example of a fuzzy control system for a simple car speed controller based on the distance to
an obstacle. In this scenario, we will have one input: "distance", and one output: "speed".
We'll define linguistic variables and membership functions for these variables, create rules
to control the car speed based on the distance, and then simulate the system with example
inputs.

The fuzzy variables “distance” and “speed” are definad.

Membership functions are defined for each linguistic variable:
¢ “distance” has 'near, 'medium’, and far’ categories.

¢ “szpeed’ has'slow’, 'medium’, and ‘fast’ categories.

Rules are defined to control the “speed” based on the "distance” to an obstacle.

A control system is created and then simulated with an example input value for “distance” (70).

The program computes the “speed” based on the fuzzy control system.,

It then prints the input distance and the resulting “speed”.

Finally, it plots the membership functions for “distance™ and “speed” for visualization.

This example demonstrates how a fuzzy control system can be used to control a car's speed based on
the distance to an obstacle. When the distance is 'near, the car speed is 'slow’; when ‘'medium’, the

speed is ‘'medium’; and when 'far’, the speed Is fast’.

numpy np
skfuzzy fuzz

skfuzzy control ctrl

matplotlib.pyplot plt

Define fuzzy variables
distance = ctrl.Antecedent(np.arange(’, # Distance to obstacle

speed = ctrl.Consequent{np.arange(’, f Car speed (0 to 100)

Define membership functions for distance
distance[] = fuzz.trimf(distance.universe, [
distance[1 = fuzz.trimf(distance.universe,

distancel 1 = fuzz.trimf({distance.universe, [

_ . R . i
Define hership functions for speed

speed[] = fuzz.trimf(speed.universe, [0, 0,

speed[1 = fuzz.trimf(speed.universe, [,

speed[= fuzz.trimf(speed.universe, [30,

Define fuzzy rules

rulel = ctrl.Rule(distancel 1, speed[
rule?2 = ctrl.Rule(distancel 1, speedl
rule3 = ctrl.Rule(distancel[1, speed[

Create fuzzy control system

speed_ctrl = ctrl.ControlSystem([rulel, rule2, rule3l)
speed_simulation = ctrl.ControlSystemSimulation(speed_ctrl)
Input crisp value for distance

input_distance = # Example distance to obstacle

Fuzzification

speed_simulation.input[= 1nput_distance

Fuzzy inference

speed_simulation.compute()

Output
print(. 1nput_distance)

print(, speed_simulation.outputl[

create a fuzzy control system with three inputs and two outputs. In this example, we'll
consider a simple washing machine controller. The inputs will be "dirtiness level", "fabric
type", and "water temperature". The outputs will be "washing time" and "detergent amount".
We'll define linguistic variables and membership functions for these variables, create rules to
determine the washing time and detergent amount based on the inputs, and then simulate
the system with example inputs.

In this program:

*» The fuzzy variables "dirtiness”, "fabric’, "temperature”, "washing_time ™, and

‘detergent _amount” are defined.

Membership functions are defined for each linguistic variable:

* “dirtiness” has’low’, 'medium’, and 'high' categories.

* “fabric” has 'delicate’, regular’, and tough' categories.

* “temperature” has 'cold, 'warm’, and 'hot’ categories.

* “washing_time” has’'short’, 'medium’, and long” categories.

& “detergent_amount” has low', 'medium’, and 'high' categories.

» Rules are defined to determine the "washing_time™ and “detergent_amount”™ based on
‘dirtiness”, "fabric”, and “temperature”.

» A control system is created and then simulated with example input values for “dixrtiness ™ (7),
“fabxric” (8), and " temperatuxe” (85).

» The program computes the "washing_time™ and “detergent_amount”™ based on the fuzzy control
system.

» It then prints the input values and the resulting "washing_time™ and “detergent_amount’.

» Finally, it plots the membership functions for "dirtiness”™, "fabric ™, "temperature”,

‘washing_time”, and “detergent_amount” for visualization.

