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Theory of Differential Equations
Chapter one: Systems of differential equations
Introduction:
First Order Differential Equations

y' =fty) (DE)
y, = f(t; y)' )’(to) = yO' (IDE)
X)) =F(tX®) e (1)

Definition 1. Let F(t,X) be real valued function with Domain D < R™ a vector
function X (t) is said to be a solution of equation (1) if it satisfies equation (1).

1.1. Existence and uniqueness theorem

Theorem 1. If f;(t, X) is continuous on open domain D1 c D so for any (t,, X,) €

D1 there is a solution X(t),t € I suchthat X(ty) = X,, t, € 1.

Theorem 2. If f;(t, X) and % continuous in an open domain D1 < D so for any

(to, X,) € D1 there is a unique solution X(t),t € I suchthat X(t,) = X,, t, € 1.
1.2. Introduction

Y'(t) =F(tY)

yi = 16, Y1, Y2, 0 Vi)
yé =f2(t;y1;y2; "'ryn) (11)

Yn = ot Y1, Y2, 0 V)
Linear differential system
i = a1 (0)y1 + a0y, + -+ ag, (Oy, + hy (1)
Vo = a1 (O)y; + az () y, + -+ + azn () yn + hy(t) (1.2)

yrll = Qnq (t)yl + apy (t)YZ + ot ann(t)yn + hn(t)
A differential equation in standard form (1.2) is homogeneous if h;(t) = 0,i =
1,2, ..., n. Now, the homogeneous linear system with constant coefficients

Vi = A11Y1 + Ay, + 0+ Aindn

Y2 = A1Y1 + Q227 + -+ AanVn (1.3)
yﬁ = ap1Y1 T A2y t ot Appdn
V1 y1(t)

Y2

The(scalar) vector Y = Is said vector valued function if Y(t) = Y2 :(t)

Vn :Vn.(t)
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then the system (1.3) can be written as

aj; A\ [ (0)
vy =av(e = 2 0| 1720] (1.4
An1 Apn/ Ly, (0)

Theorem 1. Let X(t) and Y (t) be two solutions of (1.4). Then
(@) cX(t) is a solution, for any constant c, and (b) X(t) + Y (t) is again a solution.
It is clear that A(cX) = cAX = cX = (cX)
oo i A1 4 50 (o 52y Aol I 2 X 2 Al Jypatl -]

yvil 1 11p1 .
Example 1. Convert [yé] = [1 _1] [yz], to one equation

i=yitYs  Y2=y1- Y2
V=YVt Y2 1=yt 2 v =iy =ty -y,
=Y+ Y2+ Y=y = ¥ =2y,0r y' =2y =0
e it 2 X 2 Ui N AGEN A5 50 e Bas) 5 Alalas Jy ) -2
Example 2. Convert y' — 2y = 0 to a system
Lety, =y, y2 =y' = yi =5 ¥3 =2y = [;ﬂ = (2) é] [iﬂ
5 peal) Alslaall (i Lagl pallaill (&1 5 Lea¥) aldaill W as ol 2 Jlie 6 Jaa U a5

Definition. A set of vectors X;, X,,,..., X, In V is said to be linearly dependent
If one of these vectors is a linear combination of the others. That is a set of vectors
X1,X5,,..., X, is said to be linearly dependent if there exist constants
C1,Cy,,--.,Cp, NOt all zero such that ¢; X; + ¢, X,+ ...+ ¢, X,, = 0.
Ifall ¢;,cy,,...,c, = 0then X;,X,,,..., X, is said linearly independent.
Example 3. Show that et, e2t, e3¢ are linearly independent while e, 2et, 3et are
linearly dependent.

ciet + et + et =0. (1)

et[c, + et + c3e?t ] =0, et #0 -
c; +cet + cze?t=0. (2)
Differentiate c,et + 2cze?t = 0 - ef[c, + 2c3et] = 0 -
c, +2c3et=0. (3)

Differentiate 2czet = 0 — ¢; = 0, putitin (3) ¢, = 0, from (2) » ¢; =0,
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So that ef, e?t, 3 are linearly independent. To see et, 2et, 3et are linearly
independent.
cet +2c,et +3c;et =0- ef[c; +2¢, +3¢c3] =0->¢; +2¢, +3c3=0- ¢
= —2¢, — 3C3.
AL e aaiay culB S ) g
Example 4. Let V = R3 and let X;, X,, and X5 be the vectors

1 1 3
X, =|-1|, X, =12]|, X3 = |0
1 3 5
1 1 3
|1+ |2+ c3 0]=0.
1 3 5
c1+c; +3c3=0 (1)
—c;+2¢c, =0 (2)

c1+3c; +5¢;=0 3)
From (1),(3) we get —2¢; +4c, = 0 = —c; + 2¢, = 0 = ¢; = 2¢y, linearly
dependent, has infinitely many solutions
Example 5. Let V = R? and let X;, X,, be the vectors

o= {35 =3

det B (2) = —4 # 0 then X;, X,, linearly independent

1.2 The eigenvalue-eigenvector method

of finding solutions

Our goal is to find n linearly independent solutions X; (t), X, (t),, ..., X, (t). Now,
recall that both the first-order and second-order linear homogeneous scalar
equations have exponential functions as solutions. This suggests that we try

% (1) ai1 0 Qin
X=AX, X(t) = xzft) , A=< oo ) (1)
xn(t) Ap1  * Apn

Let X(t) = e*V where V is a constant vector, to see when X be a solution of (1).
X(t) = 2eMV = eMAV and AX = AeV = eMAV
So X is a solution of (1) if and only if e**AV = e* AV that is
AV = AV (2)
Thus X(t) = eV is a solution of (1) if and only if (2) holds.
Definition. A nonzero vector V satisfying (2) is called an eigenvector of A
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with eigenvalue A.
Remark if V' = 0 then (2) is trivial (not acceptable )
From (2) we get AV —AV =0 -

(A—ADV =0 (3)
So if V is eigenvector then VV = 0 then det(A — AI) = 0 that is
a;p — 4 ) A1n
e I L 4)
a;u Ana Ann — A

The characteristic polynomial of the matrix A and A is said the eigenvalue of A.
First: Real distinct eigenvalues:
Theorem 1. Any n eigenvectors V,,V,,, ..., V, of A with distinct eigenvalues
A1, Ay, ..., Ay respectively, are linearly independent.
Proof: By induction we have V;,V,,,...,V},, nonzero eigenvector and 1, 4,,..., 1,
not equal eigenvalue(4; # 4;),
1. if n = 1 the theorem is true,
2. Suppose it is true when n = k that is
cVi+ce o+ 4V =0andc;, =c, = =¢, =0 (a)
3. To see the statement is true when n = k + 1 then

Vi + Vot e Vi + ey 1Viesr =0 (b)

1AV + c, AVo+. ..+ AV + ¢y 1AVies1 = 0

i Vi + A Vot e il Vie + Crp1Aiks1Vies1 = 0 (©)
Multiplying (b) by A, and subtract from (c) we get
co(A — Vot (A — 4 Vi + o1 (A — A1) Vs = 0 (D)

Since V,,Vs,,..., Vi, are k Linearly independent then ¢; .1 (1; — Ax41) =0
And Ay # App1 2 1 =0hence ¢ =c, =+ =c¢, = Cy1 = 0.
Example 1. Find all solutions of the equation
-1 4
X =13 2 —-11X
2 1 -1

Solution. The characteristic polynomial of the matrix A from (4) is
1-1 -1 4
det [ 3 2—1 -1
2 1 -1-1
= -(1+1)A-DVD2-D)+2+12-82-H+(1-1)—-3(1+2)
=1-ADA-=-3)1+ 2).

