Chapter -4-

Linear O.D.E. with constant coefficients

The general form of non-homo. linear O.D.E. with constant coefficients of n order is:-

......(*)
$$y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \cdots + a_{n-1} y' + a_n y = f(x)$$

Where $a_1, a_2, \dots \dots a_{n-1}, a_n$ are constant

If f(x)=0 then the equation(*) it's become homo.

<u>Ex:-</u>

$$1 - y'' - 2y' + 3y = 0$$

$$2-y'' - 4y' + y = e^x$$

$$3-xy^{(4)}=sinx$$

4-
$$y^{(4)} = \frac{sinx}{x}$$
 , $x \neq 0$

<u>Def.-1-</u>:- The functions $y_1(x), y_2(x), \dots, y_n(x)$ are linearly dependent on I if there is a set of constants c_1, c_2, \dots, c_n

Not all zero s.t.
$$c_1y_1 + c_2y_2 + \dots + c_ny_n = 0$$
 In $a \le x \le b \dots (*)$

The left member of (*) is called a linear combination of the functions y_1, y_2, \dots, y_n .

The functions
$$y_i(x)$$
, $i = 1,2,3,....n$

Are linearly independent if the only set of constants $c_1, c_2, \dots c_n$ for which (*) holds is the set $c_1 = c_2 = \dots \ldots = c_n = 0$

Ex.-1- prove that the functions $y_1 = e^x$, $y_2 = e^{2x}$

Are linear independent.

Solution:-

$$c_1 y_1 + c_2 y_2 = 0$$

$$c_1 e^x + c_2 e^{2x} = 0$$

 $(\text{derivative w.r.t x})c_1e^x + 2c_2e^{2x} = 0$

$$-c_2e^{2x}=0$$

$$e^{2x} \neq 0 \rightarrow c_2 = 0$$

$$\therefore c_1 = 0$$

$$\therefore c_1 = c_2 = 0$$

the functions are linear independent for any x:

Ex.-2- prove that $f_1(x) = \cos^2(x)$, $f_2(x) = \sin^2(x)$, $f_3 = \sec^2(x)$,

 $f_4(x) = tan^2(x)$ Are linearly dependent on the interval $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

Solution:

$$c_1 cos^2(x) + c_2 sin^2(x) + c_3 sec^2(x) + c_4 tan^2(x) = 0$$

$$c_1 = c_2 = 1 \rightarrow cos^2(x) + sin^2(x) = 1$$

$$c_3 = -1, c_4 = 1 \rightarrow -tan^2(x) + sec^2(x) = 1$$

$$tan^2(x) - sec^2(x) = -1$$

$$cos^{2}(x) + sin^{2}(x) - sec^{2}(x) + tan^{2}(x) = 0$$

The functions are linearly dependent:

Theorem-1-

Let
$$y_1, y_2,, y_n$$

Be solutions of the homo. n-th order linear O.D.E. on an interval I then the linear combination $y = c_1y_1 + c_2y_2 + \cdots + c_ny_n$

Where c_1, c_2, \dots, c_n are arbitrary constants is a solution on I

Corollaries:-

1- A constant multiple $y = c_1 y_1(x)$

of a solution $y_1(x)$ of a homo. linear O.D.E. is also solution

2- A homo. . linear O.D.E. always has the trivial solution y = 0

Def.-2-:-The function
$$y = c_1 y_1 + c_2 y_2 + \dots + c_n y_n$$

Which is a linear combination for solutions is a general solution for homo. linear O.D.E. if y_1, y_2, \dots, y_n is linear independent.

Ex.:- The functions $y_1 = x^2$, $y_2 = x^2 \ln x$ are solution of the equation

0 on
$$(0, \infty)$$
 then $x^3y''' - 2xy' + 4y =$

is a solution of this eq. on $(0, \infty)y = c_1x^2 + c_2x^2\ln x$

Is called general solution.

<u>Def.-3-</u>:- suppose each of the function y_1, y_2, \dots, y_n

Has at least (n-1) derivative; the determinate

$$w = w(y_1, y_2, \dots, y_n) = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & \vdots & \vdots & \vdots \\ y^{(n-1)} & y^{(n-1)} & \vdots & \vdots \\ y^{(n-1)} & \vdots & \vdots$$

Where the primes denoted derivative is called the **wronskian** of the functions.

Theorem-2-:-

The solutions y_1, y_2, \dots, y_n for homo. linear O.D.E. are linear dependent iff $w(y_1, y_2, \dots, y_n) = 0$

And y_1, y_2, \dots, y_n are linear independent iff $w(y_1, y_2, \dots, y_n) \neq 0$

Ex.-1-prove that the functions e^x , $4e^x$, $3e^{-2x}$

Are linear dependent for all x.

