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Abstract: The mathematical model of two-rigid links of one-legged walking robot dynamic control system have
been modified and adapted. The state-space model and its equilibrium points are found by using implicit
function theorem with Newton-Raphson method. Hence, a local linearized dynamic control systems are
obtained. Therefore, an optimal control criterion is designed to achieve some system performance objectives.
Since, the resulting system of linear-quadratic optimal control problems, the necessary and sufficient conditions
leading to atwo point’s boundary value problem with non-symmetric linear operator with respect to the usual
(classical) hilinear form. Hence, non-classical variational approach is not applicable. So, non-classical variational
approach mixing with direct Ritz bases in suitable functional spaces have been developed for solvability of this
system. The manipulation to this approach leads to the solution of either linear algebraic eguations or
unconstrained direct optimization problems. Both direction have been adapted. Illustration to this problem
using the physical parameter of have been discussed and solved the approximated solution and their
comparisons via. the proposed approach for both directions have been obtained numerically which are showing
very high accuracy.

Key words: Robot dynamic system, optimal control problems, non-classical variational approach, direct
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INTRODUCTION

A mathematical model of one-leg of walking robot of
two rigid link based on the result (Pannu et al., 1996)
have been adapted and modified. An experimental system
information and configuration were shown by Pannu et al.
(1996) and Hoifodt (2011). The analysis and design of
the linearized system about the critical point using
M-synthesis control for this system was presented by
Pannu et al. (1996). The stabilizing control for the walking
robot use only one leg of the system while the remaining
leg follows a command for locomotion where shown by
Hoifodt (2011) and Pannu et al. (1996). Many research
about robotic system and its modeling as well as
solvability, stabilization, controllability and optimality can
befound by Al-Shukaet al. (2014), Campos-Macias et al.
(2017) and Khusainov et al. (2017). A variational
formulation to every linear system of equation by
modified the classical bilinear forms with a freedom of
choice was given by Magri (1974). This direction may be
called the invers problem of calculus of variation. In this
study, we have mixed this approach with some kinds of
basis, for example, Ritz basis of completely continuous
functions in a suitable spaces, so that, the solution is

transform from non-direct approach to direct one. The
non-classical variational approach is developed in a
suitable function space regardless of non-symmetry of the
governorate linear operator. This approach have been
developed for alot of applications such asintegral integro
differential equations, partial differential equations,
oxygen diffusion in biological tissues, moving boundary
value problems with non-uniform initial-boundary
conditionanddescriptor system (Jawad, 2007; Makky and
Radhi, 1999).

MATERIALSAND METHODS

Mathematical model (robotic problem): The following
Mathematical model is developed and adapted the
derivation of this can be found in Appendix A. Hence, the
dynamic equations of motion in the absence of any
fractional forces are:

M(q)d+V(q,d)+G(q) =t @)
Where:
€M, My, u €G
M = ¢ WV=a PGty
gMQ MZZH g\/u-'-v g és

Corresponding Author: Radhi A. Zaboon, Department of Mathematics, College of Science, Al-Mustansiriyah University,

Baghdad, Iraq



Journal Name

M is assumed to positive definite, (moment of inertia
properties), then M™* exist and the description of the
variables are given in appendix B.

State-space model, the linearization and the assumption
state-space: To completely determines the behavior of the
system for any time, a state space representation is
defined asfollows:

Let:
p,=q . 0
1_ ' aplo ? P; 9
P §p21=@ P, i
=6 .1 (. H
=i, €8 EM'(V(9-00); @
?1(p1’p2’p3’ p4)9 ( )
N o P Pas Pai Pyi 1) 0
gf ’ , ’ :,F: 3 1 2 3 4 =
¢ z(pl P2 Ps p4)I gf“(pl, P,, P, p4,t)b
gF(pl’ pz’pa’pA)é
Where:
pT = (p3,p4),S:(pl, pZ'p:(p3’p4))T R
éM, -M,u
e u
andM*=¢ P Dy
§'M12 Mn@
€D D H
Where:

D= M11M22'M122

Assumptions 1; Should be posted on ) such that )00:
The equilibrium points of Eq. 2 are then the solutions of
the following nonlinear algebraic equations, we have that:

i 1(Pu p,) = cos(p,+p,)+
(mch1y+m2Ll) cos(p,)+(myL,) cos(p,) 0
2=c2

j 2(p1v P2, T) = (ngl-cz) COS(pl+p2)-T =0
p;,=0andp, =0

Implicit function method and Newton-Raphson approach
Implicit function method: In this study, the solution p, as
a function of p, is found by using the implicit function
theorem and Newton-Raphson approach. The necessary
condition for solvability of the nonlinear algebraic
eguation as a function of p, are found as:
Let:

q:(pz, T; p*), setdetgql_gat(pz, T; p*)l 0

¢Tag

Where:

L Fip,Tip)0
j_(pZ,T,p):(} 1( 2 *)::
9.(p. Tip);
gecos(p +p )+(M1L°1V+M2L1) COS(pl)+(M1L01X) COS(pl)g
é s Mchz(Mszcz)COS(pl+p2)-T é
Let:
32 det D 2at (p,, Ty ) 0B
éfag
4, d,
2 dp, dT L o -sin(pl+p2) (14)
L L _(M2gL02)Sin(pl+p2) 1
dp, dT (

P Tip)

0P -sin(p,+p,)t 0

One can set the second assumption (second assumption):

- 1(-p.0).(-2p, -p), % ®)
PPl 1 (0.p). (p. 20). %

Third assumption is found to be:

| m,L, | (6)
‘((mquy +mj.1)2+(m1Lclx ))‘ =

The fourth assumption is optional based in the nature
of control constraint. Since:

To =(MgL,,) cos(p,+p,) )

p°, isgiven such that (p',+p,),0, B) another choiceis also,
possible. Therestriction on the magnitude of ||T|| may also
be given by the following, if one interested in special
class of control (Bang-Bong piecewise-constant control).
Since:

||T§q|| <m0l
M,gL,<[T2,

|cos(p1+p2)|| 2 T;||<||M Ol

<ML, P ToT (-MgL . ML)

8

To define the class of equilibrium points, as:

1 (Pe Pas Py P T )1 !
EQ:¥ 5 p, =p, =0, p+p,1 -(0, p? with lst1y )

7 R?|2nd and 3d assumption with i

I i

p

{  |(4th resuit if needed) are satisfy
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Table 1: Phyical parameter of the one leg of two rigid link system

Parameters units L ,(m) L (m) L(m) Ly(m)

my(kg)

ma(kg) I,(kgm?) Io(kgm?) Inkgm?) n g

Thevalue 0.298 0.008 0.304 0.508

17.007

8.174 0.559 0.390 0.0020 60 9.81

Physical parameter of one-leg of walking robot of
two rigid links control dynamical system have been
adopted as given by Pannu et al. (1996). Based on the
define of EQ in Eq. 9 and the following physical
parameter of the one leg of two rigid link system
(Table 1) the critical point can be found by using
Newton-method.

Newton method for finding thecritical points. Based on
the result of Yang et al. (2005) the following is
modified to obtain a generalized formula for solving
problem Eq. 1:

(P, Tip})=

- - 10
p“(pz’T’ pﬁ) OWIthpa P, = o
i.(p,Tip;)=0

On using the Taylor series expansion up to first-order
about some estimate point (p';, P~ T¢), EQ, since JOO
one can guarantee that there is only one root to the
nonlinear agebraic system for given points”;, (0, B) and
T » (Mgl MogLo):

gj (.. T; pl)ﬂ@g (5 TS |o’£)fd+

§.(p T pl)a § (o5 T 0, )Y

eﬂ] 1l 1 T“ 1 (11)
eﬂpz ﬂT i é,-psU_ €0u

&, 5.0 S &l

&flp, ﬂTU(psz )

using some manipulations one can obtain:

¢ o L€ b lg (kT
gpélgzgﬁiﬂg (pz"'pz) 03211(p2,'|' *pl) (12)
S+l T Gkl € Ua K k. 0\

T e ) 148 TR
Hence, the critica point of the system is

P T ps P P K where a suitable number of
iteration designed is based on some accuracy
criterion. A modified Newton-Raphson method is then
adapted to solve the nonlinear-algebraic Eq. 12 for a
given the initial points which are selected such
that:

0<p,+p,<p, D* 0

m,L,
((m Ly +m,L ) (mchlx))‘

YT <M g

and <

Linearization: Once the class of equilibrium pointsin EQ
is obtained, it is then necessary to approximate the
nonlinear dynamic control system by linearization scheme
about some point belonging to EQ. Given the non-linear
state-space system control (Eq. 2) and the equilibrium
point p = [p, = 2, p= 2 ps =0, p, = 0] from

