The preparation and assay of Aqueous Iodine Solution (Lugol's Solution)

- It contains 5% w/v *lodine* (limits 4.75 5.25% w/v) and 10% w/v *Pot. lodide* (limits 9.5 10.5% w/v).
- Used in pre-operative treatment of thyrotoxicosis.

Preparation:

l2 50gm

KI 100gm

purified water sufficient to 1000ml

*Dissolve KI in a little amount of water then add the I2 and shake well until the I2 is completely dissolved, then add sufficient water to 1000ml using volumetric flask.

- Assay: Dilute 25ml of the original sol. to 100ml with distilled water, then: `
- a) Assay of I₂,

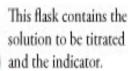
note: we must use stoppered flask Each1ml of N/10 Na2S2O3 \equiv 0.01269 gm 12

 $\approx N/10 Na₂S₂O₃$

dark brown, titrate --> yellow then add 1ml starch the color change to dark blue complete tit. until the end point colorless

> 10ml of unknown 10ml D.W

The buret contains the titrant.


This flask contains the solution to be titrated and the indicator.

b) Assay of KI,

*titrate with M/20 KIO3 (Pot. lodate) until dark brown sol. change to pale brown, add 1 ml of amaranth sol.; the color of sol. Change to red and then continue tit. Until the color of sol. change to yellow -orange

M/20 KIO3

5ml of unknown 10ml D.W 20ml conc. HCl The buret contains the titrant.

From the no. of ml. of M/20 KIO₃ required subtract ¼ no. of ml of N/10 Na₂S₂O₃ required in the assay of I₂ each 1ml of the remainder is = 0.0166gm of KI

Chemical principle for I2 assay:
I2 will oxidize chemically equivalent amount of sod. thiosulfate.

$$I_2 + 2Na_2S_2O_3 \longrightarrow 2NaI + Na_2S_4O_6$$

Chemical principle for KI assay: KIO3 (pot. Iodate) is fairly strong oxidizing agent, it can quantitatively react with both iodide I⁻ and iodine I₂.

*If the conc. of HCl not exceed 1N the reaction: $KIO_3 + 5KI + 6HCl \longrightarrow 6KCI + 3I_2 + 3H_2O$

*In the presence of conc. HCl exceeding 4N, I2 produced by the previous reaction is further oxidized to iodine monochloride (ICl):

$$KIO_3 + 2I_2 + 6HCI \longrightarrow KCI + 5ICI + 3H_2O$$

* **so** the overall reaction between KIO3 & KI in the presence of high conc. HCL >4N can be expressed by:

$$KIO_3 + 2KI + 6HCl \longrightarrow 3KCl + 3ICl + 3H_2O$$

The presence of high conc. HCl is required to

decrease :

$$HCI + ICI \longrightarrow ICI_2^- + H^+$$

stable cpd

- In this experiment we use amaranth indicator, it is a dye, dyes which are destroyed or changed in the presence of oxidizing titrant can be use as indicator.
- We can not use starch as indicator because starch_ iodide complex can not be formed in high acid conc. used in the iodate titration.

Chemical factor. Homework

Each1ml of 0.1N Na₂S₂O₃ \equiv 0.01269gm of Iodine Each1ml of M/20 KIO₃ \equiv 0.0166gm of KI Each1ml of M/20 KIO₃ \equiv 0.02538gm of iodine

Calculation:

V' x ch.fact. 0.01269x 100/2.5 = %w/v of iodine in orig. sol. V' the corrected volume of sod. thiosulfate.

KIO3 M/20 =
$$V$$
KIO3 M/20 (used - $1/4$ V' Na2S2O3 (req. for KI) in the total assay) o.1N

Vol. of KIO3 (req. for KI)x 0.0166 x 100/1.25 = %w/v of KI

- It is preferred to use iodate (KIO3) of known M rather than of known N, it depends on the nature of reaction.
- KIO₃ sol. used in the titration of sol. containing both iodide and iodine.
- The equivalent of KIO₃ in its reaction with KI differs from its equivalent when react with iodine.