
1 
 

 

 

 للبنات  /كلية العلوم جامعة بغداد 

 قسم الفيزياء

Baghdad of University  

College of science for women  

Physics department 

 

Electrodynamics 

2023-2024 

Lectures (4-5) for MSc 

Boundary Conditions for an Electric Field 

 

Edited by 

Prof.Dr.Heba Kh. Abbas  

 

 

 

 



2 
 

 

Electric Field due to Charges: 
 

The electric field is defined as the electric force per unit charge. Field 

direction is the direction of the force it will exert on a positive test charge. 

The electric field is directed radially outward from a positive charge and 

radially inward from a negative point charge. 
 

 Electric Field due to Single Point Charges: 

 

 
                                        Fig(1) 

 

𝐸 = 𝑅̂
𝑞

4𝜋𝜀𝑅2
              ( 

𝑉

𝑚
) , . . . . . (1) 

 
 Electric Field due to Two Point Charges: 

 

 
Fig(2) 

The electric field (E ) at point  P due to two charges is equal to the vector 

sum of E1 and E2. The electric field at P due to 𝑞1 alone is 
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𝐸1 =
𝑞1(𝑅 − 𝑅1)

4𝜋𝜀|𝑅 − 𝑅1|3
                     ( 

𝑉

𝑚
) , . . . . . (2) 

        

 

Similarly, the electric field at P due to 𝑞2 alone is 

𝐸2 =
𝑞2(𝑅 − 𝑅2)

4𝜋𝜀|𝑅 − 𝑅2|3
                     ( 

𝑉

𝑚
) , . . . . . (3) 

 

The electric field obeys the principle of linear superposition. 
 

Hence, the total electric field Eat P due to 𝑞1 and 𝑞2 is  

𝐸 = 𝐸1 + 𝐸2 
 

𝐸 = 𝑞1

(𝑅 − 𝑅1)

4𝜋𝜀|𝑅 − 𝑅1|3
+ 𝑞2

(𝑅 − 𝑅2)

4𝜋𝜀|𝑅 − 𝑅2|3
                     ( 

𝑉

𝑚
) . . . . . (4) 

 

 Electric Field due to Multiple Point Charges: 

 

Generalized eq.4 for N charges get: 

𝐸 =
1

4𝜋𝜀
∑ 𝑞𝑖

(𝑅 − 𝑅𝑖)

|𝑅 − 𝑅𝑖|3
          

𝑁

𝑖=1

( 
𝑉

𝑚
) , . . . . . (5) 

 

 

Example: Electric Field Due to Two Point Charges, the two point 

charges with 𝑞1= 2×10-5C and 𝑞2 = - 4×10- 5C are located in free space at 

points with Cartesian coordinates (1,3,-1) and (-3,1,- 2), respectively.  

 

Find a)  the electric field E at (3,1,-2) and  

        b) the force F on a charge 𝑞3=8×10- 5C located at that point. All    

            distances are in meters.  
 

Solution: (a)  

From eq.(4), the electric field E withe 𝜀 = 𝜀0 (free space) is 

𝐸 =
𝑞1(𝑅 − 𝑅1)

4𝜋𝜀0|𝑅 − 𝑅1|3
+

𝑞2(𝑅 − 𝑅2)

4𝜋𝜀0|𝑅 − 𝑅2|3
                     ( 

𝑉

𝑚
), 

 

𝐸 =
1

4𝜋𝜀0
(𝑞1

(𝑅 − 𝑅1)

|𝑅 − 𝑅1|3
+ 𝑞2

(𝑅 − 𝑅2)

|𝑅 − 𝑅2|3
)             

The vectors  𝑅1, 𝑅2 𝑎𝑛𝑑 𝑅 𝑎𝑟𝑒:       

        𝑅1 = 𝑖̂ + 3𝑗̂ − 𝑘̂ 

             𝑅2 = −3𝑖̂ + 𝑗̂ − 2𝑘̂ 

       𝑅 = 3𝑖̂ + 𝑗̂ − 2𝑘̂ 
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                                                 𝑹 − 𝑹𝟏 = 𝟐𝒊̂ − 𝟐𝒋̂ − 𝒌̂ 

𝑹 − 𝑹𝟐 = 𝟔𝒊̂ 

𝐸 =
1

4𝜋𝜀0
(2

(2𝑖̂ − 2𝑗̂ − 𝑘̂)

27
− 4

6𝑖̂

216
) × 10−5 

𝐸 =
𝑖̂ − 4𝑗̂ − 2𝑘̂

108𝜋𝜀0
× 10−5             ( 

𝑉

𝑚
), 

             

b)  𝐹 = 𝑞3𝐸 = 8 × 10−5 ×
𝑖̂−4𝑗̂−2𝑘̂

108𝜋𝜀0
× 10−5            ( 𝑁), 

𝑭 = 
2𝑖̂−8𝑗̂−4𝑘̂

27𝜋𝜀0
× 10−10            ( 𝑁), 

 

Gauss's Law: 
Here we will use Maxwell's equations to confirm the electric field 

expressions contained in Coulomb's law, and suggest alternative 

techniques for evaluating electric fields induced by an electric charge: 

 

∇. 𝐷 = 𝜌𝑣      .. (6)     Differential form of Gauss's law 

 

When solving electromagnetic problems, we often go back and forth 

between equations in differential and integral form, depending on which 

of the two happens to be the more applicable or convenient to use. To 

convert eq.(6) into integral form, we multiply both sides by 𝑑𝑣 and 

evaluate their integrals over an arbitrary volume 𝑣: 

∫ ∇. 𝐷𝑑𝑣

𝑣

= ∫ 𝜌𝑣𝑑𝑣 = 𝑄      . . (7)

𝑣

 

 

Here, Q is the total charge enclosed in the volume 𝑣. 

 Now States that the volume integral of the divergence of any vector over 

a volume 𝑣 equals the total outward flux of that vector through the 

surface S enclosing 𝑣. Thus, for the vector D: 

 

∫ ∇. 𝐷𝑑𝑣
𝑣

= ∮ 𝐷. 𝑑𝑠
𝑆

= 𝑄    …(8) 

 
Comparison between eq7 and eq8 get: 

 

∮ 𝐷. 𝑑𝑠
𝑆

= 𝑄       … . . (9)     Integral form of gauss's law 
 

 

Poisson's Equation: With D = 𝜺𝑬, the differential form of Gauss's law 

given by the eq(6) ∇. 𝐷 = 𝜌𝑣   can be written as: 
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𝛁. 𝑬 =
𝝆𝒗

𝜺
     … (10) 

Electric Field as a Function of Electric Potential 𝜑 
 

E = −∇𝜑 

So eq10 become: 

∇. 𝐸 = ∇. (∇𝜑) = −
𝜌𝑣

𝜀
        (11) 

 

The Laplacian of a scalar function 𝜑: 
 

∇2𝜑 = ∇. (∇𝜑) =
𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
 

 

Eq. (11) can be cast in the abbreviated form:  

 

∇2𝜑 = −
𝜌𝑣

𝜀
   (Poisson’s equation)   (12) 

 

This is known as Poisson's equation. For a volume 𝑣́ containing a volume 

charge density distribution 𝜌𝑣, the solution expressed by: 

 

𝜑 =
1

4𝜋𝜀
∫

𝜌𝑣

𝑅′
𝑣′

𝑑𝑣′ 

 

If the medium under consideration does not contain a charge, so eq.12, 

reduced to: 

∇2𝜑 = 0   (Laplace’s equation)   (13) 

 

Laplace equations are useful in determining the electrostatic voltage 𝜑 in 

regions with boundaries where 𝜑 is known as the area between capacitor 

plates with the specified voltage difference across them. 

 
 

Conductors and Dielectrics: 
 

The electromagnetic constitutive parameters of a material medium are its 

electrical permittivity 𝜺, magnetic permeability 𝝁 and conductivity 𝝈.  
 

The conductivity of a material is a measure of how easily electrons 

move through the material under the influence of an externally 

applied electric field. 
 

Materials are classified as conductors (metals) or insulators (dielectrics) 

according to their amounts of conductivity. A conductor contains a large 

number of loosely connected electrons in the outer shells of its atoms. In 
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the absence of an external electric field, these free electrons move in 

random directions and at varying speeds. Their random motion produces 

zero average current through the conductor. However, when an external 

electric field is applied, electrons migrate from one atom to another in the 

direction opposite to the direction of the external field their movement 

leads to the conduction current: 

𝑱 = 𝝈𝑬               . . (
𝐴

𝑚2
),     . .  (14) 

 

Where 𝜎 represent the material's conductivity with units of siemen per 

meter (S/m) or (Ω-1⋅m-1). 
 

In dielectric materials, called insulating materials, the electrons are tightly 

bound to atoms, so much so that it is very difficult to separate them under 

the influence of an electric field. Hence, no large conduction current 

could flow through it. 
  

 

 A perfect dielectric is a material with 𝝈 = 𝟎. 

 In contrast, a perfect conductor is a material with 𝝈 = ∞. 

 Some materials, called superconductors, exhibit such a behavior. 
 

 

The conductivity 𝜎 of most metals is in the range from 106 to107 S/m, 

compared with 10-10 to 10-17 S/m for good insulators. The following table 

shows the conductivity of some known material at room temperature 

(20°C). 
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A class of materials called semiconductors allow for conduction currents 

even though their conductivities are much smaller than those of metals.  

In view of eq(14) :    𝐉 = 𝛔𝐄  ,  

 In a perfect dielectric with 𝜎 = 0 → J=0 regardless of E,  

 In a perfect conductor with 𝝈 = ∞ → 𝑬 =
𝑱

𝝈
= 𝟎 regardless of 𝑱. 

 

That is:         Perfect dielectric:   𝑱 =0;      Perfect conductor: E=0 

 

The fundamental difference between a conductor and a dielectric is that 

electrons in the outermost atomic shells of conductor are only weakly tied 

to atoms and hence can freely migrate through the material, whereas in 

dielectric they are strongly bound to the atom. 

 

 In the absence of an electric field, the electrons in so-called nonpolar 

(has no separation of charges) molecules form a symmetrical cloud 

around the nucleus, with the center of the cloud coinciding with the 

nucleus  see fig(3) below: 

 
Fig(3):In the absence of an external electric field E, the center of the 

electron cloud is co-located with the center of the nucleus, but when a 

field is applied, the two centers are separated by a distance d. 
 

The electric field generated by the positively charged nucleus attracts and 

holds the electron cloud around it, and the mutual repulsion of the 

electron clouds of adjacent atoms shapes its form.  

 When a conductor is subjected to an externally applied electric 

field, the most loosely bound electrons in each atom can jump from 

one atom to the next, thereby setting up an electric current. 
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  In a dielectric, however, an externally applied electric field E 

cannot effect mass migration of charges since none are able to 

move freely. Instead, the external electric filed (E) will polarize the 

atoms or molecules in the material by moving the center of the 

electron cloud away from the nucleus Fig(3:b). 

 

The polarized atom or molecule may be represented by an electric dipole 

consisting of charges +q in the nucleus and −q at the center of the 

electron cloud Fig(3:c). Each such dipole sets up a small electric field, 

pointing from the positively charged nucleus to the center of the equally 

but negatively charged electron cloud. This induced electric field, 

called a polarization field. 

 

Generally polarization field is weaker than and opposite in direction to, 

E. Consequently, the net electric field present in the dielectric material is 

smaller than E.  

 

Within a block of dielectric material subject to a uniform external field, 

the dipoles align themselves linearly, as shown in Fig(4). Along the upper 

and lower edges of the material, the dipole arrangement exhibits positive 

and negative surface charge densities, respectively. 

 

 
Fig(4): A dielectric medium polarized by an external electric field E. 

 

Polarization Field: Whereas in free space 𝐃 = 𝛆𝟎𝐄 , the presence of 

microscopic dipoles in a dielectric material alters that relationship to: 
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𝐃 = 𝛆𝟎𝐄 + 𝐏     … (𝟏𝟓)  
 

Where P is called the electric polarization field, it explains the polarizing 

properties of the material. 

 

The polarization field is produced by the electric field E and depends on 

the material properties. A dielectric medium is said to be linear if the 

magnitude of the induced polarization field P is directly proportional to 

the magnitude of E, and isotropic if P and E are in the same direction.  

 

Some crystals allow more polarization to take place along certain 

directions, such as the crystal axes, than along others. In such anisotropic 

dielectrics, E and P may have different directions.  A medium is said to 

be homogeneous if its constitutive parameters (𝜺, μ, and σ) are constant 

throughout the medium. For such media P is directly proportional to E 

and is expressed as: 

𝐏 = 𝛘𝐞𝛆𝟎𝐄          … (𝟏𝟔) 
 

Where 𝛘𝐞 is called the electric susceptibility of the material. 

 

Inserting eq(16) into eq(15) get: 

 

𝐃 = 𝛆𝟎𝐄 + 𝛘𝐞𝛆𝟎𝐄 = (𝟏 + 𝛘𝐞)𝛆𝟎𝐄 = 𝛆𝐄    … . (𝟏𝟕) 
 

Where 𝛆 represents the permittivity of the material and is expressed as 

follows: 

 
 

𝛆 = (𝟏 + 𝛘𝐞)𝛆𝟎          … . . (𝟏𝟖)    
 

It is often convenient to characterize the permittivity of a material relative 

to that of free space, 𝛆𝟎; this is accommodated by the relative permittivity 

𝛆𝐫 = 
𝛆

𝛆𝟎
. Values of 𝛆𝐫 are listed in following Table for a few common 

materials. In free space 𝛆𝐫=1, and for most conductors 𝜺𝒓≈1. The 

dielectric constant of air is approximately 1.0006 at sea level.  
 

𝛆𝐫 = 
𝛆

𝛆𝟎
 = (𝟏 + 𝛘𝐞)    … (𝟏𝟗). 
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Interface Boundary Conditions for electromagnetic fields: 
 

 Interface Boundary Conditions for an Electric field (E): 
 

A vector field is said to be spatially continuous if it does not exhibit 

abrupt changes in either magnitude or direction as a function of position. 

Even though the electric field may be continuous in adjoining dissimilar 

media, it may well be discontinuous at the boundary between them. The 

boundary conditions specify how the components of fields tangential and 

normal to an interface between two media relate across the interface.  
 

Here we derive a general set of boundary conditions for E, D, and J, 

applicable at the interface between any two dissimilar media, be they two 

dielectrics or a conductor and a dielectric. 
 
 

Fig(5) shows an interface between medium1 with permittivity 𝛆𝟏 and 

medium2 with permittivity 𝛆𝟐. In the general case, the interface may 

contain a surface charge density 𝛒𝐬 (unrelated to the dielectric 

polarization charge density). 
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Fig(5): Interface between two media. 

 

we decompose E1 and E2 into components tangential 𝑬𝒕  and normal 𝑬𝒏 

to the boundary see Fig(5): 

 

𝑬𝟏 = 𝑬𝟏𝒕 + 𝑬𝟏𝒏          . . (𝟐𝟎𝒂) 

 

𝑬𝟐 = 𝑬𝟐𝒕 + 𝑬𝟐𝒏          . . (𝟐𝟎𝒃) 
 

 To derive the boundary conditions for the tangential components of 

E and D, we consider the closed rectangular loop abcda shown in 

Fig(5) and apply the conservative property of the electric field (the 

line integral of the electrostatic field E around any closed 

contour C is zero): 

∮ 𝑬. 𝒅𝒍
𝑪

= 𝟎       (𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒔𝒕𝒂𝒕𝒊𝒄𝒔)      . . . (𝟐𝟏) 

 

Which states that the line integral of the electrostatic field around a closed 

path is always zero. By letting ∆ℎ → 0, the contributions to the line 

integral by segments bc and da vanish. Hence: 
 

∮ 𝑬. 𝒅𝒍
𝑪

= ∫ 𝑬𝟏. 𝒍̂𝟏𝒅𝒍

𝒃

𝒂

+ ∫ 𝑬𝟐. 𝒍̂𝟐 𝒅𝒍 = 𝟎       … (𝟐𝟐)

𝒅

𝒄

 

Or  
 

 

∮ 𝑬. 𝒅𝒍
𝑪

= 𝑬𝟏. 𝒍̂𝟏∆𝒍 + 𝑬𝟐. 𝒍̂𝟐∆𝒍 = 𝟎       … . (𝟐𝟑) 
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Where 𝒍̂𝟏𝒂𝒏𝒅 𝒍̂𝟐 and are unit vectors along segments ab and cd, and E1 

and E2 are the electric fields in media 1 and 2.  Noting that 𝒍̂𝟏 = −𝒍̂𝟐, so 

eq23 become:  

 

𝑬𝟏. 𝒍̂𝟏∆𝒍 − 𝑬𝟐. 𝒍̂𝟏∆𝒍 = (𝑬𝟏. 𝒍̂𝟏 − 𝑬𝟐. 𝒍̂𝟏)∆𝒍 = 𝟎    
So get: 
 

         (𝑬𝟏−𝑬𝟐). 𝒍̂𝟏 = 𝟎                                                  
 

  ∴     𝑬𝟏𝒕 − 𝑬𝟐𝒕   = 𝟎                  … (𝟐𝟒)       
 

In other words, the component of 𝑬𝟏 along 𝒍̂𝟏 equals that of 𝑬𝟐 along 𝒍̂𝟏, 

for all 𝒍̂𝟏 tangential to the boundary, hence, 
 

𝑬𝟏𝒕 = 𝑬𝟐𝒕             (
𝑽

𝒎
)     … (𝟐𝟓) 

 

Thus, the tangential component of the electric field is continuous 

across the boundary between any two media. 
 

Now decompose D1 and D2 into tangential components ( 𝑫𝟏𝒕 = 𝜺𝟏𝑬𝟏𝒕 

and 𝑫𝟐𝒕 = 𝜺𝟐𝑬𝟐𝒕 ), and substitute in eq(25) we get the boundary 

condition on the tangential component of the electric flux density is:  
 

 𝑫𝟏𝒕

𝜺𝟏
=

 𝑫𝟐𝒕

𝜺𝟐
        … . . (𝟐𝟔) 

 

 Next we apply Gauss's law to determine boundary conditions on 

the normal components of E and D. According to Gauss's law, the 

total outward flux of D through the three surfaces of the small 

cylinder shown in Fig(5) must equal the total charge enclosed 

in the cylinder. By letting the cylinder's height ∆ℎ → 0, the 

contribution to the total flux through the side surface goes to zero. 

Also, even if each of the two media happens to contain free charge 

densities, the only charge remaining in the collapsed cylinder is 

that distributed on the boundary. Thus, 𝑄 = 𝜌𝑠∆𝑠 and: 

∮ 𝑫. 𝒅𝒔 = ∫ 𝑫𝟏. 𝒏̂𝟐

𝒕𝒐𝒑

𝒅𝒔 + ∫ 𝑫𝟐. 𝒏̂𝟏

𝒃𝒐𝒕𝒕𝒐𝒎

𝒅𝒔 = 𝝆𝒔∆𝒔      … (𝟐𝟕)
𝑺

 

 

Or 

𝑫𝟏. 𝒏̂𝟐∆𝒔 + 𝑫𝟐. 𝒏̂𝟏∆𝒔 = 𝝆𝒔∆𝒔               (𝟐𝟖)  
 

Where 𝒏̂𝟏 and 𝒏̂𝟐  are the outward normal unit vectors of the bottom and 

top surfaces, respectively. It is important to remember that the normal 

unit vector at the surface of any medium is always defined to be in the 
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outward direction away from that medium. Since 𝒏̂𝟏 = − 𝒏̂𝟐 , eq(28) 

simplifies to: 

 

𝑫𝟏. 𝒏̂𝟐∆𝒔 + 𝑫𝟐. 𝒏̂𝟏∆𝒔 = (𝑫𝟏. 𝒏̂𝟐 − 𝑫𝟐. 𝒏̂𝟐)∆𝒔 = 𝝆𝒔∆𝒔      
 

So get: 

𝒏̂𝟐.(  𝑫𝟏 −  𝑫𝟐) = 𝝆𝒔          (𝑪/𝒎𝟐) … (𝟐𝟗) 
 

 

If   𝑫𝟏𝒏 and   𝑫𝟐𝒏 denote as the normal components of   𝑫𝟏 and   𝑫𝟐 

along 𝒏̂𝟐  we get: 

 𝑫𝟏𝒏 −  𝑫𝟐𝒏 = 𝝆𝒔             (
𝑪

𝒎𝟐
),    … (𝟑𝟎) 

 

The normal component of D changes abruptly at a charged boundary 

between two different media in an amount equal to the surface charge 

density. 
 

Since, 𝑫𝟏𝒏 = 𝜺𝟏𝑬𝟏𝒏 𝒂𝒏𝒅  𝑫𝟐𝒏 = 𝜺𝟐𝑬𝟐𝒏, the corresponding boundary 

conditions  for E-filed, eq.30 become: 
 

 

 𝜺𝟏𝑬𝟏𝒏 −  𝜺𝟐𝑬𝟐𝒏 = 𝝆𝒔             (𝑪/𝒎𝟐) … (𝟑𝟏) 
 

In summary: 

 The conservative property of E:   𝛁 × 𝑬 = 𝟎 ↔  ∮ 𝑬. 𝒅𝒍 = 𝟎
𝑪

 

This led to the result that E has a continuous tangential component 

across a boundary. 
 

 The divergence property of D:    𝛁. 𝑫 = 𝝆𝒗 ↔  ∮ 𝑫. 𝒅𝒔 = 𝑸
𝑺

 

This led to the result that the normal component of D changes by 𝝆𝒔  
across the boundary.  
 

A summary of the Boundary Conditions that apply to the interface 

between any two media and a dielectric medium and a conductor medium 

are shown in the following table. 
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Application of Boundary Conditions 
 

Example: The x–y plane is a charge-free boundary separating two 

dielectric media with permittivities 𝜺𝟏 and 𝜺𝟐, as shown in Fig(6). If the 

electric field in medium1 is: 
 

𝑬𝟏 = 𝒊̂𝑬𝟏𝒙 + 𝒋̂𝑬𝟏𝒚 + 𝒌̂𝑬𝟏𝒛 
 

Find a) the electric field 𝑬𝟐 in medium2 and  

        b) the angles θ1 and θ2. 
 

 
Fig(6): Application of boundary conditions at the interface between 

two dielectric media 

 

Solution:  

 

a) Let      𝑬𝟐 = 𝒊̂𝑬𝟐𝒙 + 𝒋̂𝑬𝟐𝒚 + 𝒌̂𝑬𝟐𝒛 



15 
 

 Tangential components ( 𝑬𝟐𝒙 𝑎𝑛𝑑  𝑬𝟐𝒚) 

 Normal component ( 𝑬𝟐𝒛 ) 

 

Our task is to find the components of  𝑬𝟐 in terms of the given 

components of 𝑬𝟏. The normal to the boundary is 𝒌̂. Hence, the x and y 

components of the fields are tangential to the boundary and the z 

components are normal to the boundary. At a charge-free 

interface    (𝝆𝒔  = 0), the tangential components of E and the normal 

components of D are continuous. Consequently: 

𝑖̂ 
 

Tangential components: 𝑬𝟐𝒕 =  𝑬𝟏𝒕 → 𝑖̂𝑬𝟐𝒙 + 𝑗̂ 𝑬𝟐𝒚 = 𝑖̂ 𝑬𝟏𝒙 +  𝑗̂𝑬𝟏𝒚 

So: 

 𝑬𝟐𝒙 =  𝑬𝟏𝒙  … (𝟏) 

 𝑬𝟐𝒚 =  𝑬𝟏𝒚    . . (𝟐) 

And normal component : 

𝑫𝟐𝒏 =  𝑫𝟏𝒏 → 𝑫𝟐𝒛 =  𝑫𝟏𝒛           𝒐𝒓           𝜺𝟐𝑬𝟐𝒛 =  𝜺𝟏𝑬𝟏𝒛 

 

∴   𝑬𝟐𝒛 =  
𝜺𝟏

𝜺𝟐 
𝑬𝟏𝒛  … (𝟑) 

 

Hence:                              𝑬𝟐 = 𝒊̂𝑬𝟏𝒙 + 𝒋̂𝑬𝟏𝒚 + 𝒌̂ 
𝜀1

𝜀2 
𝑬𝟏𝒛   . . (𝟒)    

 

b) The tangential components of  𝑬𝟏 𝒂𝒏𝒅 𝑬𝟐 are                     

𝑬𝟏𝒕 = √𝑬𝟏𝒙
𝟐 + 𝑬𝟏𝒚

𝟐  and 𝑬𝟐𝒕 = √𝑬𝟐𝒙
𝟐 + 𝑬𝟐𝒚

𝟐 .  

 

The angles: θ1 and θ2 are then given by: 

 

𝒕𝒂𝒏𝜽𝟏 =
𝑬𝟏𝒕

𝑬𝟏𝒛
=

√𝑬𝟏𝒙
𝟐 + 𝑬𝟏𝒚

𝟐

𝑬𝟏𝒛
 

 

𝒕𝒂𝒏𝜽𝟐 =
𝑬𝟐𝒕

𝑬𝟐𝒛
=

√𝑬𝟐𝒙
𝟐 + 𝑬𝟐𝒚

𝟐

𝑬𝟐𝒛
=

√𝑬𝟏𝒙
𝟐 + 𝑬𝟏𝒚

𝟐

 
𝜺𝟏

𝜺𝟐 
𝑬𝟏𝒛

 

 
𝒕𝒂𝒏𝜽𝟏

𝒕𝒂𝒏𝜽𝟐
=

𝜺𝟏

𝜺𝟐 
  … (𝟓)         
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Summary Interface Boundary conditions for an electric field Laws: 
 

𝑬𝟏𝒕 = 𝑬𝟐𝒕           
 

 𝑫𝟏𝒕

𝜺𝟏
=

 𝑫𝟐𝒕

𝜺𝟐
         

 

 𝑫𝟏𝒏 −  𝑫𝟐𝒏 = 𝝆𝒔    
 

 𝜺𝟏𝑬𝟏𝒏 −  𝜺𝟐𝑬𝟐𝒏 = 𝝆𝒔        
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