

College of Education for Pure Sciences (Ibn Al-Haitham)

Department of Biology Fourth stage

Lecture 5

Immunoglobulines (Ig.) or Antibodies (Abs)

- Immunoglobulins are glycoprotein molecules that are produce by B-cells in response to an immunogen. B-lymphocytes are differentiate into plasma cells that secretes Abs
- Antibodies are important in adaptive immune response especially in humoral immune response
- Antibodies found in the serum and tissue fluids, thus antibodies can be found in two forms: membrane-bound and secreted antibodies
- Antibodies can differentiate into several classes as fallowing: IgG, IgM, IgA, IgE and IgD

- IgM is the main antibody in the primary immune response while IgG is the main Antibody in secondary immune response
- There are two main properties of antibodies
- 1. Specificity
- 2. Biological activity

Functions of immunoglobulines

- 1. Neutralization of microbes and toxins
- 2. Activation of complement system.
- 3. Opsonization: Fc portion of the antibody binds to an <u>Fc receptor</u> on Phagocytic cells, eosinophil, mast cells, and basophils facilitating phagocytosis. The efficiency of this process is markedly enhanced if the phagocyte can bind the particle with high affinity. This binding can activate the cells to perform some function
- 4. Agglutination with microbes and foreign bodies
- 5. Immobilization of microorganisms
- 6. Precipitation: Interaction of antibody with a soluble antigen forms a precipitate which phagocytoses and destroys by phagocytes.
- 7. Placental transfer: immunoglobuline (only IgG) has the ability to cross the placenta from mother to fetus.

ان احد وظائف الجهاز المناعي هو انتاج الاجسام المضادة التي هي عبارة عن بروتينات سكرية تنتجها الليمفاويات البائية المنشطة التي تتحول الى الخلايا البلازمية كاستجابة لتحفيز بواسطة ممنع (مستضد) وتكون لها القدرة العالية على التفاعل بصورة نوعية مع المستضد (الانتجين) الذي يحفز الجهاز المناعى. تتواجد

الأجسام المضادة اما مرتبطة بالاغشية او تكون مفرزة في المصل. هناك اربعة اصناف من الاجسام المضادة الأجسام المضادة الإصداد بالخصوصية وبالفعاليات الحيوية. تتميز الاضداد بالخصوصية وبالفعاليات الحيوية. تتميز الاضداد بوظائف مختلفة تتمثل في معادلة الجراثيم والمواد السامة، تحفيز نظام المتمم، تسهيل عملية البلعمة للجراثيم، الارتباط مع المستضدات (الأجسام الغريبة)، شل حركة الاحياء المجهرية وايضا القدرة على عبور المشيمة وغيرها من الوظائف.

Structure of Immunoglobulin

The structure of immunoglobuline is illustrated in (**Figure 1**):

- The Ig monomer is a "Y"-shaped molecule that consists of four <u>polypeptide</u> chains linked covalently by disulfate bonds, 2 identical light (**L**) chains (22kDa) and 2 identical heavy (**H**) chains (55kDa)
- Each heavy chain is consist of 440 amino acid, while the light chain included 220 amino acid
- The light chain found with two forms: **kappa** (**K**) **and Lambda** (□). Each type of antibody contain one type of light chain either kappa or lambda
- Each light chain covalently attached to one heavy chain via disulfide bridge

The light and heavy chain are divided into two regions (Figure 1)

1- Variable region (V)

- In the light chain (VL) and (Vh) in the heavy chain
- The site of binding to specific Ag. finished with amine group (NH3⁺) due to containing complementary-determining region (**CDR**) that binds to epitopes.

2- Constant region (C)

- In the light chain (CL) and (Ch) in the heavy chain
- The light chain contain (1) constant region while the heavy chain contain (3-4) regions.
- Finished with carboxyl group (COO⁻)
- There are five different constant regions, each constituting an class of antibody: gamma (IgG), meo (IgM), alpha (IgA), epsilon (IgE), delta (IgD)
- Antibody molecule act as **bifunctional molecule** due to its ability to combine with antigen (by amino terminal) and also combine with other immune cells, phagocytes and complement system (by carboxyle terminal).

