Bias:

Inputs
r— Weights
(0.0 (702 Net input Activation
\, :-}___ﬂ,-‘!a.___h_ . -
T ~—_ funtion funtion
o~ —
(0.0 (\"Ghe) — — output
(oo — = AN
- = E -1.062 | | : . =~ 0.0
P . LY __..l LY
{ 0.0 ?"31 ~— 7 \{ IL_/
1\\.___ __,->'_'
f’f_ __3;;3 o
0.0 -1.012)
kx __ﬂ-}_] 1%3?:'
e
A

In Artificial Neural Networks (ANNs), a bias term is an additional parameter that is added
to the weighted sum of the inputs before passing through the activation function. While
weights determine the strength of the connections between neurons and inputs, the bias
term allows the activation function to be shifted, influencing the output of the neuron
regardless of the input.

Including a bias term enables the neural network to capture patterns in the data that
might not necessarily pass through the origin (0,0) on a graph. It essentially allows the
activation function to be flexible in terms of its positioning, which can be crucial for
learning complex relationships in the data.

Mathematically, the weighted sum of inputs plus bias can be represented as:

s - T1 s 5 s
weighted sum — % . input. x weight. + bias

Adding the bias term allows the neural network to model more complex functions and
improve its ability to fit the training data. During training, just like weights, the bias term is
also updated through optimization algorithms such as gradient descent to minimize the
error between the predicted output and the actual output.

let's illustrate the difference using a simple example of a perceptron for binary
classification. Suppose we have a perceptron with two inputs and no bias initially, and we
want to classify points in a 2D space into two classes, class 0 and class 1.

Perceptron without Bias:

Let's define our perceptron without bias with the following parameters:

- Inputs: x1 and x2

- Weights: wl and w2

- Activation function: Step function (outputs 0 if the weighted sum is negative, and 1 if
positive)

Suppose we have a training dataset with the following points:

Class

Now let's compute the output of the perceptron for the first point:
weighted sum — (1 > wy) + (2 % wo)

And similarly for the other points. Then we apply the step function to determine the class.

Adding Bias:

Now, let's add a bias term b to the perceptron. So the new equation for the weighted sum
becomes:

weighted sum — (1 x wy) + (2 x wa) + b

We'll set b = 1 for simplicity.

Effect of Bias:

Adding a bias term essentially allows the decision boundary to shift. Without a bias term,

the decision boundary must pass through the origin (0,0). With a bias term, the decision
boundary can be shifted in any direction.

This means that the addition of the bias term provides more flexibility to the perceptron to
learn and classify data that may not necessarily pass through the origin.

By adjusting the bias term during training, the perceptron can learn to shift the decision
boundary as needed to better separate the classes in the data space.

let's continue with the example and compute the output of the perceptron for both
scenarios: without using bias and then adding bias.

Perceptron without Bias:
Given the inputs x1 and x2, and weights wl and w2, the weighted sum is calculated as:

Let's say we have initial weights wy; — (0.5 and w- — —0.5.

weighted sum; = (1 < 0.5) + (2 <x (—0.5)) = 0.5 -1 = —0.5
weighted sum, — (—1 x 0.5) + (1 = (—0.5)) = —0.5 — 0.5 = —1
weighted sum., — (3 < 0.5) + (—2 =« (—0.5)) = 1.5+ 1 = 2.5

Now, let's apply the step function:

* For weighted sum, = —(.5: Step function output =0

* For weighted sum, — — L: Step function output =0

* For weighted sum, = 2.5: Step function output =1
So, without using a bias term, the perceptron classifies the points as follows:
- Point (1, 2): Class O

- Point (-1, 1): Class 0
- Point (3, -2): Class 1

Now, let's repeat the process with a bias term.

Adding Bias:

Let's b = 1. The new equation for the weighted sum becomes:

weighted sum — (@) % wy) + (xa ¥ we) + b

Perceptron with Bias:

weighted sum; = (1 x 0.5) + (2 x (=0.5)) +1=05-1+1=10.5

weighted sum, = (=1 x 0.5) 4+ (1 x (=0.5)) + 1 =-05-054+1=10

weighted sumy = (3 x 0.5) + (=2 x (-0.5)) + 1 =15+ 14+ 1=35

Now, let's apply the step function:

* For weighted sum,; — 0.5: Step function output =1
* For weighted sum, — 0:Step function output =0
* For weighted sum, — 3.5: Step function output =1

So, with the addition of a bias term, the perceptron classifies the points as follows:
- Point (1, 2): Class 1
- Point (-1, 1): Class O
- Point (3, -2): Class 1

As you can see, the introduction of the bias term has shifted the decision boundary, leading
to a different classification for the points. This demonstrates how the presence of a bias term
affects the output of a perceptron and allows it to learn more complex patterns in the data.