=0
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Thus the eigenvalues of Aare A, =1, 4,=3,and 15 = —2.
V11

1721] from (3)

V11
V11 =0
V31

ThlS Imp|IeS that —Vy1 + 4‘7]31 = 0, 37]11 + Vy1 — V31 = 0, 21711 + VUy1 — 21731 =0
Solving these equations we get v,; = 4v3,,V;; = —V3;. Let v3; = 1 then

-1
4
1

-1
X, (t) = ehty, = et[ 4 ]
1

(i) A; = 1: We find the corresponding eigenvector V; =

A-4DV, =

Vy1 = 4‘, Vi1 = -1 then Vl =

V12
(if) A, = 3: We find the corresponding eigenvector V, = vzz from (3)
— 1712
(A - Azl)Vz == _1 _1 v22 = O
V32
This implies that —2v;, — v,, + 41732 =0, 31712 — V35 = 0,2v15 + Vyy —
4U32 - O
Solving these equations we get v, = V35, V5, = 2V3,. Let v3, = 1 then
1
Vip = 1, VUyy = 2 then Vz = 2]
1
1
X,(t) = e?2tV, = e3t |2
1
V13
(iii) A3 = —2: We find the corresponding eigenvector V; = | V23| from (3)
V33
3 =1 41][Vi3
(A=2A3DV3 =13 4 —1||V23]=0
2 1 111[Vs3

ThlS |mp||eS that 31713 — VU3 + 4‘1733 = 0, 31713 + 4‘7]23 — V33 = 0, 21713 + VUys3 +
V33 =0
Solving these equations we get v,3 = —v33, V53 = V33. Let v33 = 1 then
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-1
vi3=—1,v,3=1thenlV; =] 1 ]
1
—1
X3(t) = ehty; = e_Zt[ 1 ]
1
The general solution is
X(t) = 1 X; + Xy + c3X3 = ciet |4 + 3 [ 2] + Cge—Zt[ 1 ]
1 1 1
—ciet 4+ ce3t —cze™
X(t) = |—4cet + 2c,e3t + cze7 %

ciet + cye3t + cze™?t

= ®(t)C, d(t) is said fundamental matrix

_et eBt _e—Zt Cq
orX(t) = [—4et 23t 72t [[c2
et eBt e—Zt C3
Example 2. Solve the initial-value problem X = [; 112]X,X(0) = [(1)]
Solution. The characteristic polynomial of the matrix A by (4) is
_ _ 1-4 12 7 _ 2 o9 o _
det(A—A) =0 - det| % 7 ]|=0-22-22-35=0
- A=-7YA1+5)=0-> A, =7,1,=-5

(i) A, = 7 to find the corresponding eigenvector (A — A, 1)V; =0,V; = [Z] -

A-ADV =0
(ii)
11 1 1 1
222 2 2
Example 2. Solve the initial-value problem X =3 3 3 3 3|X,
4 4 4 4 4
5 55 5 5
det A = 0 4elite saac Yl 5 Lz e sadiza o saall )Y
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 0O 0 0 0O
3 3 3 3 3|-/0 0 0 0 0
4 4 4 4 4 0 00 0O
5 55 5 5 0 00 0O

Aol A dlgate m s G A # 0 sdll Al g4 ladae 1 = 0 A8 4l 2ae
(3) pasiui Clgatiall o2 48 jralg A #= 0 el aslganie g A =0
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1 1 1 1 1[611
[2 2 2 2 Z]Ibl
(A-2DV=[3 3 3 3 3I|cI
4 4 4 4 4|ld
l5 5 5 §5 5J|.eJ
Vi:b,c,d=0-e=-a,V,:a,c,d=0->
Vi:a,b,c=0-
1 [0]
o [1]
v, = |0|, =|0|,V3
0 0
|1l 1]
1 1 1 1 1
IrZ]I [2 2 2 2
LetV5—| |—>AV5 AW =13 3 3 3
l4 4 4 4
l5J ls 5 5 5
1] 1]
|2] |2 |
151]3 Al3]l->15=2
i
5 5
Home Work
1- Find the solution of
3
. _[6 -3 -
a-X_[2 1]X, b-X_LZL
. 11 2 .t
C'X:LL 1]X' X(O)=(3) d- X= 1

Second: Complex eigenvalue

Hussain Ali Mohamad

=0-»>a+b+tc+d+e=0
il lial dlae ) 430 daie JSI Jan 4l gl
e =-b,Vs:a,b,d =0-¢e = —c,
e =—d,
0 [O]
o] o]
o | 1
] |
g jiaall e G313 el Ayl Lo
1 [1] [1] 15 [1]
2||2| 30|
3Hﬂ=*|P*V“—*II*
4114 4
sl gl l J l5J
2 4
0 21X
2 3
-1 0 -1
2 11X, X(O)=<—4>
10 2 13

If A =a + ib isacomplex eigenvalue of A with eigenvector V. =V, + i V,, then
X(t) = e™V is a complex-valued solution of the differential equation

X = AX.

(1

This complex-valued solution gives rise to two real-valued solutions, as we

now show.
Lemma 1. Let x(t) =

Y(t) +iZ(t) be a complex-valued solution of (1). Then,

both y(t) and z(t) are real-valued solutions of (1).

X(t) = etV =@y, 4iV,) =

e (cos bt + isin bt)(V; + iV,)
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= e™[(V, cos bt — V, sin bt) + i(V; sin bt + V, cos bt)]
Y(t) = e*(V, cos bt — V, sin bt)
Z(t) = e®(V; sin bt + V, cos bt)
are two real-valued solutions of (1). Moreover, these two solutions must be
linearly independent solution.