تركيب الوحدة الأساسية للأجسام المضادة مشابه للحرف Y ويتكون الجلوبيولين المناعي من اتحاد تساهمي لأربع سلاسل متعددة الببتيد اثنتان منها متماثلتان ثقيلتان ويرمز لها بالرمز (H)، واثنتان اخرتان متماثلتان خفيفتان (Light Chains) ويرمز لهما بالرمز (L). تقسم السلاسل الخفيفة الي نوعين هما: كابا (K) ويوجد فقط نوع واحد من السلاسل الخفيفة كابا أو لمدا مع السلاسل الثقيلة في الجلوبيولين المناعي الواحد. تتحد السلاسل الثقيلة والخفيفة اتحاد تساهمي بواسطة أواصر كبريتية ثنائية. كل سلسة من السلاسل الأربعة الثقيلة والخفيفة تتألف من منطقتين مميزتين ، يطلق علي الأولى المجموعة ألي المنطقة الثابتة (Constant region) ويرمز لها بالرمز (C) والثانية يطلق عليها اسمحكربوكسيل (CO) والمنطقة المتغيرة تنتهي بمجموعة أمين (NH3+).

- There two main domain in antibody molecule
- **1- Fragment antigen binding (Fab):** This region of the antibody is composed of one constant and one variable domain from each heavy and light chain. This domain including the site of antigen binding.
- **2- Fragment crystallizable (Fc):** it is composed of two heavy chains that contribute two or three constant domains depending on the class of the antibody. This region plays a role in modulating immune cell activity by binding to a specific class of <u>Fc receptors</u> and other immune molecules, such as <u>complement system</u> and immune cells including phagocytic cells, eosinophil and basophil.
- Antibody molecule in heavy chain include **hinge region** with Y form. It is called the hinge region because there is some **flexibility** in the molecule at this point.

يتكون الجسم المضاد من منطقتين اساسيتين:

1- المنطقة التي تتحد مع الانتجين Fragment antigen binding

وهو الجزء الذي له المقدرة علي الاتحاد مع المستضد، و يرمز له بالرمز Fab، تتضمن منطقة الاتحاد مع الانتجين وتتكون من منطقة واحدة ثابتة ومنطقة متغايرة.

Fragment crystalizable الجزء القابل للتبلور –2

هذة المنطقة يرمز لها بالرمز (Fc) وهى المنطقة التي توجه النشاط البيولوجي للجسم المضاد . واهم وظائف هذة المنطقة هي الاتحاد مع المتمم وتسمي أيضا بمنطقة تنشيط المتمم، الاتحاد أو الالتصاق مع الخلايا البلعمية لوجود مستلمات على سطح هذه الخلايا لهذه المنطقة من الجسم المضاد.

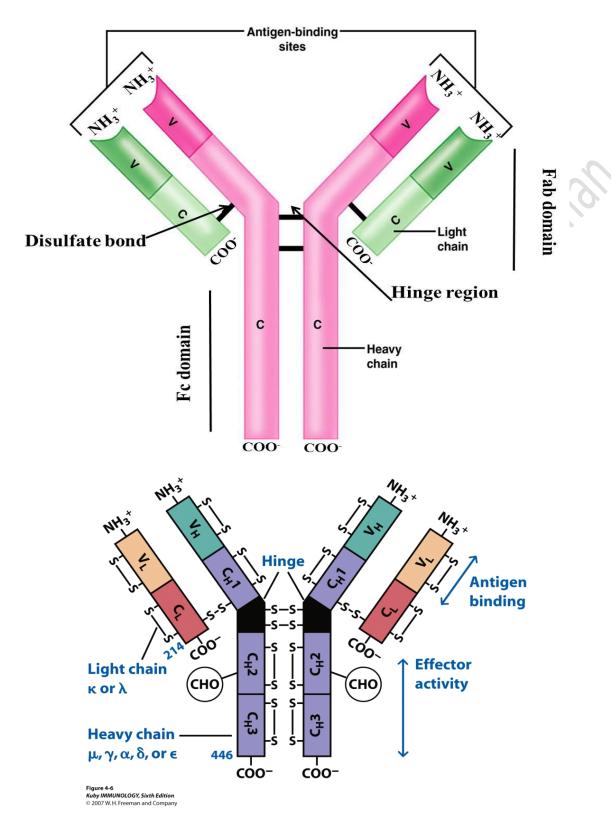


Figure 1: The basic structure of immunoglobuline molecule derived from amino acid sequencing studies.