Solution:

$$w(e^{x}, 4e^{x}, 3e^{-2x}) = \begin{vmatrix} e^{x} & 4e^{x} & 3e^{-2x} \\ e^{x} & 4e^{x} & -6e^{-2x} \\ e^{x} & 4e^{x} & 12e^{-2x} \end{vmatrix}$$

$$\begin{vmatrix}
e^{x} & e^{x} & 3e^{-2x} \\
e^{x} & e^{x} & -6e^{-2x} \\
e^{x} & e^{x} & 12e^{-2x}
\end{vmatrix}$$

The functions e^x , $4e^x$, $3e^{-2x}$ Are linear dependent for all x.:

Ex.:- prove that the functions x^2 , x^3 , x^{-2}

Are linear independent solutions for $x^3y''' - 6xy' + 12y = 0$

Solution:-

$$w(x^{2}, x^{3}, x^{-2}) = \begin{vmatrix} x^{2} & x^{3} & x^{-2} \\ 2x & 3x^{2} & -2x^{-3} \\ 2 & 6x & 6x^{-4} \end{vmatrix}$$

$$= 20$$

$$\neq 0$$

Theorem-3-:-

If
$$y = I(x)$$
 or y_p

Is a particular solution for non-homo. linear O.D.E. and y=c(x) is a complementary function then the general solution for non-homo. linear O.D.E. is y=c(x)+I(x).

Proof:-

.....(1)
$$y^{(n)} + a_1 y^{(n-1)} + \cdots + a_n y = f(x) (non - homo.)$$

.....(2) $y^{(n)} + a_1 y^{(n-1)} + \cdots + a_n y = 0 (homo.)$

I(x) is a solution for (1); then:

$$(I(x))^{(n)} + a_1(I(x))^{(n-1)} + \dots + a_n(I(x)) = f(x)$$

C(x) is a solution for (2) then:

$$(c(x))^{(n)} + a_1(c(x))^{(n-1)} + \dots + a_n(c(x)) = 0$$

$$(I(x) + c(x))^{(n)} + a_1(I(x) + c(x))^{(n-1)} + \dots + a_n(I(x) + c(x)) = f(x)$$

I(x)+c(x) is a solution for non-homo. O.D.E.

Ex.:- are the functions sinx ,cosx solution for y'' + y = 0?

and are these functions linear independent?

$$y = \sin x \rightarrow y' = \cos x \rightarrow y'' = -\sin x$$

-sinx+sinnx=0

sinx is a solution for this equation∴

$$y = \cos x \rightarrow y' = -\sin x \rightarrow y'' = -\cos x$$

 $-\cos x + \cos x = 0$

cosx is a solution for this equation∴

$$=-\sin^2 x - \cos^2 x = -1 \neq 0$$
 $w(\sin x, \cos x) = \begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix}$

Sinx,cosx are linear independent

 $y = c_1 sinx + c_2 cosx$ is a general solution for this equation

Ex.:-the particular solution of eq. y''' - 6y'' + 11y' - 6y = 3x is $y_p = \frac{-11}{12} \cdot \frac{1}{2}x$

And general solution of this eq. is $y_c = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$

Then find the general solution for this eq.

Solution:-

$$y = y_p + y_c$$

$$= c_1 e^x + c_2 e^{2x} + c_3 e^{3x} - \frac{11}{12} - \frac{1}{2}x$$
 is the general solution of given eq.

Dfe.-4-"fundamental set of solutions"

Any set y_1, y_2, \dots, y_n of n linearly independent solutions of the homo. linear n-th order diff. eq. on an interval I is said to be a fundamental set of solutions on the interval I.

Theorem-4-

There exist a fundamental set of solutions for the homo. linear n-th order diff. eq. on I.

Theorem-5-

Let $y_1, y_2 \dots y_n$ be a fundamental set of solutions of the homo. linear n-th order diff. eq. on interval I .

Then the general solution of the eq. on the interval I is

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$$

Where c_i , i = 1,2,3,...n are arbitrary constants

Exercises

1- are the function linear dependent or independent for any interval?

(1)
$$2x - 2x^5$$
, $5x^5 - x$ (2) $2x^2$, $-3x^2$, x (3) $sinx$, x (4) xe^x , e^x , x^2e^x

$$(5)x + 5, x + 1, x$$
 $(6)e^{x}\cos x, e^{x}\sin x$ $(7)x^{3}, x^{2}, x$ $(8)6 - 2x, x - 3, e^{x}$

2-a) prove that e^x , e^{2x}

are solution for y'' - 3y' + 2y = 0.

Are the function e^x , e^{2x} are linear dependent or independent?

b) prove that $y_1 = e^{ax} cosbx$, $y_2 = e^{ax} sinbx$ are solutions for the equation

$$y'' - 2ay' + (a^2 + b^2)y = 0$$

and prove that y_1, y_2 are linear independent.