Fuzzy Rules:

1. Rule 1: If the dirtiness level is low and the fabric type is delicate, then:
* “washing_time’ is short (e.g., 15 minutes)
* “detergent_amount’ islow (e.g., 20%)
2. Rule 2: If the dirtiness level is medium and the fabric type is regular, then:
* “washing_time” is medium (e.g., 30 minutes)
e “detergent_amount’ is medium (e.g., 50%)
3. Rule 3: If the dirtiness level is high and the fabric type is tough, then:
e “washing_time’ islong (e.g., 45 minutes)
* “detergent_amount’ is high (e.g., 80%)
4. Rule 4: If the dirtiness level is medium and the fabric type is delicate, then:
* “washing_time’ iz medium (e.g., 25 minutes)
* “detergent_amount’ islow (e.g., 20%)
5. Rule 5: If the dirtiness level is high and the fabric type is regular, then:
* “washing_time’ islong (e.g. 40 minutes)
* “detergent_amount’ iz medium (e.g., 50%)
G. Rule 6: If the dirtiness level is low and the fabric type is tough, then:
* “washing_time’ is short (e.g., 10 minutes)

* “detergent_amount’ is high (e.g., 80%)

7. Rule T7: If the water temperature is cold, dirtiness level is low, and fabric type is delicate, then:
* “washing_time’ is short (e.g., 10 minutes)
s “detergent_amount’ islow (e.g., 20%)
&. Rule 8: If the water temperature is warm, dirtiness level is medium, and fabric type is regular,
then:
* “washing_time’ is medium (e.g., 25 minutes)
s “detergent_amount’ is medium (e.g., 50%)
9. Rule 2: If the water temperature is hot, dirtiness level is high, and fabric type is tough, then:
s “washing_time’ islong (e.g., 45 minutes)

e “detergent_amount” is high (e.g., 80%)

Genetic Algorithms (4351_50) 4l Silea 3) 330

(J Developed by John Holland, University of Michigan (1970’s)

(1970) Olasdiue dnala 3V 38 O nsdad e O

(J Provide efficient, effective techniques for optimization and

machine learning applications

J Widely-used today in business, scientific and engineering circles

I alasll ikl 5 Cppaeasll Alled il b s O

Genetic Algorithms 4suall Sl 5) sall

= A genetic algorithm is a search
heuristic that is inspired by
Charles Darwin’s theory of
natural evolution. This
algorithm reflects the process
of natural selection where the
fittest individuals are selected
for reproduction in order to
produce offspring of the next
generation.

e (A Anadl Al 3l m
Lol e Blasiee S
Skl andall) sdadll
YN Sl RSTE D\
eWnWl Aalee Ane)l s
JEal A GQaa eadall
dal Oe issll o) @Y =l
(SE el e duss Zl)

Genetic Algorithms (4351_35) 4aial) Claa) 530
Optimization (J53eY! JLEA)) Saeasl)

Set of INPULS s— Process j——) Set of Outputs
SOlE Al e Ac gana e yaall Ac gana

Genetic Algorithms (451_51) daiadl Slaa 3 sad)
Optimization (JieY _lbal) Soeeasl)

In this search space, lies a point
or a set of points which gives the
optimal solution.

E.L-i':a_u,._,ﬁ ol \LL_I]‘ ia-.L..u.ni.'.i
#ﬁ]kﬁﬂ‘mhw Ji
e Jal

The set of all possible solutions or
values which the inputs can take make

up the Search space. .

o Sl 2l 5f Jolall ares Ao ganae JS25
SR -5 e o S

Genetic Algorithms (4351 s)) daiald)l Silea) 530

= GAs are a subset of a much <* GAs dAvall Clwjylsall e
larger branch of computation D8 HSI g 8 e due i Ac jena
known as Evolutionary Claadl Al 43 5 el Cllall e
Computation. .5 s=all

= Genetic Algorithms can 5,0l Agsall Cleolsall ki .

"ALEST 4ad Lo aa" s P.) Jlo
Ueas 122 "4 eSSl 48 Lo e_).m
?‘MM M\A& 4.\44;.“ s_i\AA‘)J“,;.“

LOpeeadll JSUEL s 8

deliver a “good-enough”
solution “fast-enough”.