1 0 0 1
Example 3 Solve thesystemX = [0 1 —1|X, X(0) = (1)
0 1 1 1

The characteristic polynomial of the matrix A from (4) is

1-2 0 0
det[ 0 1-21 —1]=0

0 1 1-2
=1-2D3+@Q-D)=-2B3432-31+1+1-21=1-1DA*-21+2)
= 0.
Thus the eigenvaluesof Aare 4, =1, 4,3 =1 £ 1.
ra
(i) 1, = 1: We find the corresponding eigenvector V; = |b| from (3)
Lc
0 0 07
A-1DVi=]0 0 -—1||p[=0
0 1 01Ltc
1
This impliesthatc = 0,b = 0. Leta = 1then V; = |0
0l

h
X, (t) = ehty, = et [0
0

a
(i) A, = 1 + i: We find the corresponding eigenvector V, = [b] from (3)

c
—i 0 0]pa
0 —i —1“b]=0
0 1 —illkc

This impliesthat —ia =0—->a=0,—-ib—c=0,b—ic=0-b=ic.Letc=1

(A - /121)V2 =

0 0 0 0 0]
thenb=i- V, = i]= ol+1li|=1|0]+if1
1 1 0 1 0]
0 0 0 0
Xz(t)ze’lthZ:e(l”)t( of+if1 =eteit< of+i 1)
1l lol/ 11 lo
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0 0
Xz(t)=et(cost+isint)<0 + i 1)
1 0
0 0
X,(t) = et cost[ ]—smt 1|+ i[cost|1 +smt[ ]

X,(t)=¢e cost[ ]—smt[ ] [—smt] and

cost
0
X;5(t) = et[cost|1|+ sint IO ]=e Icost
0 1 sint.
1 0 0
X(t) =1 X, + ¢, X, + c3X3 = et [O + c,et [— sint| + czet [cos t]
0. cost sint

€1
X(t) = et |—czsint + c3 cos t]

cpcost+ c3sint

1 C1 1
When t =0, X(0) = (1) =|[c3], X(t) =€t —sint+cost] :
1 Co cost+sint
Home work
1- Find the solution of
1 0 1
ax=[20 2x, b-X=[0 1 -1|x
-2 0 -1
-3 0 2

1

c-X = [5 _]XX(O) () & %=|1 -1 0

-2 -1 0

0
X, X(0) = (1)
-2
Third: Equal roots

If the eigenvalue A; with multiplicity k then the other linear independent eigenvector
can be obtain from the equation
(A—2,DFV =0 (5)
Or we can use
A-1DV, =V, A—A4DVz3=V,, ..., A=1DV,=V,_1, (6)

And the solution is
2

t
X, (t) = eMt[V, + t(A— A, DV, + ?(A — 1DV, +
tk—l

+m(14 LD, (D)
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Example 1. Find three linearly independent solutions of the differential
1 1 0
0 1 0
0 0 2
The characteristic polynomial of the matrix A from (4) is
1-41 1 0
det[ 0 1-1 0 ] =0
0 0 2—-21

= (1 -21)2(2 - 1) = 0= A, = 1, with multiplicity two (k = 2), A3 = 2 with
multiplicity one,

equation X = X,

a
(i) A, = 1: We find the corresponding eigenvector V; = [b from (3)
Cc
0 1 O0]fa
A-ADV;=]0 0 0 [b] =0
0 0 1ltc
1
This impliesthat b = 0,c = 0. Leta = 1 then V; = 0]
0
1
X, (t) = ehty, = et H
0
a
From (5) or (6) we get V, = [b]
c
0 1 0]ra 1
A-ADV, =V, =10 0 0] [b] = [0] = b =1,c =0, aarbitrary
0 0 1ltc 0
0
v, - ]
0
0 1 0]°ra 0 0 0]fa
(A —2,D?V, =0=>[0 0 0] [b] =o=~[o 0 0“b] =0
0 0 c 0 0 1ltc

1
0
= c=0, a,b arbitrary V, = |1
0

from (7) we get

0
1
0

X,(t) = e[V, + t(A— A1, DV,] = et +t

0 1 07]0
0 0 Of|1]=
0 0 1110
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0 1 t
=et||l1]|+¢t]0 =ﬁb]
0 0 0

a
(iii) A3 = 2: We find the corresponding eigenvector V; = [b
c

from (3)

-1 1 0]fa
A-2DV;=(0 -1 0 [b] =0
0 0 o0l
This impliesthat —a + b = 0,—b = 0 = a = 0, c is arbitrary. Let ¢ = 1 then
0
v, - o]
1
0
X3(t) = e’sty; = et [o
1.

Example 2. Solve the initial-value problem X = [i (2) X,X(0) = B]
Solution. The characteristic polynomial of the matrix A by (4) is
_ _ 2—21 _ N2 _
det(A—21) =0 - det| . 2_/1]_0—>(,1 2)2=0- A =2
Is eigenvalue of multiplicity 2.

(i) A, = 2 to find the corresponding eigenvector (A — A, 1)V; =0,V; = [Z] -

(A_ZI)[Z]:():>[2 8][2‘]=0=>a=0,|etb=1thenV1=[(ﬂ

e[l

to find the second vector V,, = [Z] from (3) — [2 8] [Z] = [(1)] =4a=1=a=

+t[ ]H]-ezt—

x(t)=c1X1+c2Xz=cle”[(1)]+02€2tH=>X(0)=[z ]

N

1
, V= H from (7) we get
0

X,(t) = e[V, + t(A — 1, DV,] = e?t

C1=2, C2=4‘

1
xo = 26 (] wae i =], !, |
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2 1 3 1
Example 3. Solve the initial-value problem X = [0 2 —1|X, X(0) = <2>
0 0 2 1

The characteristic polynomial of the matrix A from (4) is

2—-21 1 3
detl 0 2—4 —1]=O

0 0 2—1
= (2 —2)3 = 0 = A, = 2, with multiplicity 3 (k = 3),
a
(i) A, = 1: We find the corresponding eigenvector V; = [b] from (3)
c
0 1 3]ra
A-A4DV;=]0 0 -1 [b] =0
0 0 o0llc
1
This impliesthat b +3c =0,c =0—-> b = 0. Leta = 1then V; = 0]
0
1
X,(t) = ehty, = e H
0
a
From (5) or (6) we get V, = [b]
c
0 1 37a 1
A-1DV,=V, =10 0 —1] [b] = [0] =b+3c=1c=0,b=1,a
0 0 o0lle 0
0
arbitrary V, = |1{, since this is the second eigenvalue then by (7)
0

[0 0 1 31770 t
X, (t) = eMt[V, + t(A — A, DV,] = e? 1| +t[|l0 0 —1] H]] = e?t H
L0 0 0 0110 0

(A - All)V3 - VZ —

0 1 3
0 0 -1
0 0 O

a 0T
[b]=l1 =b+3c=0,—c=1c=-1, b=
c 0.