EQandu =T
ex,u eplpl
&, U X
xéAZ‘,J:eozpzuandu T Te
sl SPaPad
é"u
&4 334 p4g

The linearized state-space model of nonlinear control
system (Eq. 2) becomes:

é 0 0 1 0
éx,u ¢ 0 0 0 1UeX u
e u ¢ ug ua
QXZU: €01 N0, NpYi-Nipgs 0 uex2U+
&0 £ D D Ouex
é’u ¢© Ug °q
&Xs0 ehnglz'hlzgll hnglz'hlzglz 0 Uexau
D D H (13)
600
é,u
e % g
eé_hlz 3u+he| ght order terms
eby
é_hlll;I
EpH
Which can approximate by:
éx, U
6 0 0 0u§><2
X = AX+Bu, anhx
y= So 1 0 offex ()= (14)
éx40

X,1 R*, (A and B are given in Eq.13)

Where:
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Table 2: Critical pointsin radian

*

Parameters p*, (given) p*2 T*eq p*s p*s
Root1 1.501 0.3355 -6.4012 0 0
Root2 1.4839 0.4198 -7.9660 0 0
Root3 1.466 0.5096 -9.6014 0 0
Root4 1.4485 0.5996 -11.1973 0 0

! ! ! ! ! !
(The critical points is found for given p*; when ps, p) where the result is
obtained for somen O N of iteration up to some accuracy 0 = 10°

hy, = |1+|2+m1((|_w)2+(Lcly)2)+

mz((LI ) +(L)*+2(L,)(L,) cos(pz-p;))

h,, = 1,+n?l +m,(L,,)’

h,, = |2+m2((L02)2+L1(L02) cos(pz-p;))

h,, = |2+m2((LC2)2+L1(L02) COS(pz-PZ))
Mg&L,sin (ppi)+Le cos((piopi) +(pps) U

g, =-M zgg'LcZSin ((pl-p;)-'-(pz-pz))8

All are evaluated at p, T, from Table 2. Since, we
are interesting to transfer the system from an arbitrary
initial state to the origin while minimizing some
performance measure, the controllability may be
interpreted as necessary and (sufficient) condition for
the existence of the solution. The system (Eq. 14) is
locally controllability about the critical point if and
only if:

é 2
e_:ﬂf ’ﬂ Al ’adeg (
efluly = Wly v, Tuly -, €5, G
e u=4
é 3 u
e_:'"f ?19 AL a
gﬂu b ee | L Tl u

where, f(f,, f,, f;, f,)7 hence, the following is need for
optimality points view.

and D =h,h,,-hZ, D* 0form (4.2.2) Assumption 5:

g 0 -hJ 0 (h12 (hlzglz'hzzgn))'(Zhn(hlz*glz'hzzglz))8

é D D a

g 0 |"I_[S1 0 (hu(hnglz'hlzglz))D'z( h12 (hugiz'hlzgn)) 3

€ Yhas rank 4, for p’, T, T EQ
g'h_lz 0 (h12 (hlzglz'hzzgn))'(hu(hlz*glz'hzzglz)) 0 3 A
éD’ ’ D’ ’ g

g& 0 (hu(hngu'hlzglz))'(hlz (huglz 'hlzgn)) 0 3

€D D’ ¢!

Optimal control of linear quadratic: Thefirst amisto
minimize velocity and position of the linearized state
space systemandits applied torque with energy
consumption. Hence, the optimal control problem is
formulated as a quadratic optimization with the
performance measure J(u) of the form:

J(u) =

xT(tf)Sfx(xf)+%dj L(x, u)dt (15)

N[~

and the Lagrangian:

L(x, u) =x"(t)Qx(t)+u" (t)Ru(t) =
()gy aglxu

With the following requirements; The approximate motion
is given by system (Eq. 14). The optimal control amisto
transfer the arbitrary initial state to the zero as state

quickly as possible. The control variable u is weighted
with agiven positive definite matrix R = R™0 (U (t) R (t)
u (t) ( which guarantees smoothness of operation and x is
weighted with a given positive semi definite matrix Q =
Q™>0aswell as S = S;>0.