Genetic Algorithms (45_5) 4aiad)l Sl 3) gad)
Notion of Natural Selection =2ulall ¢laisy) 5 Sa

= The process of natural selection starts Y mlal LEal ekl clEiW) dlee oS =
with the selection of fittest individuals S5 A0 Oty agd) LAY adaadl Ga e
fromm a population. They produce Joall I agmilia)l adney opall)l allias
offspring which inherit the characteristics cdamdl ABLL Slatad; oAbl oA) JNah
of the parents and will be added to the .. <= . . bl baalid: v
next gepneration. If parents have better "J‘.,S.“" ”)%ﬂ"’n..”.” - ‘ W & '
f‘\gl.a.“o_\b H.GMJ‘&‘M‘)’*A}

fitness, their offspring will be better than B 9 .a s X *
pring e i e sl A Al B,) SEl

parents and have a better chance at

surviving. This process keeps on iterating ALl Sy ol ay)
and at the end, a generation with the
fittest individuals will be found. el AdSle e 3 SEll s3a Gadal Se 0w
Lo ASEa] Jelall e dc ganae 4 lan a0
= This notion can be applied for a search Leie dc genae Jomdl jluaasg

problem.

Genetic Algorithms (451 511) 4siall Gilea 5 3

= In GAs, we have a pool or a population of

possible solutions to the given problem.
These solutions then undergo
recombination and mutation (like in natural
genetics), producing new children, and the
process is repeated over various
generations. Each individual (or candidate
solution) is assigned a fitness value (based
on its objective function value) and the
fitter individuals are given a higher chance
to mate and yield more “fitter” individuals.
In this way we keep “evolving” better
individuals or solutions over generations,
till we reach a stopping criterion.

Jslall e Ae sane 5l pend Ll <GAs 2 =
J#\o&&bﬁ?ﬁ.@mw‘
ale A Jll sa LS) 3kl g S 6l sale Yy
duaa Jsla Leie =i lae (Annkll 45,0
J.aa‘ P-X Vg P A.JM.“ _))S.u_, (.\Ja t—Lu‘)
Ay (Re s gall FETINE U u-‘“— f—h-.') (=_2)
oSl Ao 58 daEld s (Q1aY) Jslall =a
(158V) Jslall e p3ell Zlsly z o) 8l
. masul sy

(2180) Jsla ™ ks o Jndlas 35 Hlall ol
.—a8 gill

Genetic Algorithms (451_50) daiald) Gl) 530
Optimal local solution versus optimal global solution

SV aladl Jadt JiE. B e Jad

Next Solutions (Optimal Local Solutions)

S

Next Solutions (Optimal Local Solutions)

Optimal Global Solutions B aclall J s

A

Next Solutions (Optimal Local Solutions)

o

Next Solutions (Optimal Local Solutions)

(SBal Alaad Jdalt) 2N Jylab

Initial Solutions 3;-‘,% Jsial
based on our objective function and constraints

Genetic Algorithms (451_50) 4Asiall Silea 5 530
Population, chromosome, and gene terms in Genetic Algorithm
23\3_.3.;.“ a._u.‘})\)i.“ g’j*;’ué-;'“.) ?}“_’A"‘)g“,&"sul‘ én.a:d‘ R\ N S PN ||

Gene
° 1 o [o | m 1 Chromosome 1 2 [e | W] a1 s 1
1 I s o T+ T+ T o Chomesomes | > | s | o | 1 | 1] o
o 1 o o 1 1 o 1 4 8 1 1
1 1 o 1 1 1 17 2 3 1 11 17
o o o 1 1 o L o o 2 3 (o]
1 1 o o o 1 S (5] 9 14 10 1
o 1 o [[1 Chromosome n o 5 25 13 7 14
population population
O A chromosome is made up of several genes. Ac gama (ganS _Clipa 330 Jre o gen 3 9 S 5 0S5 O
A set of chromosomes are called population. (D51l Ze ganl) OIS Gl g ga y ST

Genetic Algorithms (45)_5)1) dsial) Gilsa 3) 53

/ 5 ABLL 4l Gl
{ Ja J< Aadal da s
initialize population; ¥ Jsiall uls

evaluate population; _
while (Condition) {Tiérmination Criteria not satisfied)

{

select parents for reproduction; *<' #'¢=*

Selection
v GROSSoVEr perform Crossover (Fecombination); ol
Mutation

perform mutation; Offspring
evaluate population;