0
3 ] since this is the third eigenvalue then by (7)
-1

3,a arbitrary V; =
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t2
Xg(t) == ellt[Vg + t(A - /111)V3 + ?(A - All)ZV:g

0 0 1 3 0 +2[0 0 —1]70
=e?[| 3 |+tlo 0 -1{|3 +—10 0 0113
-1 0 0 O01L-1 0 0 O01L-1

tZ

| 2

3+t
—1
2
1 t &
X(t)=C1X1+C2X2+C3X3=32t[C1 O +C2 [1]"‘(,'3 2 ]
3+t
0 0
-1
1 €1
X(O)=[2]= C2+3C3 ,C1=1,C3=_1,C2=5
1 —C3
t2
) 1+5t—?
X(t)=e
() ¢
1

Theorem 2 (Cayley-Hamilton Theorem) Every n X n constant matrix satisfies its
characteristic equation.
Theorem 2 (Cayley-Hamilton). Let p(1) = py + p1A+ ...+ (—1)"p, A" be the
characteristic polynomial of A. Then,

p(4) = py + p1A+...+(—1)"p, A" = 0.

-3
2
equationso p(A) = A2 +4A—-1=0

Home work
1- Find the solution of

Example let A = [ _21] then p(1) = 2% + 41 — 1 = 0 its characteristic

~ -1 -1 0
a—Xz[_i _11])(, b-X = 8 —01 _02 X
X [1 _3]X X(0) (1) d- X ; 1 11 X, X(0) <O1>
C- — , — - — — , - | —
3 =5 2 -3 2 4 -2

1.3 Fundamental matrix solutions @(t); and exponential matrix e4t
X = AX (1)

Definition 2. An n x n matrix function @ is said to be a fundamental

matrix for the vector differential equation (1) provided @ is a
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solution of the matrix equation (1) on I, often
Do) =[X: X, ... X;] > X(t) = P(H)C (2)
Definition 3. An n x n matrix function e“! is said to be a exponential
matrix for the vector differential equation (1) provided
X(t) = e4t-toC (3)
Example 1. Find a fundamental matrix solution of the system of differential

equations
1 -2 0
The independent solutions are X; = et[ 01l,X,= eZt[ 11],X; = e3t[ 1 ]
-1 0 -1
1 -2 0
M=1=2=3V,=|0|Vv=1]r= 1]
-1 0 -1

[ et —2e?%t 0
P(t)=1] 0 g2t e3t |,
| —et 0 —e3t
d e—l f 0|=0-a—c=1d-f=0g—i=-1
g i—1/1—11

a—1 b c‘[l'

a—?2

[ d ” =0->-2a+b=-4,-2d+e=2,-29g+h=0,
Y i—2

a—3

d e—3 ” ]—0—>b—c—Oe—f—3h—L——3

g h i—3

>b—2c=-2,b=c=2, a=3—f+2d=1,f=d=1,e=4,g—h=2,g

=—-2,h=—-4,i=—
1 0 0 a b
M]=AM—>[ ”O 2 0 ” ]
— -1/10 0 3
1 —4 0 a—c —-2a+b b-c
—>[0 2 3‘=d—f —2d +e e—f]
-1 0 -3 g—i —-2g+h h-i

Theorem 3. Let ®(t) be a fundamental matrix solution of the differential equation
X = AX (1)
Then, et = d()P~1(0) (4)
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In other words, the product of any fundamental matrix solution of (1) with its inverse
at t = 0 must yield e“t,
Lemma 2. A matrix ®(t) is a fundamental matrix solution of (1) if and only if
d(t) = AD(t) and det P(0) # 0.
Proof of Lemma: Let X, (t)X,(t) ... X,,(t) be linearly independent solution of (1).
Let d(t) = [X;(t) X,(t) ... X,,(t)] then ®(t) is Fundamental solution iff
D(t) = [X,(t) Xp(t) ... X,(O)] =[AX:1() AXp(t) -+ AXp,(D)] =
AlX.(t) X,(t) ... X,(t)] =AP(t) and
®(t) = [ehtV, eV, ... etV | = @(0) = [, V; ... ]
Since V; V, ... V,, are eigenvectors so they are linearly independent then
det®(0) 0. o

2
Lemma 3. The matrix-valued function et = I + At + A? % + - (5)isa

fundamental matrix solution of (1).
Proof: %e‘“ =A +A2t+A3§+ =A(1 + At +A2§+ ) = Ae?t so et isa
solution of (1),det(e4?) = det(e®) = det(I) =1 # 0
So by Lemma 2 e4t is fundamental matrix solution. o
Lemma 4. Let ®(t) be a fundamental matrix solution of (1). Then, W(t) = ®(t)C
is also a fundamental matrix solution of (1) provided C is constant nonsingular
matrix (det C # 0).
Proof: Let W(t) = ®(t)C -» ¥'(t) = ®'(H)C,¥P'(t) = AD(t)C = A¥Y(1),
Then W(t) is a solution of (1)
detW(t) = detd(t)C = det d(t) detC - detW(0) = detd(0)detC # 0
Then W(t) is a fundamental matrix o
Proof of Theorem3: Let ®(t) be fundamental matrix, by Lemma 3
e4t is also a fundamental matrix, then by Lemma 4, et = ®(t)C (6)
Let t=0in(6) I = ®(0)C » C = d71(0) » e = P()P71(0). o

e Att) = p(D (L)  (7)
1 1 1
0 3 2

0 0 5
Solution. Our first step is to find 3 linearly independent solutions of the system:
1 1 1
0 2 2] their corresponding
0 0 2

Example 2. Find e4t if X = X and use it to solve the system

=14 =32;=5and V; =|o|,V, =|2]|, V5 =
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et eBt eSt
eigenvalues, then @ (t) = l 233t 2e5t| is FMS from (6)
ZeSt

e 1 1 17!
= PP~ 1(0)_[ e3t 2e5t”0 2 2] =

2e°t110 0 2
et 3t 5t 1 71
[0 2e3t 2e5t]—l —2] lo 2e3f 2e5f] 0 ; —;
0 0 2e°t 2e5t110 0 1
3t 1 g3t 1 o5t
et e’ Ted 43
= 0 e3t eSt
0 0 e>t
2 00
Example 3 Find et and Use ittosolve X = |1 2 0]X,
1 0 3
0
Ans. The matrix A is lower triangularso A, =2 =1,,A; =3and V; = |1
0
0 1 1 0 0
t 1 ,V2= 0 ,XZZQZt t ,V3: 0 ,X3=83t O,
0 -1 -1 1 1
0 e? 0
q)(t)= et  te?t 0 |i1sFMS
0 —e?t p3t
0 e2t -1
A=omP7H(0) =|e* te** 0|1 0 0
0 _eZt 3t -1 1
0 e? 0170 1 0 eZt 0 0
=[e?t te?* 0 |[1 0 0O]= te eZt 0
0 —e2t e3tll1 o0 3t
e?t 0 0 cle
X(t)=eAtC=[ tet g2t 0“ ] c te?t + ¢ e?t
g3t — g2t 3t ci(e3t —e?t) + cze?
et Ay 4l Ay, )l
2 1 00 [2 00 2 0 02
eAt=I+At+A2?+---= 0 1 Of+f1 2 Oft+]|1 2 0 o7+
0 0 1 1 0 3 1 0 3 '
1 0 O 2 00 4 0 0]42
=010+120t+440§+
0 0 1 1 0 3 5 0 9™