From the requirements 1-3 and the objective
function (Eg. 15) there exist optima control solution
(X, u); x is response corresponding to smooth controller
(Lee and Markus, 1967). Hence, the necessary and
sufficient condition of optimality are derived by using
Euler-Lagrangian equations as follows:

3(u) = 3% (1)Sx(t) +
%@L(x )+ T (6) (A (1) (1) +B(1) u(t) et

Define a scalar function H (the Hamiltonian) from
(Eqg. 15 and 14) asfollows:
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H =28 (Q)X(D) T (ROU(Er  (gq
@A (1)x(1)+B(t)u(t)y
Where:
proTH e Ty

x ' 1x -
.

&< (1) Q(t)x(t) +uT () R(t)u(t)g
fix (17)

I (t;) =Sx(t).t; isfixed

Since, u is uisassumed to be unbounded smooth
controller (without using the forth assumptions), the
necessary condition for optimality becomes:

0= jTHp 0=Ru+B"l ® u=-R'B’l (18)
¢ 0 0 1
e
() S 0 0
ex u @
gx 1( t)L:J ghzzgll'hlzglz hzzglz'hlzglz 0
2\Ju @ D D
&, (t)u e
2).(38@ éhllglz'hlzgn hnglz'hlzglz 0
s\tJu_e
(0 e ° 0
e u ¢
oo & o @ 0
g.(0g ¢ g
g 0 0 O
8 0 0 0 -q,
x(to)given, I (t,)2Sx(t;), q;.i= 22)

1, 2, 3, 4 arethe main dignal elemat of Q

The am is than to solve this problem by using
non-classical variational approach to obtain an
approximate solution of the original optimal control
problem.

RESULTSAND DISCUSSION

Two boundary value problem solution by non-classical
variational approach: The difficulty of finding compact
form solution to general two-boundary value problem
with a non-symmetric linear (differential) operator
d/dt with respect to the classical inner product
bilinear form tv,, v,; = lv, v, dt have led to formulate

hence,
X = Ax(t)+Bu(t) (19

I =-Qx(t)-AT2(t) (20)
X(to) =x%,1 R*and 1 (t;) = Sx(t, ), O<t,<t,

t; given. (t, may be arbitrary point of interval). Hence, the
two-point boundary-value problem is obtained as:

éxti_€éA -BRB3v'Uéxu
8878 A 8l
Where:
A4’4v B4'11 Q4'4v Rl’l’ X= [X11 X2y X3, X4]
and
=115l 51 ]
0 0 0 0 0
0 0 0 0 ﬂ "
-(hy,)? hyh,) Uity
o0 Al () G
(hyhy,) (hy)* ngs(t)g
00 ) b (o (2
0 0 _ h22911-h12912 _ 22912 12912 Bel 1(t)3
D D ué 2(t)d
O O hllng-h12gll h11g12 h12g12 ugl 3(t)g
D D u8.(tf
10 0 0 g
0 -1 0 0§

a non-classical variational approach to this problem, so
that, the solution is equivalent to the critical point of
some variational function under some necessary
condition (Dyer and McReynolds, 1970). Consider the
two-boundary value problem (Eg. 21), define the linear
operator L asfollow:

L(W) 2 L(Xy, Xp0 Xg Xgo Ly 1o 15 1,)

(f/aejxl dx, dx; ox,

(0]
agidt dtodt odt’ :
egdl dl, dl, d, - 0
%dt & d 8

Where:
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é 0 0 1

é

e 0 0

ghzzgll'hlzglz h5,9,-N1,0, 0

é D D

é

ehllglz 'hlzgll hnglz 'hlzglz 0
A=°¢ D D

€

g O 0 0

€

? 0 Oy 0

¢

g 0 0 Oz

8 0 0 0

Domain(L )

And the range of linear operator define as:

Range (L)1 V =C°(t,, t)1 H

(29)
(H is a suitable Hilbert space)

Assumption 6: H is a suitable Hilbert space (may be
define as C' [0, T] with max inner product law). Set F [w]
= 1/2<Lw, w>-<f, w> defined on the domain Domain (L).
The hilinear form <w,, w,> is assumed to be non-
degenerateon H, i.e.; If for every w,, H, (W, ,) =0w, =0,
If for every w, ,H, (W, w,) =0 thenw, = 0. If the linear
operator L: Domain (L) dH6Range (L) d H is symmetric
with respect to the chosen bilinear form <w,, w,> i.e.,
<Lw,, w,> = <w;, Lw,>, hence, defineF [w] » 1/2 <Lw, w>-
<f, w> otherwise in H,one can choose the symmetric
product (w,, w,) asbilinear form on H, therefor <w,, w,> »
(wy, Lwy)Y(Lw,, Lw,) = (Lw, Lw,)as<w, Lw>,
(symmtrics).