Nl /

5 ik

Genetic Algorithms (451 5)) 4kl Sia j) il

Create Initial Random Population
P st pdaa 8

Generation (JsJl) =0
Assign fitness Ayl yaad Evaluation auid

No

+Choose Population size

Condition ? = =
Optimal or good solution

Reproduction <31 SSiecHioATAS

Crossover ablidl =y Offspring

Yes

ol

‘ End 4l > = Mutation 3 ikl H Generation= Generation + 1 \

Genetic Algorithms (451 93) Aciaaldl Slaa 5 sadl

= The Algorithm terminates in one sa=) s Aaa) o) (@S -
of the following two cases: o L DL P |
« A satisfactory fitness level has - T - -

been reached for the L = SES e~
popu'ation- .h_j'_’:‘;“" “;L..n..‘:m.a"faﬁlﬂl

- A predefined number of - it S ey Bk | o
generations has been produced. ' B Y

Genetic Algorithms (451_5))) bl Slaa) 53

= Five phases are considered ina 4.l sall 3 Ja) jo Geed yiiatim

genetic algorithm. Agaal)
* Initial population (el S AN Jslall e
* Evaluation (Fitness function) (A3l adly) anll e
» Selection OLEAN! e
* Crossover ablall e
* Mutation s Gl e
QEvaluate the offsprings (Jwidl) Jslad) 28]

UMerge offsprings with the main Lol Jslall ae (Judll) Jsladl =ea O
population and sort L 5y ((HsY) axiall)

Genetic Algorithms (451_50) 4ol Cilea 50 330

Q) Initial population

**Create an initial population.
This population is wusually
randomly generated and
can be any desired size,
from only a few individuals
to thousands.

Gl Jsiall) sasad oS O

d‘,la) q.'aa._;‘ c&_&a elLls)e3
s2a LSl a3 e Bale .(@‘,‘
OSas g q_';l_,..:s JSSs A geanall)
Al o ef e ama L 5SS O
Jsladi/al 8V e JuB c2e e
WY)

Example: Consider the equation 12X, +3X, +4X, = 40, Xi=0,1,2,..9.

First, we transform the previous equation into its objective function.
f(X) = 2X, +3X, +4X,- 40
Since there are 3 variables in the objective function, the chromosome will consist of 3 genes as follows.

X,

X,

X3 Chromosome

Determine the number of chromosomes, for example, 5. Genes are generated using random between 0 to 9.

Chromosome 1 2 9 8
Chromosome 2 3 0 7
Chromosome 3 6 1 9
Chromosome 4 1 0 5
Chromosome 5 S 1 6
Population

Chromosome 1 0010 1001 1000
Chromosome 2 0011 0000 0111
Chromosome 3 0110 0001 1001
SICORGR. & 0001 0000 0101
MEEODN 0101 0001 0110
Population

Genetic Algorithms (45130) Aiadl Caa 550 30

Q} Evaluation (Fitness function) (AaDlLll / a3l Adin) aaaaslt O]
“* Each member of the population '3.)5) n..f‘." J=> Js A228S aliaele
is then evaluated, and we TAALUT Casas 5 (OlSal) G
calculate a 'fitness' for that P Y 4 2 all) S (IS L &N
individual. The fitness value is 7 < 2 -(;.51 W E.E
calculated by how well it fits - = . - -

with our desired requirements. _1.3,11:...1\ LSlallasal

Fitness Function 43l alls

* The fitness function determines how fit dacdla (s2a 4SLA adla 2225 =
an individual is (the ability of an individual 3s3l) 1 (.\)ﬂ‘)] “/_)‘ a Y|

to compete with other individuals). It

gives a fitness score to each individual. .4-‘”:' .J)iy‘ (-“)5\1‘) Jsladl &
The probability that an individual will be daliay (_;_)g) da Jds) 43l I_;)_;
selected for reproduction is based on its 2<3l - , | s La
fitness score. > (.:)aﬂ) (ol h‘i_‘ u-lr—\
ABL A 0
2x%2+3x =44 F(x) =2x* 43X -44 =0 .o i
< = fitness function
A O, J 9 X f(x)
3 17) (@ R
Al aad S Ga Jedodlly Aaslill a8l i
) 2k o 5
6 & S,
7 1@)3