1X1 =
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1+20+E2 4 074 0 0 ]
2 3 2 3
=| t+T 4+ 4 1+2t+ 204 B4 0 |
2 3 2 3
E+ 2+ P4 0 1+36+ 801 B0y |
e?t 0 0
=| te? et 0
_e3t _ eZt 0 e3t
Properties of et
3 0 0
1- if Aisdiagonal |0 2 0then e4t =
0 0 4
3t
2- if A is upper (or lower)triangular A = [0 3] - el [ + ae ]

3 1 2 e3t 0 0
[0 2 —1] then et = [ 0 et o]
0 0 4 0 0 e*
1.4 The nonhomogeneous equation; variation of parameters
Let the matrix ®(t) = [X,(t) X,(t) --- X,,(t)] be FMS of the homogenous system
X(t) = AX (1) 1)
Then the system
X() = AX(t) + H(t) (2)
Is the nonhomogenous system,
Theorem 4 Let ®(t) be FMS and e“t be exponential matrix then the general

solution satisfying X (t,) = X, of (2) is
t
X(t) = eAt-tox, + e‘”j e SH(s)ds

Proof: We have to seek a solution in the form

X(t) = d()U(t). (3)
u) = o (0X(@) (4)

Differentiating (3) we get X (t) = ®()U(t) + P()U(t),

AX() + H(t) = d()U() + D()U(t) = AP ()U(t) + (D)U(t)
= AX(t) + () U(D),
H(t) = d()U(t) = U(t) = D L(O)H(t)
Integrating this expression between t, and t gives
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t

U(t) —U(ty) = J O 1(s)H(s) ds
t

U(t) = 7 1(t)X(t,) +f O 1(s)H(s) ds

to

D()U() = PP 1(tg)X, + P(b) ftcb‘l(s)H(s) ds

t
X)) = ()P (t)Xg + @) | PL(s)H(s)ds (5)
to
t
X(t) = eAtt)x, + eAtt)P(t,) | e A6~ D~1(t,)H(s) ds

t

. 0

X(t) = eAlt-to) X, + eAtJ e SH(s)ds (6)

to
Ol g AN ARk
Multiply (2) by e =4t — e=4tX(t) = e 4t AX(t) + e AtH(1)
e AX(t) — e AAX(t) = e AtH(t) —» e AtX(t) — Ae™4tX(t) = e AtH(t)
= e AX'() + (e ™)X (t) = e H(t) = (™ X (1)) = e A H(t)

Integrating this expression between t, and t gives
t
e X (t) — e o X(t,) = j e 45H(s)ds
to
t
e X (t) = e 4o X(ty) + f e 1SH(s)ds
to
t
X(t) = eAlt-tox, + eAtj e SH(s)ds.

to
Example 1. Solve the initial-value problem

1 0 O 0 0
X=[2 1 =2|x+ 0 ] X(0)=H
3 2 1 et cos 2t 1
A1) adl) ) Adul g X = AX Guilaiall sl Jas dglad)
1—-4 0 0
det[ 2 1-21 —2]=0
3 2 1—-4

2+VE—20

1+2i
> + 20

(1—1)(12_2/’1"'5) =0_)/11 == 1,/12’3 =
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0 0 0]ya
1.4, =1- lz 0 —2 H =0,»2a-2c=03a+2b=0,c=ab=—>a
3 2 01t
2 2 2et
V, =1|-3]|,X; = et [_3] = [—381
2 2et
—21 0
2./1=1+2i—>l2 =20 -2 b]=0,—>—2ia=0—>a=0,
3 2 =2
0 0 0
2a—2ib—2c=0, ib+c=0-V= 1]: 1{+10
—I 0 —I
0 0 0 0
X = e(1+2i)t( 11+|0 ) = et(cos 2t + isin 2t) ([1 — i [OD
0 —I 0 1
0 0 0 0
= e'[cos 2t 1] + sin2t|0| + i(—cos 2t |0| + sin 2t 1])]
0 1 1 0
0 0 0 0
X, = ef[cos2t |1| +sin2t 0[], X5 = e’[—cos 2t [0 + sin 2t [1]]
0 1 1 0
0 0
X, =et [cos 2t|, X5 = et[ sin 2t
sin 2t — cos 2t
2et 0 0 2 0 O
P(t) = [—Set efcos2t efsin2t [, P(0)=[-3 1 0]
2et  elsin2t —elcos2t 2 0 -1
>0 0
PO =12 1 o
10 -1
1
0 0 > 0O O
€At=¢(t)¢_1(0)=[ 3et elcos2t etsinZt] 3.1 0
2et  efsin2t —elcos2t i _1
et 0 0
At — —;€t+;etc052t+et5in2t et cos2t —etsin2t

3 .
et + Zefcos2¢—e’sin2t etsin2t etcos2t

Then by (6) we get
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X(t)
[ et 0 0
3 t,3 . t t o 0
=3¢ +Eetc052t+etsm2t e'cos2t —e'sin2t||q
et + %etCOSZt—etSinZt elsin2t etcos2t |1

et 0 0 s 0 0

2 2

3 .
et + et cos2t—e’sin2t etsin2t etcos2t

t
e

X(t) = [et cos 2t — el sin 2t]

et cos2t + elsin2t

et 0 0 0
3ot 4+ 30t cosatretsinze efcos2t —elsin2t ‘ 2s ;
+1| 2 2 —e“Scos2ssin2s|ds
3 . 0 2s 2
et+5efcos2t—efsin2t etsin2t elcos2t e’ cos“2s

X)) =

Example 2 Solve the initial-value problem X = [3 _34]X + [(1)] et, X(0) = ((1))
det(A — AI) = 0 > det [ 5’1 3__4/1] —0
B-2=0-1, =1, =3,
/11:3—>(A—3I)V1=0—>[8 _()4][Z]=O—>b=O,V1=[(1)]
el

A =3-(A-3DV,=V, > [8 ‘04] [Z] - [(1)],—4b = 1,b :—71’1/2 _ [_01]