Remarks: All critical points of F [w]be a solution of Eq.
21 when the bilinear form <w,, w,> be symmetric on the
Range (L) of the given linear operator L (Magri, 1974;
Reiss and Haug, 1978). The linear operate L is positive
definite, ensures that the solution of Eq. 23 isthe minimum
part of F [w] (Reiss and Haug, 1978). Since, the operator
L is define by Eg. 15 and due to the present of d/dt, L is
not symmetric, linear operator with the usua bilinear
from <w,, w,> hence, <w,, w,> isredefine as:

(wy,w,) = (wy,Lw,) (26)

For given symmetric inner product bilinear form. One can
suppose that the range of given the linear operator L

0

“Uaa

00 0 0
u

0 0 0 0 a
) )

0 0 '(hlz) (h12h11) B
D D U

2 u

0 0 (h11h12) ('hll) LEI
D D 3

0 0 - hzzgn'hlzglz _ hzzglz'hlzglz u
D D U

0 0 h11912'h12911 h1lg12'h12912 H
D D 4

-1 0 0 0 3
0 -1 0 0 4

fw = (%, 1)1 R®R*|x(t,) = x,1 R 1 (t,)=x,S,1 R*, (x(.),1 ())1 Cl[to,tf]xcl[to,tf]}",l] L (24)
i when D Oand p, T, EQ %

(Range (L) ,H) bedenseinthelinear spaceV, i.e., Range
(L) = vd H, for approximation point of view. Due the
present differential operator, an integral bilinear form is
the best suggesting as <w,, w,> = 1", w, () w, () dt
which clear that L is not symmetric because of d/dt
operator appearing in the L operator. Therefor:

1 A 1 T
Flw[==<Lw, w>=(Lw, Lw) == Lw(t)(Lw(t)) dt
[w]=5 (Lw, Lw) = 2 & Lw(t)(Lw (1)
%@xl dx, dx, dx, & 33
L= i s R R Y
F[W]zgx% dt - dt o odt o dt D, a0
2, %cd, dl, d d,+ U .
° Ty T T T+ ul
e 0t ot dt B g (27)
T
oty dx, dx; dx, i, di, dly dlLE
aaddt dt dt dt dt dt dt dt g 0
Theorem (5.1): Consider the nonlinear robotic system

(Eq. 1) the following are assumed:
A The date space represented by
transformation Eq. 2.

A,: Theclass of critical point EQ is given by Eq. 9.

A, Thelinearization is found by linearized the nonlinear
state space system (Eq. 2) about the critical point
(P2 P2 Pa T), EQ when the EQ is the class of
equilibrium definein Eq. 9. The approximate equation
of motion then is found by Eq. 14.

. The optimal preform index (cost function) is define
by Eg. 15 which defines the optimal control problem
together with the initial and boundary condition, the
necessary and sufficient conditions for optimality
leads to the two point boundary value problem Eq.
21 and 22.

nonlinear
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A The nonlinear control

controllable.

system is locally

Then the approximate solution to the original optimal
control problem (Eqg. 1) with the assumptions (A1-A5)
isthe critical point of the following functiona Eq. 21 and
vise-versa.Where the bilinear form  <w,, w,> . 1", Lw, (t)
(Lw, (t))" dt is symmetric and non-degenerate bilinear
form.

Proof: The proof is easy to be derived by using the step
of [A1-A5] and the direction proof of (Magri, 1974,
Zaboon and Abd, 2015).

Application approach (robotic problem): Based on the
result of theorem (5.1) with a suitable Hilbert space (may
be separabl e Hilbert space, for optimization point of view
if the selected bilinear form is positive definite one) if the
following are assumed.