Fitness Function 43l ali>

Fitness functions can vary
greatly depending on the

specific problem being
solved. The choice of fitness
function is essential in

guiding the GA toward
finding optimal or near-
optimal solutions to the
given problem.

sl (Moo alias o Samw
‘_’_‘c. 1Sl) S dsS=,
lelas amy 3l soaaadl AdSma
el AL A0S LSA) amg
o3 GA s b L e
a5l GHall Jslall olas)
B AR L)

Fitness Function 43LlI 4l

* Traveling Salesman Problem
(TSP): In TSP, the goal is to find
the shortest possible route that
visits a set of cities and returns
to the starting city. The fitness
function for TSP could calculate
the total distance of the route
represented by an individual
solution. Individuals with
shorter routes would receive
higher fitness scores.

¢ (TSP) Jsidl plll AlSie m
el e gl s Cargll (TSP
Ol e Ao seaa LG L
O oS Al dnae) sl
Adliadl TSP J 4Dl Ay (aas
Ja alie gl Jlaadl 4l
Sl Jdelall Jiaais (S8
Al Gla o Lo all) @l)
el

Fitness Function 43l adis
= Consider the equation 3x*"2 +4y=76;(x,y)=0,1, ...,.9

= f(x)= 3x"2+4y—-76=0

= Randomly generated population (x, y) = [(9,2), [(1,5), (8,3), (6,4), (7, 4))
Calculate the fitness value for each individual in the population:

f(9,2)=3(9)"2+4(2)-76 =243 +8-76 =175

Pi = Fi / (ZFj))
Population Fitness value Selection Probabilities
= Fitness / Total Fitness
(9, 2) 175 175 /491 = 0.356
(1, 5) -53 0.108
(8, 3) 128 0.261
(6, 4) 48 0.098
(7, 4) 87 0.177
Total fitness 491
Fitness Function 43 alis
= Consider the equation 3x*"2 +4y=76;(x,y)=0,1,9
= f(x)= 3x"2+4y—-76=0" Pi = Fi / (2Fj)

Population Fitness value Selection Probabilities
= Fitness / Total Fitness
(9, 2) 175 175 /491 = 0.356
(1,5)(v -53 @©.108>
(8, 3) 128 0.261
[(6,4) | v a8 ‘0.098°>
(7,4) 87 0.177
Total fitness 491 Sto1l *

LAl sl 3l Al O39S O s AdlaaY) £ sada
Aaslill adl Al JLSA) A

sl G oSal adll sl ale Caald AN el g SRS g
L Ja gl

Ensure that the fitness probabilities sum up to 1 by dividing
each probability by the total sum of probabilities. In this
case, the sum is approximately 09999, so a small
adjustment may be made to ensure the sum is exactly 1.

Fitness Function 4Ll i,

* In genetic algorithms (GA), there are Gob 2y dial clay)all e

different approa.ches for calculating the 4 U‘ FP A0l A a) i
fitness proportion (FP) or selection

probability (P) based on the fitness values of el Ul od e gl p syl
individuals in a population.

FPi 1
X2-1=24 il W b= 1 (1+FPi)|
Xt-1-24=0 A\

6 sl X FPi FPi/sum FPi 1/(ABS(1+FPi)) Convertto P
2 | 21 | 48837 | 05 |.05/.2333=214
4 Jlan | assenl| /0 ok [4%6 | | Nessnmaasciin
6 || 11 | 25581 || /.083]V | .35
/43| 99999 |/ 2333 || 99965

/ 1/14(21) =/ 0.05 /
A AR il g6 JB1 Juaay! el Jglads o) '&m 5:

O aad Aslaall Ja 25 s Juadl 1 5435 !
Jall Gl o 6 5 4 OB Jiadl g x=5
raall

Genetic Algorithms (451 501) Asiaad) Silaa) s30)

Qselection PRI
+* We want to be constantly improving “"":"‘m‘ ~"‘° _ .)aluty J‘f“' o "}'):""
our populations overall fitness. Lae b (L‘"\S“") Jslall daladl d3ill
Selection helps us to do this by @b e Ay Gl e laay)
discarding the bad designs and only Al Slaaadll e aladl
keeping. the best individuals in the ;\}\1\) Jslall Juamdls Jagd Jalisayi
g.c;:)ulatlton.' ct.Theretharde stftiw Gk e i 2 S (s N cus
ifferent selection methods, but the Tl 5 Sill oSl cdakiad) sy

basic idea is the same, make it more o _ -
likely that fitter individuals will be & O) g oAl O s Les g o

selected for our next generation. A Jadl Aiall Jgladl jlaal

Genetic Algorithms (4550 Al Slaa) 530

Selection Bt QY I |
* There are several methods for performing il e 5l gl & ASa3 (3)b soe Sl

selection in a Genetic Algorithm (GA).

*Random Selection) sl HLIAY e
**Roulette Wheel Selection Gl g 5l Alae HLas)e
**Tournament Selection Ayhadl Lailes
<*Rank Selection . s
40yl HLas) e
> Elitism Sl sl

Al

dSelection

= This is the simplest and most inefficient

Genetic Algorithms (451_50) Aaiadl Slaa 3l 530

Random Selection) slall Jlaiy)

way of selecting parents. In

method, we shuffle the population by
performing permutation and select the
first two individuals as parents for

breeding. This

recommended because
follow “Darwin’s Theory of Evolution by
Natural Selection,” wherein individuals
are selected based on their fitness, not

randomly.

method is

it does not

BLET L |

Llel J8Y1 5 JaaV) AG Jlall oo s2a
psis AR yhall oda 8 pall Gl LAY
el Gk e Jdslall s n
oAsEl eUiS Gala J i lEal g Jeash
&5 Y Y Akl ol maan W
Gl Oe skl Cmsola A
OWEA) a8 Caaa c"q.ag_ah“ e\aasy!
JSi ey olemlld e 2la Jsladl

oW i

Genetic Algorithms (451 501) 4aiaad) Silaa) 5300

Selection

Roulette Wheel Selection <=l 5))) dlac jLasl

Example: consider the population A, B, C, D and their corresponding fitness values:
Individual A: Fitness = 10, Individual B: Fitness = 20, Individual C: Fitness = 15, Individual D:

Fitness =5
Population Fitness Selection Cumulative
probability probability
A 10 B |
B 20 4 .6
C 15 . | 9
D 5 1 1.0
Total fitness 50

B |

Roulette Wheel Selection —=l s 01 Adae jLos)

D
10596 -
2096
>
[O9%

Genetic Algorithms (451 5)1) Asiaadl Sl 31 ga)

QSelection Tournament Selection 4 shadl jlial Asayig
* Tournament selection involves IGal Aghadl i) el =

randomly selecting a few individuals e A e QB8 oaal Ul gke
from tl?e populat.lon and. choosing the iy ‘ﬁj\ Jall jlasly Jelall
one with the highest fitness as the Lall A1y o liely A el
parent for the next generation. This J‘}Yi 4 lal ’“ ,,T, (-’m;

method favors individuals with higher P e 2 e :
fitness but also maintains diversity. Bila3 LSy Al a3 ‘-”',’
&5l o Ual

Genetic Algorithms (45 _30) Aiad) Gl) 930
- i :&.1) \ \L.':'..S\ - -
OhSelaction Tournament Selection 4l skl L SAsawie
= Example: Consider a population with the following individuals and their fitness values:

A: Fitness = 10, B: Fitness = 20, C: Fitness = 15, D: Fitness =5

** Tournament 1: B (fitness = 20) and C (fitness = 15)
> Tournament 2: A (fithess = 10) and D (fitness = 5)

= In each tournament, we select the individual with the highest fitness:

3 Tournament 1 winner: Individual B
2* Tournament 2 winner: Individual A

» The winners (Individual B and Individual A) are then chosen as parents for the next
generation.