Lt SIE]-B

4
1t B 0
— L3t _ -1 - _ — |1
d) = e [0 41]—>q> 0 4_8 1] [0 c

_ 3t
X, =e

1 ¢
At _ -1 __ 3t _ 1 0 __ 3t 1 —4t
edt = p(HP1(0) = e [0 41] [0 — e [0 A ]

-4

Then by (6) we get

R s [ R PR | Pl [

PRt I P

3 3 . t] 3 3 .
n —Zel 4 Setcos2ttetsin2t etcos2t —elsin2t f [—es + Jef cos2s+eSsin2s eScos2s —e’sin2s
0

3 .
esS + Se° cos2s—esin2s eSsin2s eScos2s

|

0
0
eScos2s

]d:
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o [_4t + e 1]]
1

Homework

1. Solve the initial-value problem X = [i :5]X + [::rlli] X(0) = (8)

2. Solve the initial-value problem X = E :4]X + [ﬂ et, X(0) = (D

3.13 Solving systems by Laplace transforms

X() =AX@) +H(@), X(0)=X, (1)

f e Stx, (t)dt_
0

=Lx@)y=| @)

j e Stx, (t)dt

L 0 .

Fi(s) (R AL
F(s) = ( : ) = L{f(t)} = : (3)
E,(s) J," e St f()dt

Taking Laplace transforms of both sides of (1) gives
L{IX(O)} = L{AX(t) + H} = ALX (D)} + L{H} -

X, (s)
X(s) =

Xy (s)

L{x,(t)} L{x, ()} L{h, (1)}
: =A : + :
L{x,(t)} L{x, (O} LL{h, (D)}
sL{x; ()} — x1(0) L{x, ()} ﬁ{h1(t)}]
: =A : + : (4)
L{xn(t)} - xn(o) L{xn(t)} L{hn(t)}

Example 1. Solve the initial-value problem

. (1 4 1\ ¢ (2
X‘(1 1)X+(1)6'X(0)‘(1)'
Solution. Taking Laplace transforms of both sides of the differential equation gives
[SL{x1 (t)}—2 (1 4) (L{x1 (t)}> n 1 (1)

sCi, -1~ 1 1/\z{n,@®)Y) Ts—1\1

or

(s — DL (O} — 4L0OY =2+ = (s — DX1(s) — 4X,(s) = 2+ —

s—1

—L{ (O} + (s = DLOGO} = 1+ . —X1() + (s — DXp(s) = 1+ —.
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(G5 = 1) = L0, (D) = 205 — 1) + 5+ ——

s—1
(s =1?=DL{x; ()} =

25 —2 5s—1
The solution of these equations is

G-)E+DG-1

L)) = — :
s2—1’ X2 s

2
L} == 3 G-DG+DG-3)

3

Now,

2 1 _ et —et
3= 2.L{e3t}, = L{sinht} =L

-3 s2—1

L{x, ()} = 2L{e3} + L {#} =L {Ze3t + ﬂ}

t_e—t
2
S A B C
= + +
s—D(E+D(G—-3) s—1 s+1 s-3
s=A(s*+2s—3)+B(s?—4s+3)+C(s*—-1)
A+B+(C=02A-4B=1,-3A+3B—-C=0

1 1 3
A=--,B=-=,0=2,
4 8 8

x,(t) = 2e3t +

1 1 .3
Lix, (O} = L{e%) =7 Let) — £ Lle™) + S L{e®)

11 1 1
x,(t) = ge“ —Zet —5¢

t

Homework

1. 1

3% x@ =)

:é) X+ (51), X(0) = (i)
Dx+(L5)et x0 = ()
)5+ Gane) @ = ()

ol
Il

A
=
Il

e
>
Il
RN AR OW R

w
»
Il
/N TN /N N
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A Al il
Theory of Differential Equations
Chapter 2; Qualitative theory of differential equations

2.1 Introduction

y'(@) =fy®) (DE)
X@®)=F(t,X(@®) v (1)
y'@®) =) (ADE)
X =F(X®) e (1)

An Equation is autonomous if f do not depend explicitly on t, like (ADE) or (1")
While equation (DE) & (1) are nonautonomous.
Definition 1. (Equilibrium points) of (1).
A points c; are said to be equilibrium (critical; fixed; accumulation ) points of
equation autonomous equation if f(c;) = 0.
Example 1. Find the equilibrium points of y' = 3y%? — 2y — 5
3y2—2y—5=0—>(3y—5)(y+1)=0—>y=§=cl,y=—1=cz.

Example 2. 1. Find the equilibrium pointsof y' = e”, y' = y2 + 1
e¥ > 0+#0, y2+ 1> 0 = 0 so there is no critical point in these equations.
2. y' =siny, y =y?—e¥1
For the system the critical points are (cy, ¢;)

x? — 4y?
y? —2x+ 2y + 5/
x2—4y2=0->x=2y& x =2y

Example 3 Find the equilibrium points of [;,] = [

24++/4-20

2

Ifx=2y>y?—4y+2y+5=0->y>—-2y+5=0->y= =1+2i
ignore

Ifx=-2y->y*+6y+5=0->(p+5@+1)=0->y=-5x=10y=
~1,x =2 - (10,-5), (2,—1) or [ig][_zl]

, _ . x'1 [(x—1(y—1)
Example 4 Find the equilibrium points of [y’] = [(x + D+ D)

Home work

L [x’]z[ x —x? — 2xy

y' 2y — 2y% — 3xyl’



Systems of Differential Equations Hussain Ali Mohamad

x' ax — bxy
2. y’] =|—cx +dxy|,
z' z+x%+y?
2.2. Stability of linear systems

X =F(X®) e (1)
Definition 1. The solution X = ¢(t) of (1') is stable if every solution ¥ (t) of (1)
which starts sufficiently close to @(t) at t = 0 must remain close to @(t)
for all future time t. The solution ¢(t) is unstable if there exists at least
one solution ¥ (t) of (1) which starts near ¢@(t) att = 0 but which does
not remain close to ¢(t) for all future time. More precisely, the solution
@(t) isstable if for every € > 0 there exists § = §(¢) such that
lo;(t) — ;)| < eif |p;(0) —;(0)] < §(¢), i =1,2,...,n. for every solution
P(t) of (1.