Advantages of ANN

* ANNSs exhibits mapping capabilities, that is, they can map input patterns to their
associated output pattern.

* The ANNs learn by examples. Thus, an ANN architecture can be trained with known
example of a problem before they are tested for their inference capabilities on
unknown instance of the problem. In other words, they can identify new objects
previous untrained.

* The ANNs posses the capability to generalize. This is the power to apply in
application where exact mathematical model to problem are not possible.

Advantages of ANN

eUasy) & daaluiia

* The ANNs are robust system and fault tolerant. They can therefore, recall full
patterns from incomplete, partial or noisy patterns.

* The ANNS can process information in parallel, at high speed and in a distributed
manner.

* Thus a massively parallel distributed processing system made up of highly
interconnected (artificial) neural computing elements having ability to learn and
acquire knowledge is possible.

Processing of ANN depends upon the following three building blocks:

1. Network Topology
2. Adjustments of Weights or Learning
3. Activation Functions

1. Network Topology: A network topology is the arrangement of a network along with its nodes and
connecting lines. According to the topology, ANN can be classified as the following kinds:

A. Feed forward Network: It is a non-recurrent network having processing units/nodes in layers and
all the nodes in a layer are connected with the nodes of the previous layers. The connection has
different weights upon them. There is no feedback loop means the signal can only flow in one
direction, from input to output. It may be divided into the following two types:

o Single layer feed forward network: The concept is of feed forward ANN having only one
weighted layer. In other words, we can say the input layer is fully connected to the output
layer.

Inputs Cutputs

- They are limited to linearly separable problems and can only learn linear decision
boundaries.
- Often used for binary classification tasks.

. Multilayer feed forward network: The concept is of feed forward ANN having more than
one weighted layer. As this network has one or more layers between the input and the output
layer, it is called hidden layers.

Inputs Hidden Outputs

ouTPUT

INPUT

- They can learn complex non-linear relationships between inputs and outputs.

- Activation functions are typically applied to the output of each neuron to introduce non-

linearity into the model.

- MLPs are universal function approximators, meaning they can approximate any function

given enough neurons and appropriate activation functions.

-Widely used for various tasks including regression, classification, and function

approximation.

o il) G S 2 Caiatl i gl QS e (g giag b gea il 1Y) paal Lgaladia) (S -
i) a5 g sall 5 Aabiaal) Jia) yia s3e) 13 O e jma sl ol cdala Jil 5 L s ya

Feedback Network: As the name suggests, a feedback network has feedback paths, which means the
signal can flow in both directions using loops. This makes it a non-linear dynamic system, which
changes continuously until it reaches a state of equilibrium. It may be divided into the following

tvpes:

Recurrent networks: They are feedback networks with closed loops. Following are the two types
of recurrent networks.

Fully recurrent network: It is the simplest neural network architecture because all nodes are
connected to all other nodes and each node works as both input and output.

Jordan network - It is a closed loop network in which the output will go to the input again as
feedback as shown in the following diagram.

Recurrent Neural Networks (RNNs) are an important class of neural networks specialized in
handling sequential data, where there is a temporal relationship between inputs. RNNs are
particularly useful in tasks such as text analysis and machine translation, music
composition, stock prediction, and many other applications where context changes over
time.

RNNs typically consist of recurrent neural units connected to each other to form a loop or
sequence. This means they can take current inputs along with the previous internal state
(memory) and combine them together to produce the current output. This design allows
RNNs to retain information about previous context and use it in predicting the future.

Input: Stateful Model Ovutput:
a Word Most likely next word

—_— Recurrent
Neural Network

D

Memory of previous words
influence next predicition

Oui‘pui‘ so far:
Machine

2. Adjustments of Weights or Learning: Learning, in artificial neural networlk, is the method of modifying
the weights of connections between the neurons of a specified network. Learning in ANN can be classified
into three categories namely supervised learning, unsupervised learning, and reinforcement learning.