Genetic Algorithms (451 50) 4kl Sl 30 53

Oselection Rank Selection 45)il Laal SwEsavig
= Rank selection assigns ranks to Jelall L, 4,11 jlas) ey =
individuals based on their Lo Aalall a3Ldl a8 sle el

fitness wvalues and selects 5,0 3li; (Jolad) 53

S , Sl e sl Bt Y

individuals based on their ranks = Z.laall 4 | e Y
e Agladll AL a8 e Yo

rather than the actual fitness
e = a.\ - - - \ -
values. This method gives a JEA) e ¥ A skl oo

chance to low-fitness individuals dmdanal A3 (g 43 o) aY)
to be selected and promotes £ ol 3 5aly
diversity.

Genetic Algorithms (45 50) 4iall Sila 3 g3

QSelection Rank Selection 45,0 jlssl Ssavi
Example:

Individual B: Fitness = 20

Individual C: Fitness = 15

Individual D: Fitness =5

B: Rank 1
C: Rank 2
A: Rank 3
D: Rank 4

» We then assign selection probabilities based on the ranks. One common approach is to assign higher
probabilities to individuals with lower ranks. For example, we can assign a selection probability of 0.4 to Rank
1, 0.3 to Rank 2, 0.2 to Rank 3, and 0.1 to Rank 4.

= Finally, we generate random numbers between 0 and 1 and select individuals based on their
selection probabilities.

Genetic Algorithms (45 51) Aaiad) Silaa) 53

CSelection Elitism 4aaall olaavyi]

= Elitismm is a selection strategy that

e SA) dsas) ynul syl =
guarantees the best individuals from the Oanial JLiidht 4aas) jiaal (oA 4

current generation are carried over to the Jell e .:\}Y\ Juzadl sl
next generation unchanged. This approach LRSS O) 9 g-’m‘ Jaad) g".‘ q-“-h-“
preserves the best solutions found so far Jeladl il o el 13 dadlay
and ensures they are not lost in subsequent

pie Oeemsy OV S B2 sall
AUl JuaY) A el

generations.
= Example:

Individual A: Fitness = 10

Individual B: Fitness = 20 '

Individual C: Fitness = 15
Individual D: Fithess =5

Genetic Algorithms (45 5)1) 4l Silaa) g3

Mixing Number Ja3GaY! 8

* Mixing number (M) is the number of
parents that come together to form
offsprings.

* The most common mixing number
(M) is 2: two parents combine their
genes.

* In theory its possible to have M >2 to
simulate on computers.

Ognaiag el (LY 2 g8 LaDEAY) Al m

(a0 4S5
pan: 12 A el Y1 LAY 4w
a Jagilisa olall

OsSs ol oSadl e g laill Lalill e w
Sl e Sl M> 2 ol

-

skl

Genetic Algorithms (451_5)) 4l Slaa ;) 3l

) Crossover

** During crossover we create new individuals
by combining aspects of our selected
individuals. The hope is that by combining
certain traits from two or more individuals
we will create an even ‘fitter' offspring
which will inherit the best traits from each
of its parents.

okl O

Baa Jela Ll L cé]a\iﬂ\ Ll el
il g O aeadl JOA e (22 .;l)i‘)
el g JaY e jlaad 5 Sl Jlal
() Vsla mma (SISl oee)
IS e Slaall Jiadl & 5 "deeDe S
Assl e

parentl Crossover Offspring 1 J.
parent2 anLuM Offspring 1 J.

Genetic Algorithms (451 3)) 4ial) Sl)) 53
Lasll
Q) Crossover — — Offspring 1 Jo al 4
parent2 Offspring 1 J

paorent1 [2 [2 JOo[l0 (2202 offspringl | 4 |) o]+ oo |1t [t]

porenz|[2 [O[2 (2|00 |22 oftspring2 [t [O [[o [|1]| o]t |

S Y Gra AU £ 5adl ga Ja¥T ¥ Ga ¥ s ad) 34U S Saat g atalls Akl daas
Jds¥1 ¥ e SN £ Al ga SUEH G G Je¥) £ 501 2L

Genetic Algorithms (451_5)1) 4aiad) Slaa 3) a0

a3l
U Crossover parentl Crossover Offspring 1 J.o CL -

parent2 Offspring 1 Jui

parentl | 1 | 1 /0O | 1

parent2 | 1 | O | 111010 |

\
e
J

[
[
:
-
-
~N
v}
o
‘L i