X)) =AX oo (2)

Theorem 1. (a) Every solution X = ¢(t) of (1') is stable if all the eigenvalues
of A have negative real part.
(b) Every solution X = ¢(t) of (2) is unstable if at least one eigenvalue of A
has positive real part.
(c) Suppose that all the eigenvalues of A which are purely imaginary

then every solution X = ¢(t) of (1) is stable

X1
: ] be a vector with n components. The numbers

x?’l

X1, X5, +, Xy, May be real or complex. We define the length of X, denoted by || X|| as

Definition 2. Let X =

”X” = maX{Xl, xz, Tty xn}'

1
2
-3

then || X|| =3 and if X =

For example, if X =

1+ 2i
2

-1

Definition 3. A solution X = ¢(t) of (2.1") is asymptotically stable if it is stable,

and if every solution ¥ (t) which starts sufficiently close to ¢(t) must

approach y(t) as t approaches infinity. In particular, an equilibrium

solution X(t) = X, of (1') is asymptotically stable if every solution ¥ (t) of

(1) which starts sufficiently close to X, at time t = 0 not only remains

then || X|| = 5.
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close to X, for all future time, but ultimately approaches X, as t approaches infinity.
Example 1. Determine whether each solution X (t) of the system

-1 0 0
X=|-2 -1 2 |X isstable, asymptotically stable, or unstable.
-3 -2 -1

To find the eigenvalue

-1-1 0 0
det| -2 —-1-2 2 =0->—-(1+1)3-41+1)=0-
-3 -2 -1-2

—1+D[A+1)*+4]=0->> -1+ D[A2+21+5]->21=-1,1=-1+2i
By theorem 1 the solution is asymptotically stable
Example 2. Determine whether each solution X (t) of the system

. _[1 5

X = [5 1] X

5

1-41
By theorem 1 the solution is unstable
Example 3. Determine whether each solution X (t) of the system

=[x

alet[lg’1 |=0-22-21-24=0-2=61=-4

A =8| Lo a2a g IV
det| ' O|=0-o24+16=0-2=4i,2=—4i

By theorem 1 the solution is stable
Example 4. Determine whether each solution X (t) of the system

2 -3 0
X=|10 —6 =2|X isstable, asymptotically stable, or unstable.
-6 0 -3

To find the eigenvalue

2—1 -3 0
detl 0 —6—A —2 ]=0—>—Az(/1+7)=0—>
—6 0 -3-1
A=0,1=0,1=-7
By theorem 1 the solution is unstable

Homework
-7 1 -6
1.X=[1 1]X,2.X=[_5 3]X,3.X= 10 -4 12|x,
-2 =2 -1 1 > 1 1
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0 2 0 O
>_|1—-2 0 0 O
4.X—O 0 0 2X

0O 0 -2 0

2.3 Linear and Nonlinear System
2.3.1 Linear Changes of Variable

Qin|
a aZTl -1
X=A4X & . Ik (2.1)
L,
anz o+ Apn
We use the linear change of varlable X = MY (2.2)
where X = ] [ ] M is nonsingular matrix, then X = MY = AX = AMY
Y =M1AMY = ] = M71AM
Y =JY (2.3)
Definition 1 We say that matrix J is similar to matrix A if there is nonsingular
matrix M such that ] = M~1AM (2.4)

Example 1. The change of variable x; = y; + y,, x, = y; — y, transform the
system x; = x,, X, = x4 to the system.................

I R e 1 e P T Wy
]ZM_lAM:%h —11](1) (1)][1 —11]:[(1) —01] by (2.3)
Y:]YZ[(l) _01] B,};]:>5’1:J’1» Y2 =~

Example 2. The change of variable x; = y,,x, = y;, x3 = —y, + y3 transform the

system x; = x,, X, = x3,563 = xl to the system.................

X171 [0 1 0 0 0 1 0 0 1 0
Xl=11 0 0 .M of,M*=1|1 0 0[,A=]|0 0 1
X3 0 -1 1 —11 1 0 1 1 0 0

0100100
]=M‘1AM=1000011

101100

1 0 0 -1 1
0 O] = [1 0 0
-1 1

0 -1 1
Y=]Y = 0 ]=>3ﬁ —V2+ Y3, V2=Y1,¥3 =Y1 2
1 1

Definition 2 We say that matrlx] Is said Jordan form of A if it is similar to matrix A
and M = [V1V2 oo Vn],:>] = M_lAM
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Theorem 2 Let A beareal 2 x 2 matrix, then there is a real, nonsingular matrix M
such that ] = M~1AM is one of the types:

(a)If A has distinct real eigenvalue then J = [/})1 f] A > Ay
(b) If A is diagonal and has equal eigenvalue then ] = [0 1 ]
0

(c) If A is nondiagonal and has equal eigenvalue then J = [0 A ];
0

(d) If A has complex eigenvalue A = a + iff then ] = [g _aﬁ]
Example 3 Find the Jordan forms of each of the following matrices:
_n o2 12 1 3 -1 -3 0
(@) 4, = [1 1]'(b) 4=, 4]' () 4s = [1 1 ] (@), = [ 0 —3]
1—4 2 _ 2 4 _
(@det|" 7" 7 |=0=22-20-1=0-2=1%V2>

] = [1 +v2 ],—> A1 » are real distinct.
2—1 1 1_ 2 _ _ . .
) det|" " 1 |=0=22-61+10=0-2=3%i=atif -
[ =B]1_[3 -1
] = [ﬁ a ] = [1 3 ],—> A, , are complex.
3 _/1 —1 _ 2 _ _ . .
(c) det[ 1 —A] =0=>1*-41+4=0- 1;, =2 >Alis nondiagonal
J = [(2) ;]—> A1, are equal and A nondiagonal.
(d) Ay, = =3 > Ay, areequal, 4 is diagonal then ] = [_03 _03]

aj,—a —f
1(1121 0 ) (2:3)

Example 4. Find a matrix M which converts each of the matrices in Example 3 into
their appropriate Jordan forms.

A
o[ R 3 -1 0
e (5 )= )
TS N B | s R F
My= Vol vy =[] (a-anv, =1, = v, = [7] > My = |
M~1AM

Remark 1: If A has complex eigenvalue then M = (

1 2
1 1
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1 B
iind EO B R | FR R

M=[y 3]

2.3 Phase Portraits for Canonical Systems in Plane:

Definition 3: A linear system X = AX is said to be simple if the matrix A is non-
singular, (i.e. det(A) # 0 and A has non-zero eigenvalues).
(a) Real, distinct eigenvalues

A 01y
Y = JY = [il] [01 /12] yﬂ =y =4Y1, Y2 =AY,

2
Alt’ yz — elzt, (2.6)

v2  dy, Ay, dy, A d}’1 A, Az
= = = ) =—=—=Iny, = lny +Inc =y, = cy; 11 (2.7
yi dys  An Y2 M n 2 1 2 1 (2.7)

(a) (b)
Fig. 2.1. Real distinct eigenvalues of the same sign give rise to nodes:
(a) unstable (4, > 4, > 0); (b) stable (41, < 1, <0).

Fig. 2.2. Real eigenvalues of opposite sign
(€) (4, <0< 4,) give rise to saddle points.