X [input) ‘z:::::l'ﬂll{ # ¥ [Actual output)
I L0y
Error Signal
D-
o Error D (Desired O t
I Signal [|e—— ° = utput)
enerator

Supervised Learning: As the name suggests, this type of learning is done under the supervision of a
teacher. This learning process is dependent. During the training of ANN under supervised learning, the
input vector is presented to the network, which will give an output vector. This output vector is compared
with the desired output vector. An error signal is generated, if there is a difference between the actual
output and the desired output vector. On the basis of this error signal, the weights are adjusted until the
actual output is matched with the desired output.

Unsupervised Learning: As the name suggests, this type of learning is done without the supervision of a
teacher. This learning process is independent. During the training of ANN under unsupervised learning, the
input vectors of similar type are combined to form clusters. When a new input pattern is applied, then the
neural network gives an output response indicating the class to which the input pattern belongs. There is
no feedback from the environment as to what should be the desired output and if it is correct or incorrect.
Hence, in this type of learning, the network itself must discover the patterns and features from the input
data, and the relation for the input data over the output.

_ Neural
X(input) —» __ » Y [Actual output)
Network

T

Reinforcement Learning: As the name suggests, this type of learning is used to reinforce or strengthen the
network over some critic information. This learning process is similar to supervised learning, however we
might have very less information. During the training of network under reinforcement learning, the
network receives some feedback from the environment. This makes it somewhat similar to supervised
learning. However, the feedback obtained here is evaluative not instructive, which means there is no
teacher as in supervised learning. After receiving the feedback, the network performs adjustments of the
weights to get better critic information in future.

] Neural
X (input) —» » Y [Actual output)
Network
Error Signal v
Error
. R (Reinforcement signal)
Signal [«—
Generator

BOOLEAN FUNCTION

THE FIRST NEURAL NEURAL
NETWORKS

AND Fuaction

Threshold(Y) =2

Whar can percepitrons represent?

[~
o0 o 1.0 =
o0

AND NOR

Functions which can be separated in this way are called
T inecarly Separable

Only linearly Separable functions can be represented by a
pPerceptron

Summation
(-1*0.3) + (0*0.5) + (0*-0.4)
(=1%D:3) =+ (0*0.5) + (1*=0.4)
(-1*0.3) + (1*¥0.5) + (0*-0.4)
-1%0.3) + (1%0.5) + (1*-0.4

o
I
S
o’
3
<
m

Example #1: Python code that trains to perform AND Gate table. It will continue training
until all predictions are correct. And it will prints weights and bias at that point.

Note: The algorithms for training and testing are declared after the code

import numpy as np

Define the AND gate dataset
X = np.array(]|

[e,
[0, 11,
[1
[1
y = np.array([e, @, 0, 1])

Initialize weights and bias
weights = np.random.rand(2)
bias = np.random.rand(1)

Define the learning rate and number of epochs
learning rate = 0.1
epochs = 100

Training the perceptron
tor epoch in range(epochs):
all correct = True # Flag to check if all predictions are correct
for i in range(len(X)):
Forward pass
input data = X[1]
output = np.dot(input data, weights) + bias

Calculate prediction
prediction = 1 if output > @ else @

Update weights and bias i1f there's a misclassification
if prediction I= y[1i]:
error = y[1i] - prediction
weights += learning rate ® error * input data
bias += learning rate * error
all correct = False # Set the flag to False if there's a misclassification

Break the loop if all predictions are correct

if all correct:
print(f"First correct prediction at epoch {epoch + 1}: Weight: {weights}, Bias: {bias}")
break

Test the perceptron
print("\nTesting the perceptron:™)
for 1 in range(len(X)):
input data = X[1]
output = np.dot(input data, weights) + bias
prediction = 1 if output > @ else @
print(f"Input: {input data}, Predicted output: {prediction}")

weights=
[2.82535858 ©.99263662 |

bias=
[@.24716405]

First correct prediction at epoch 5: Weight: [©8.52535858 ©.59263662], Bias: [-8.75283595]

Testing the perceptron:

Input: [@ @], Predicted output:
Input: [@ 1], Predicted output:
Input: [1 @], Predicted output:
Input: [1 1], Predicted output:

FOOo

Pseudo code for Training Algorithm:

Import

Dat

Initialize
For

Forward

If

Update Weights

aet
True:
Print First

Break