Gi(t) islinearly independent function with

. (29)
G (tO) =0
%(E) is-found such that of x' (to) = (30)
XIO U a:)(to) =
L (1) = bt )+ bk (1) k =1,2,3, 4 (31)
YAYINT . ) )
H¥ (t) islinearly independent function with 22)
HX(t,)=0
b (t,) isfound such that of | *(t,) = @)

XSy U g (t) = xSy

The functional F [x, 8] becomes function of the
varigble , pwhere, = (a, &, &, &) wherej = 1,2, ..., N,

x(=a ()& ac()i=1234 @8 Mp=ELDbLE) Whaes21,2,.. M,
v a1 21 Oform =
2 bH——<LW,W> fow2 2(L(x,l ). (% )> ?‘8 ﬂ b%form

o Ni

& ,011-N1,0,, 6, 2
g—D p -8, (t)+ a

e
é
ege< 4bs )oa ")

1 j:la1e;<t))-(a3(t) &) ga
| el ()- =2t Yai (1) ), e (1)

)&(hmxh11 _(b4 +8 " bl 1 )))“(é,'l 2'G? (1)L

" et (0)-{at 0+ a0 +

e
&1,,0,, 1,0, 6 X 0,11, &{-hy;xh;,) 6
g 11 12D 129 (a})() ar, }G}( )) ¢ 19-he 12<(80 +a, 1ajGj2( )) g 11D 12 ;
é . (34)
& " biHY (t + Y
14§ b S H3 a('hnxhn)o 4 9 Mk % s=1 78 +
_Q% 0( )+as 1S S(t))-g _(bo(t)+a.s =1 s s ) o _+
- & P s o (@) +8 -, a6} (1)

D

o

a " bH

2(0)+a (5 ()8 1,

g e (b (1)44 ™ bib (1)) +(3

D> D> D> (D> D>

=

@ D> @ D D @
O
LR

(1)+& % bt (1)) +(& % b

Hence, the critical pointe of this function is then
equivalents:

e b 1)+4 2, b))« P02 s 0)+8 1, e 1)+

aszjZ(t))+ 11912[') 12911(bg() é o s s(t))+

1 B2 (1) 40 (25 (1) +8 Y, 8165 (1)) +3
L0+ (ab(0)+8 1 avGH (1)) + ol

Ca ", b2HZ (1))

[ Y ey Y el ani Y enlY enly enlY exlY el el el Y any enly endY endY enlY el el an Y any en ey C~C~C~C ey enly enly e

LN .

S - N Y
fIF =0, TF =0, I = TF =0
b, b b3 b
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By choosing a set of linear independent function G;
(t) with condition Eq. 29 and 30 and H, with the condition
Eqg. 31 and 32. And N; M, number of selected base. On
simple calculate, a linear algebraic solvable system
obtained as:

€A, ApueZyu_éByl
e

éAzl 22 ueZuH nglu
gal’aj’ j’ajH andzZl 535: bg,bg:bg

,WhereZ,, =

§

To clarifying these selection one can see the details
in the following illustration. Another direction is possible,
section (Eq. 8).

Numerical Illustration (robotic problem): Consider the
mathematical model of one-leg of walking robot of two
rigid link, as discussed in section one where the physical
parts are given in Table 1 on using the linearization
schema (Eq. 14) with selected thefirst critical points. (The
critical point from Table 1).

Hence:

The basic functions that satisfying the initial and

o0 ¢ 0 0 1o0MKuE O O
U e u u e u
ezg_e O 9 9 lighge O g
&0 6151821 -24011 0 O0Uéx,U &0.2542 U
&, 0 14333 -21461 0 Ofex,[ &0.83882(]

Define the optimization criterion (section 5.1) as follow:

mind= & :l(XTQx+uTRu)dt whereQ =
u Q:O !

&, 0 0 O0u

é G

g0 & O U R>0, x1 R*

€0 0 g, OU

é G

&0 0 0 dug

where, ;=3,i=1,2,3,4 R=10,S,=0,t,=0andt,=1
We are interesting for the solution on the period 0#2#B
from Eq. 16-21 we have the following two point
boundary-value problem:

éx,(t)ju é 0 0 1000 0 0 uéx,u
& (g & 0 0 0100 O 0 U&,J
gx;(t)g 6151821 -24011 0 O O O -0.0065 0.0213Uéx,u
o, (1)0_§14333 21461 0 0 O 0 00213 -0.0703(eX,q @)
.Y e -3 0 0 0 0 0 1518211 1433308 U
én\/u e Gaé *a
a,(t)a e 0 3 0 0 0 0 24011 214610d ,0
:%(t)g g 0 0 30-10 0 0 3333
g, & o 0 0-30-1 0 0 pd .8
x,(0) =1, x,(0) = - 2, X,(0) = 2, x,(0) = 3x,(1)= 0, X, (1) = 0, x,(1) = 0, x, (1) = 0 and (36)
() =%,8 =0®1,(1)=0,i=1,2,34
Whichis equivalent to:
.2 )
gasd ¢ agk, o 2@' (-15.1828)x,-(-24012) °
—-x —2-X,x T+
? g § -0.0065)1 ;- (0.0213)1 )5 Y
1 n;§ £ (1.4333)x,-(-2.1461) x,-0 2L 3¢, (15.1821)1 ,+ Y
Flw]=>Q é T+t T+t @37
(0.0213)| ~(-00703)1, §(-1.4333)|4 5 3
& ¥
_2 2 @X 0 p
e(; +3X +2.4011 3T ?;(34_3)( +| +(; dt : H
§+2.146]J . 5 e s 3,4, 5 0