(b) Equal eigenvalues
If ] = Aisdiagonal, the canonical system has solutions given by Theorem 2-b with
A, = A, = A,. Thus (2.7) corresponds to a special node y, = cy,, called a star node
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(stable if 1, < 0; unstable if 4, > 0), in which the non-trivial trajectories are
all radial straight lines (as shown in Fig. 2.3).

yz y2
4 Y

Y1 y‘l

Y 4

(a) unstable (1o > 0); , (b) stable (1o < 0).
— Star node
Fig. 2.3. Eaual eigenvalues (4, = 4, = 4,) give rise to star nodes
(a) unstable; (b) stable; when A4 is diagonal.

(c) Equal eigenvalues, A isnon-diagonal, 4, = 4, = 1, hence

A 1
] = [00 o ,y1 = (c1 + cpt)eMt, y, = cpet,  (2.8)

dy, AoY2 Y2
= 2 Y1 =0Y

unstable improper node stable

(a) (b)
Fig. 24. When A4 is not diagonal, equal eigenvalues indicate that
the origin is an improper node: (a) unstable (1, > 0); (b) stable (1o <0).

(d) Complex eigenvalues
a — . . .
J = [,8 aﬁ]'/ll,z =atif, y1=ay; —BY,Y, =By1 +ay,

Using polar coordinate's r2 = y2 4+ y2, tanf =22

21
S fF=ar, 6=p (2.10)
r(t) =r,e®,  0(t) = pt+6, (2.11)
if @ < 0 — spiral(focus)stable, if @ > 0 — spiral unstable,

if « = 0 — centre (stable)
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P—

Y, Y2

[\ ¢
it

(a) spiral unst. centers (b) spiral stable (c)

Fig. 2.5. Complex eigenvalues give rise to (a) unstable foci (a>0),
(b) centres (« =0) and (c) stable foci (x < 0).

Example 5 Sketch the phase portrait of the system

Y1 =2y1, Y2 = —2yzand y; = =2y, y; = 2y; (2.12)
and the corresponding phase portraits in the x;-x, plane where
o1 21 70 -1 12 o1
Ml_[1 4]'M12_11 3]'M3_[—1 0]'M4_[3 1]'M5_[1 —1]’M6
b ew

_[2 O _ —_
J= [o _2],,11 =20, = =2
Jordan canonical form ) shll 3 ) ya an
/ : \
| &
\ i /
A=2, A=-2: spiral unstable

Mll Mz, M3r M4_, MSI M6 C—’GML’ Lalall J}H‘ 5 pa p)

ey —

= B ———————

T —
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Example 6 Sketch the phase portrait of the system
X1 = 2x1 + 2x,, x5 = 4x; — 2x, (2.14)
The eigenvalue are A; = 2i,1, = =2i, a =0, =2

Then | = [(2) _02] and M = [?

4 _02] the phase portrait of Jordan form is

A
W

centers Al=21, A2=-21
And the phase portrait of system x,, x, is

2

¥

s

2.4 Phase Portraits for Canonical Systems in Plane:
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Theorem 2.1 (Linearization theorem)

Let the non-linear system X' = F(X) (215), X = [Z]F - []]:18213;2%
2\ A1 A2

have a simple fixed point at (c;, c,) = (0,0). Then, in a neighborhood of the origin
the phase portraits of the system and its linearization are qualitatively equivalent
provided the linearized system is not a center.

Definition 4: Jacobian Matrix: Let a system [x}] = fl(xl'xZ)] then the jacobian
X2 f2(x1,%2)
ofh on
matrix at critical point (cy, ¢,) is defined by Jic o,y = «39;21 Z’Z

0x, O0xy (c1,C2)
Example7 Find critical points and Jacobian matrix at each of them of the system
X1 = 2X1 — X X, Xy = 2X1 + X, (2.15)
2X1 — XX, =0 = x,(2—x,) =0

Eitherx; =0 orx, =2
If x, = 0then 2x; + x, = 0 = x, = —2x; = x, = 0 the first critical point (0,0).
If x, = 2 then x, = —2x; = x; = —1, the second critical point (—1,2)

_ 2 - xZ _x1 _ 2 0

Joo) = [ 2 1 1o [2 1
] — [2 - xZ _x1 — 0 1
(=1.2) 2 11y, 1201

Example 8 Sketch the phase portrait of the system (2.15)
From example 7 we get the first critical point (0,0) and J o) = [g (1)

so we have the first system x; = 2x;, x; = 2x; + x, thatis 4, = [g (1)

the eigenvalueare A2 =31 +2=0=>1-2)A1-1)=0=
Al == 2,/12 =1

O T A
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the second critical point (—=1,2) and J_q 2y = [g i

so we have the second system x; = —x,, x; = 2x; + x, thatis 4, = [g i
theeigenvalueare A2 —1-2=0=1-2)1+1) =0=
2,1 = 2,2,2 = -1

1=lo dm=lle=Nl=[; ]
.

V7 1 7
] — 2 2 , M — [_E _\/7]
_g 1 2 0

2
The final phase portrait is

Example 9 Sketch the phase portrait of the system x; = x2 — 3x; + 2, x5 = x2 —
2
X2



Systems of Differential Equations Hussain Ali Mohamad

To find the critical points: x; = +x, if x; = x, then from second equation
x% — 3x, + 2 = 0 we get the critical points (2,2), (1,1), and if x; = —x, then from
second equation x2 + 3x, + 2 = 0 we get the critical points (2,—2), (1, —1)

Jon =0 2] =[F A
(2.2) 2x1 _ZXZ (2,2) 4‘ _4‘

Ju = [_3 22, ] _ [—3 2 ]

(1,1) 2x, —2x, 1) 2 2
Jog oy = [_3 22, ] _ [—3 —4]

@D 2x; —2xplp 5 L4 4

_[73  2x; _[-3 =2

Ja-1n = [le _sz](l 1 - [ 2 2 ]

For ](2,2) = [_43 _44] the eigenvalue are Al +71-4=0>= /11'2 — —74_'2\/5 _
{_0%5533 saddle point.

For Ja1y = [_23 _22] the eigenvalue are A2 + 51+ 2 =0 = 4,, = —5*—;@ _
{__0445368 node stable.
Je-2 = [_43 _44] the eigenvalueare A2 — 1 +4=0=1,, = 14V15i spiral

unstable.

Ja-1) = [_23 _22] the eigenvalueare > +1—2=0= 1, = 1, 1, = —2 saddle
point.

Example 10 Sketch the phase portrait of the system x; = —x, — x3, x5 = x; — x5
To get the critical points from the first equation: x, = —x3 then from second
equation x; + x% = 0 = x;(1 + x7) = 0 so either x; = 0 then x, = 0 we get the
critical point (0,0), or x = —1 = x; = —1 then x, = 1 the critical point (=1,1)



