Positive Definite Matrices

A symmetric $(n \times n)$ real matrix A is said to be positive definite if the scalar $(v^T A v)$ is positive for every nonzero column vector v of n real numbers. However, a Hermitian matrix A is said to be positive definite if the scalar

 $(v^H A v)$ is real and positive for all nonzero column vector v of n complex numbers.

Example 8: Find if the following matrices are positive definite:

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$, and $\{A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \mathbf{HW} \}$.

Solution: The identity matrix $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is positive definite because a real matrix, it is symmetric, and for any non-zero column vector v with real entries a and b, v^T I $v = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = a^2 + b^2$ is positive but as a complex matrix, for any non-zero column vector v with complex entries v and v and v and v is positive definite because a real matrix, for any non-zero column vector v with complex entries v and v is positive definite because a real matrix, it is symmetric, and for any non-zero column vector v with complex entries v and v is positive definite because a real matrix, it is symmetric, and for any non-zero column vector v with complex entries v and v is positive definite because a real matrix, it is symmetric, and for any non-zero column vector v with complex entries v and v is positive definite because v is positive definite because v is positive v in v and v is positive definite because v is positive v in v i

 $v^{H} I v = [a^{*} b^{*}] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = a^{*}a + b^{*}b = |a|^{2} + |b|^{2}$ is positive and one of a and b is not zero.

The symmetric matrix $\mathbf{B} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ is positive definite because a real matrix, and for any nonzero column vector \mathbf{v} with real entries a, b and c,

$$v^{T} \mathbf{B} v = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} (2a - b) & (-a + 2b - c) & (-b + 2c) \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 2a^{2} - ab - ab + 2b^{2} - bc - bc + 2c^{2} = a^{2} + (a^{2} - 2ab + b^{2}) + (b^{2} - 2ac + c^{2}) + c^{2} = a^{2} + (a - b)^{2} + (b - c)^{2} + c^{2} \text{ is positive.}$$

Other way to knowing the matrix is positive definite or not illustrated in the following definition

Definition

A symmetric $(n \times n)$ real matrix A is said to be positive definite if all the eigenvalues of the matrix A is positive.

Example 9: The following matrix $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ is not positive definite since its eigenvalues is 1 and -3

Positive Semi Definite Matrices

A symmetric $(n \times n)$ real matrix A is said to be positive semi definite if the scalar $(v^T A v \ge 0)$ (i.e. non-negative) for every nonzero column vector v of n real numbers but If A is complex matrix then A is said to be positive semi definite if the scalar $(v^H A v \ge 0)$. For examples, the matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ is positive semi definite because a real matrix, it is symmetric, and for any nonzero column vector v with real entries a and b,

$$v^T A v = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \ge 0$$

Other way to knowing the matrix is positive semi definite or not illustrated in the following definition

Definition

A symmetric $(n \times n)$ real matrix A is said to be positive semi definite if all the eigenvalues λ of the matrix A is as $\lambda \geq 0$.

Negative Definite Matrices

A symmetric $(n \times n)$ real matrix \boldsymbol{A} is said to be negative definite if the scalar $(v^T \boldsymbol{A} v)$ is negative for every nonzero column vector v of n real numbers. However, a Hermitian matrix \boldsymbol{A} is said to be negative definite if the scalar

 $(v^H A v)$ is real and negative for all nonzero column vector v of n complex numbers. For examples, the matrix $A = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ is negative definite because a real matrix, it is symmetric, and for any

nonzero column vector v with real entries a , b and c,, v^T A v =

$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} -3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} < 0.$$

Other way the eigenvalue of \mathbf{A} is -3, -2 and -1, i.e., all $\lambda < \mathbf{0}$.

Negative Semi Definite Matrices

A symmetric $(n \times n)$ real matrix A is said to be negative semi definite if the scalar $(v^T A v \le 0)$ (i.e. non-positive) for every nonzero column vector v of n real numbers but If A is complex matrix then A is said to be negative semi definite if the scalar $(v^H A v \le 0)$. For examples, the matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$ is negative semi definite because a real matrix, it is symmetric, and for any non-zero column vector v with real entries a and b, $v^T A v = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \le 0$.

Notes

- The example 1 above \mathbf{B} shows that a matrix in which some elements are negative may still be positive definite. Conversely, a matrix whose entries are positive is not necessary positive definite and the following example as, $\mathbf{C} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ for which $\begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = -2 < 0$.
- For any real invertible matrix A, the A^TA is a positive definite.
- A symmetric matrix is a positive definite
 ⇔ all eigenvalues are positive.
- A symmetric matrix is a negative definite ↔ all eigenvalues are negative.

Exercises:

Classify the following matrices as positive definite, negative definite, positive semi definite or negative semi definite:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} -4 & -6 \\ -3 & -5 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix},
\mathbf{E} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \mathbf{F} = \begin{bmatrix} -3 & 0 \\ 0 & 0 \end{bmatrix}, \mathbf{G} = \begin{bmatrix} 2 & -4 \\ -1 & 2 \end{bmatrix}, \mathbf{H} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \mathbf{K} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix},
\mathbf{L} = \begin{bmatrix} 5 & -3 \\ 3 & -1 \end{bmatrix}, \mathbf{M} = \begin{bmatrix} 5 & 4 & 1 \\ 4 & 5 & 1 \\ 1 & 1 & 2 \end{bmatrix}, \mathbf{N} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 2 \\ -2 & 0 & 3 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} -5 & -2 \\ -4 & -1 \\ -3 & 0 \end{bmatrix}.$$