terminal condition be assumed as follows:
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x, (1) :1-getig+ao(t2-tt,)+a1(t3-t(t )), %0 = -2+g¢i_+a2(t2 tt)+ay(t4(t, )°)

et g Lo
xa(t) = 262 ra, (et ) va (£4(1,)7) xu0 = ?r(afi_+aﬁ(t2 tt, ) +a (t-t(t,)° (38)
eli g Lo

I 1(t) = bo(t'tf)+b1(t2'(tf)2)' l 2(t) = bz(t'tf)+b3(t2'(tf) )
20 = by (14, ) b €-(8 ), 11400 = by(t-t,)+b,(€(1)?

Since:
I o owherej=0,1,... 7and T =, A ApUeZ,U_ B, (40)
' b, (39) g-A A, ng u 33 u
21 u 1U 22U
where, j=0,1,...,7 Where:
68385 12578 0 02697 11126 1.6689 0 -0.0239y 6-05 05 0 0 -37848 -52987 0.3230 0.4522()
§12578 19204 02697 0 16689 25431 00239 0 & §075 08 0 0 -52987 -75695 04522 0.6460;
€ 0 -0277 06667 1 0 -00400 O 0 U €025 035 0 O -04989 -0.4989 -0.0036 -0.0036U
A 230.27 0 1 15619 0.040 0 0 0 ﬂ , €035 05 0 0 -07484 -07983 -0.0053 -0.00573
" 21.113 1.669 0 00400 09790 1.4686 0 0.05243 2 g 0 0 -05 -05 -0.6028 -0.8439 -0.5282 -0.73953
81669 2543 -0040 0 14686 22759 -00524 0 0 €0 0 -075 -08 -0.8439 -12056 -0.7395 -1.0564(
&0 0024 0 0 0 00524 06667 1 § &0 O 025 035 -00036 -0.0036 -0.4883 -0.4883
80024 0 0 0 00524 0 1 15619f §0 0 035 05 -00053 -0.0057 -0.7324 -0.7813f
6-05 075 025 035 0 0 0 0§ 613333 14167 0 0 70011 97881 -0.7167 -0.9555(
§-05 08 035 05 0 0 0 0 4 §14167 18667 O 0  43%40 70011 -04778 -0.7167
) 0 0 0 05 075 025 0350 & o0 0 13333 14167 12006 1.6007 05730 1.09740
R :g 0 0 0 0 05 08 035 05 EA :g 0 0 14167 18667 08004 12006 00487 05730
2 2—3.785 -5.2087 -0.4989 -0.7484 -0.6028 -0.8439 -0.0036 -0.00533 z 27.0911 43940 12006 0.8004 7.9754 9.94425 -55364 -6.92053

€-5299 -7.5695 -0.4989 -0.7983 -0.8439 -1.2056 -0.0036 -0.00570 €9.7881 7.0911 1.6007 1.2006 9.94425 12.7339 -6.9205 -8.85820
&.3230 04522 -0.0036 -0.0053 -0.5282 -0.7395 -0.4883 -0.73243 8-0.7167 -0.4778 0.5730 0.0487 -55364 -6.9205 3.2218 3.7773 ﬂ
§0.4522 06460 -0.0036 -0.0057 -0.7395 -1.0564 -0.4883 -0.7813f §09555 -0.7167 1.0974 05730 -6.9205 -8.8582 3.7773 4.8883H

T T
w=la 2 a a, a a a a].Z,=[b, b, by b, b by b b,
é8889 13.3767 3.56333 51783u eO5 15 6 575 -13.29131]T