- By using enzymes, the basic antibody structure discovered by **Edelman and porter** which are awarded Nobel Prize (1959) for this. They are noticed that these enzymes cleavage rabbit IgG into different parts as fallowing (**Figure 2**):

A- Papain enzyme cleavage antibody molecule into three fragments:

- 1- Doubled fragments of Fab: included one antigen-binding site
- 2- Single fragment of fragment crystallizable

B- Pepsin enzyme separated antibody molecule into two fragmants:

- 1- Fragment antigen binding (Fab)2: consist of two parts of Fab coupled by disulfate bound including two of antigen binding site.
- 2- Single fragment of Fragment crystallizable (Fc)

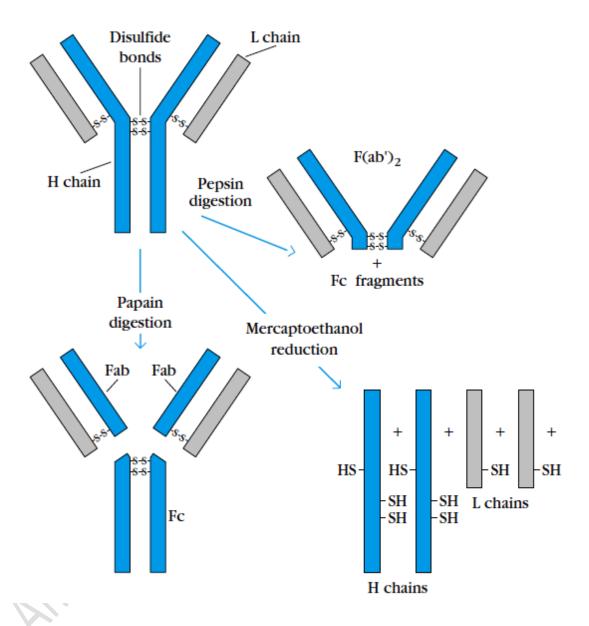


Figure 2. Prototype structure of IgG, showing chain structure and interchain disulfide bonds. The fragments produced by various treatments are also indicated. Light (L) chains are in gray and heavy (H) chains in blue.

Affinity and avidity of Immunoglobulines

Affinity and avidity are both measures of binding strength. While affinity is the measure of the binding strength at a single binding site, avidity is a measure of the total binding strength

Affinity

- Affinity is the strength of a single bond or interaction. When it comes to the antibody-antigen relationship, the binding affinity is the strength of the interaction between the antigen's epitope and the antibody's paratope at a singular binding site.
- Thermodynamically, affinity is the total of all forces that result in increased binding strength (K_{on}) minus all of the forces that result in decreased binding strength (K_{off}).
- When an antigen is encountered for the first time, the affinity of the antibodies produced is low. Once the body is familiar with the antigen, the immune response adapts and the binding affinity increases.
- Another example of affinity is the interaction between a biomolecule and its ligand, such as a protein and a drug designed to bind to it.

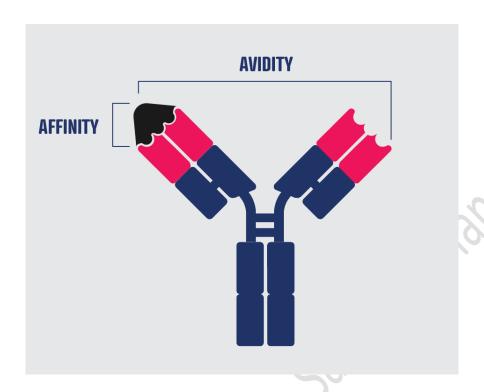
يعتبر كل من الالفة والشراهة من مقاييس قوة الارتباط. في حين أن الألفة هي مقياس لقوة الارتباط في موقع ربط واحد، فإن الشراهة هو مصطلح يصف قوة الارتباط بين مستضد عديد المحددات المستضدية

- الألفة هي قوة رابطة أو تفاعل واحد. عندما يتعلق الأمر بالعلاقة بين الجسم المضاد ومولد الضد، فإن تقارب الارتباط هو قوة التفاعل بين epitope المستضد و paratope الجسم المضاد في موقع الارتباط المفرد.
- من الناحية الديناميكية الحرارية، الألفة هي مجموع كل القوى التي تؤدي إلى زيادة قوة الارتباط (K_{on}) مطروحًا منها جميع القوى التي تؤدي إلى انخفاض قوة الارتباط (K_{off}) .

- عند مواجهة مستضد لأول مرة، تكون ألفة الأجسام المضادة المنتجة منخفضة. بمجرد أن يتعرف الجسم على المستضد، تتكيف الاستجابة المناعية ويزداد تقارب الارتباط.
- مثال آخر على الألفة هو التفاعل بين الجزيء الحيوي وربيطه، مثل البروتين والدواء المصمم للارتباط به.

Avidity

Antibodies and antigens are multivalent, meaning they possess more than one binding site. The measure of the total binding strength of an antibody at every binding site is termed avidity. Avidity is also known as the functional affinity.


Avidity is determined by three factors:-

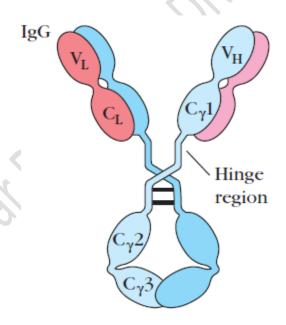
- 1. **The binding affinity:** The strength of the relationship at a singular binding site.
- 2. **The valency:** The total number of binding sites involved.
- 3. **The structural arrangement:** The structure of the antigen and antibody involved.
- An antigen-antibody complex for example. Two of the antibodies found within the human body are IgE and IgM. IgE antibodies have just two binding sites, while IgM antibodies have ten.
- The affinity of each of these antibodies is the strength at just one binding site, while the avidity is the total strength of the binding interactions at the two IgE binding sites or the ten IgM binding sites. The valency of IgM is five times greater than that of IgE, so the difference between the affinity and the avidity will be greater for IgM antibodies than IgE antibodies.

الأجسام المضادة والمستضدات متعددة التكافؤ، مما يعني أنها تمتلك أكثر من موقع ربط واحد. يُطلق على قياس قوة الارتباط الإجمالية للجسم المضاد في كل موقع ربط اسم Avidity. يُعرف Avidity أيضًا باسم الألفة الوظيفية.

يتم تحديد الشراهة من خلال ثلاثة عوامل.

- 1. صلة الارتباط: قوة العلاقة في موقع الربط المفرد.
 - 2 . التكافؤ: إجمالي عدد مواقع الربط المعنية.
- 3 . الترتيب الهيكلي: هيكل المستضد والجسم المضاد المعني.
- لنأخذ مجمع المستضد والجسم المضاد على سبيل المثال. اثنان من الأجسام المضادة الموجودة داخل جسم الإنسان هما IgE و IgM. تحتوي الأجسام المضادة IgE على موقعين ربط فقط، بينما تحتوي الأجسام المضادة IgM على عشرة.
- إن تقارب كل من هذه الأجسام المضادة هو القوة عند موقع ربط واحد فقط، في حين أن Avidity إن تقارب كل من هذه الأجسام المضادة هو القوة عند موقعي ربط IgE أو مواقع ربط IgM العشرة. إن تكافؤ IgM أكبر بخمس مرات من تكافؤ IgE، وبالتالي فإن الفرق بين الألفة و Avidity سيكون أكبر بالنسبة للأجسام المضادة IgM مقارنة بالأجسام المضادة IgE.

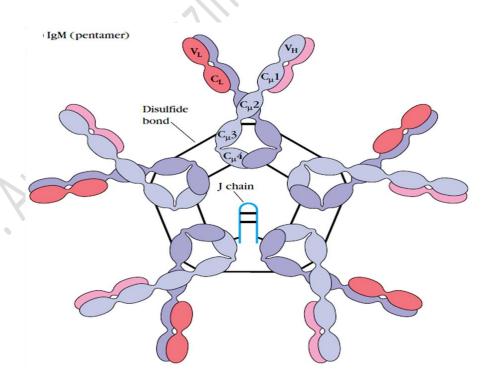
Classes of immunoglobulines


Five different antibody isotypes are known in mammals based on the amino acid sequences in the constant region of the heavy chains. These classes are IgG, IgM, IgA, IgD and IgE.

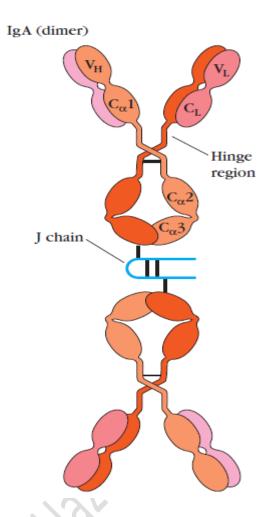
1. IgG

- The major antibody in the serum (70-80%).
- Placental transfer: IgG1 is the only class of Ig that crosses the placenta. IgG2 does not cross well.
- IgG is responsible for opsonization and activation of complement system (classical pathway). Macrophages, <u>monocytes</u>, <u>PMNs</u> and some lymphocytes have Fc receptors for the Fc region of IgG. Then, the antibody has prepared the antigen for eating by the phagocytic cells.

