at that point.

Note: The algorithms for training and testing are declared after the code

Pseudo code for Training Algorithm:

