Diagonally Dominant Matrix

A square matrix is said to be diagonally dominant if for every row of the matrix, the magnitude of the diagonal entry in a row is larger than or equal to the sum of magnitudes of all the other (non-diagonal) entries in that row (i.e. $|a_{ii}| \geq \sum_{i \neq j} |a_{ij}|$). However a matrix is called strictly diagonally dominant if $|a_{ii}| > \sum_{i \neq j} |a_{ij}|$ and strictly diagonally dominant is non-singular.

For example,

$$A = \begin{bmatrix} 3 & -2 & 1 \\ 1 & -3 & 2 \\ -1 & 2 & 4 \end{bmatrix}$$
 is diagonally dominant since $|3| \ge |-2| + |1|$,

$$|-3| \ge |1| + |2|, |4| \ge |-1| + |2|$$
. But $\mathbf{B} = \begin{bmatrix} -2 & 2 & 1 \\ 1 & 3 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ is not diagonally dominant since $|-2| < |2| + |1|, |0| < |1| + |-2|$.

$$C = \begin{bmatrix} -4 & 2 & 1 \\ 1 & 6 & 2 \\ 1 & -2 & 5 \end{bmatrix}$$
 is strictly diagonally dominant since $|-4| > |2| + |1|$, $|6| > |1| + |2|$, $|5| > |1| + |-2|$.

Exercises

Classify the following matrices as diagonally dominant, strictly diagonally dominant or unknown:

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 1 \\ 1 & -4 & 2 \\ -1 & 2 & 4 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} -6 & 2 & 1 \\ 1 & 4 & 2 \\ 1 & -2 & 7 \end{bmatrix}.$$