- Produce in the secondary immune response. . The concentration in the serum is 12.4 $\mu g/ml$
- Half-life of IgG is 23 days
- IgG is monomere and the heavy chain is with Gamma (γ) type.
- IgG molecular weight is with 160 kDa
- It is has four isotypes: IgG1, IgG2, IgG3, IgG4


يمثل هذا الجلوبيولين المناعي حوالي من 70 أي 80% من مجموع الجلوبيولينات المناعية ويكون بشكل جزيئة احادية ، له القابلية على عبور المشيمة والسلسلة الثقيلة فيه هي من نوع كاما (γ) . ايضا هذا الضد له القابلية على تحفيز نظام المتمم وينتج في الاستجابة المناعية الثانوية.

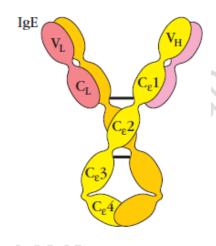
2- IgM


- IgM exists as a pentamer (consist of five parts binds together by J chain). the heavy chain is with Meo (μ) type
- Not opsonized factor
- Half-life of IgM is 5 days; the molecular weight with 900kDa
- The best active immunoglobulin in complement system fixation.
- Produce in the primary immune response
- IgM is exist in two forms: membrane-bound antibody on B cells and in a secreted form (pentamer)

يعتبر هذا النوع من الاضداد الاكبر حجما حيث يتكون من خمسة وحدات أساسية في ترتيب دائري (خماسي يعتبر هذا النوع من الاضداد الاكبر حجما البعض بسلسة إضافية تسمى (J chain) والسلسلة الثقيلة فيه هي من نوع ميو (μ).

3- IgA

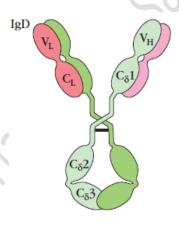
- IgA is exist in two forms:
 - 1. Serum IgA
 - 2. Secretary IgA (SIgA): found in fluids (Milk, saliva, mucous, tears).
- The function of IgA is neutralize bacteria and viruses and constitute (5-10%) of immunoglobulins. The concentration in the serum is $2.8 \,\mu\text{g/ml}$
- Half-life of IgA is 6 days; molecular weight with 160kDa. The heavy chain is with Alpha (α) type.
- There are two types of IgA: IgA1, IgA2.
- It is exist as monomeric or dimeric (J chain is associated with it)
- يعتبر هذا النوع الضد الرئيسي في الافرازات الخارجية مثل الحليب واللعاب ولذلك يوجد نوعان من هذا الجلوبيولين المناعي الجلوبيولين المناعي الإفرازي (Serum IgA) والجلوبيولين المناعي الإفرازي (Secretory IgA). السلسلة الثقيلة فيه هي من نوع الفا (α).



4- IgE

- Involved in allergic reactions
- IgE also plays a role in parasitic helminthes diseases, asthma and anaphylaxis
- Eosinophils have Fc receptors for IgE and binding of eosinophils to IgE-coated helminths results in killing of the parasite
- Produce in lymphoid tissues especially in respiratory duct and intestinal.
- Binds to basophil and mast cells via Fc lead to degranulation of mast cells and release of histamine and chemotactic factors of eiosinophil
- Half-life of IgE is 2 days and the molecular weight is 190kDa; the concentration in the serum is $1.8-20 \,\mu\text{g/ml}$.

- It is exist as monomeric and the heavy chain is with Epsilon (ϵ) type.


يعتبر الضد الاقل تركيزا مقارنة بالاصناف الاخرى من الاضداد ويكون بشكل جزيئة احادية والسلسلة الثقيلة فيه هي من نوع ابسلون (ع) ، كذلك ينتج هذا النوع من الاضداد في الانسجة اللمفاوية خاصة في القناة التنفسية والامعاء. تظهر اهميته في اعراض الحساسية او الاصابة بالديدان الطفيلية. له القابلية على الاتحاد مع الخلايا القعدة والبدينة لوجود مستلمات على سطح هذه الخلايا لمنطقة Fc لهذا الجسم المضاد.

5- IgD

- Found on B cell surface where it functions as a receptor for antigen and constitute (1%) of immunoglobulins
- The concentration in serum is 3-300 μg/ml; the molecular weight is 150kDa.
 The heavy chain is with Delta (δ) type.
- Half-life of IgD is 5 days; did not transfer to placenta.
- Destroyed by heating and digestive enzymes

هذا النوع يكون بشكل جزيئة احادية والسلسلة الثقيلة فيه هي من نوع دلتا (δ) ويوجد على سطح الخلايا البائية. يتحطم هذا الجسم المضاد بالحرارة والانزيمات الهاضمة.