By = €28204 -4.1660 1.2124 1. 5686LJ and B;, = €14.8620 09335 37848 U
€ - € - u
Since: .
< > = >
ALALA, and A(mx m) w,, w,> = (wy, Lw,) P (Lw,, Lw,)>0
éA A u
detg = det(Ay)det(A,, - ALALA,) = Lw, w = (Lw, Lw) = (:ELW(LW)T ats2 0
eA21 Azzu

0.51032* 0then ) o
Then by Reiss and Haug (1978) the solution is

Solving the above system by algebraic equations: equivalent to:

Hence and the approximate solution to the two point
boundary vaue problem Eq. 35. And have localy to
(Eq. 1). Table 3 and 4 numerical rustle of state vector, co bix. dx. dx. dx, dl. dl. dl. d.g U
state vector and optimal control first system of N.C.V g————“—l—z —2, == -Awg
linear algebraic (system) J(u) = 12.411. U

The direction two: Since, the linear operator is positive Gt — b = =t A 2 s AWl
definite with respect to bilinear form: dt - dt - dt dt oot
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Table 3: Nmericd Illustration (robotic problem)

Parameters p*1 (given) P T Ps Pa
Critical pointl 1.501 0.3355 -6.4012 0 0
" - " " . . - "
0.9786 -3.4572 3.1952 0.1998 35.0545 -19.7437 -1.6427 1.8667
b, b, b, b, bs b b, bg
-22.8456 10.9089 -11.5163 6.1609 0.3452 1.3123 -0.9799 1.9086
Table 4: Numerical rustle of state vector
State vector Co-state

Optimal control u
Time Xy (1) X, (1) X (1) Xq (1) 8, (t) 8, (t) 8 (t) 8, (t) u=-R'B'8
0 1 -2 2 3 -2.46280  -0.691500 0.330400 -0.294000 0.0491
0.1 1.202710 -1.450100  1.153318 3.040745 -2.02360  -0.219910 0.243315 -0.141670 0.0268
0.2 1.346573 -0.891870  0.568221 2.942512 1.62726 0.162256 0.168240 -0.016660 0.0084
0.3 1.428431 -0.462800  0.200505 2.729024 -1.27380 0.454986 0.105175 0.081039 0.0062
0.4 1.445126 -0.120010  0.005966 2.424000 0.96322 0.658284 0.054120 0.151416 0.0169
0.5 1.393500 0.134250  -0.059600 2.051163 -0.69550 0.772150 0.015075 0.194475 0.0238
0.6 1.203940 0.297774  -0.040400 1.634232 0.47066 0.796584 -0.011960 0.210216 0.0267
0.7 1.072649 0.368665  0.019367 1.196930 0.28868 0.731586 -0.026980 0.198639 0.0259
0.8 0.797107 0.343709  0.075491 0.762976 0.14958 0.577156 -0.030000 0.159744 0.0211
0.9 0.440610 0.221672  0.083770 0.356093 0.05336 0.333294 -0.021000 0.093531 0.0125
1.0 0 0 0 0 0 0 0 0 0
Table 5: Approximate solution of F[*'-, b-]
" " o D e " - "
8.8752 -3.2141 2.9952 0.2756 34.1545 -17.9537 -1.6427 1.8667
b, b, bs b, bs bs b, o
-21.9456 10.8764 -11.5163 5.9509 0.3352 1.3123 -0.9799 1.9086

Table 6: Numerical rustle of state vector, co state vector and optimal control first system of NCV by using Hooks and Jeeves (direct optimization technique)

State vector Co-state
Optimal control u
Time Xy X5 X3 X4 8, 8, 8, 8, u=-R'B'8
0 1 -2 2 3 0 -1.5224 -5.3692 0.829200 4.337200
0.1 1.174810 -1.414010 1.148818 3.040745 0.1 -1.16978 -4.02444 0.691821 3.782538
0.2 1.295373 -0.907870 0.560221 2.942512 0.2 -0.86168 -2.8592 0.566544 3.254752
0.3 1.359131 -0.483800 0.190005 2.729024 0.3 -0.59812 -1.87348 0.453369 2.753842
0.4 1.363526 -0.144010 -0.006030 2.424000 0.4 -0.37908 -1.06728 0.352296 2.279808
0.5 1.306000 0.109250 -0.072100 2.051163 0.5 -0.20458 -0.4406 0.263325 1.832650
0.6 1.183994 0.273774  -0.052400 1.634232 0.6 -0.0746 0.00656 0.186456 1.412368
0.7 0.994949 0.347335 0.008867 1.196930 0.7 0.010845 0.2742 0.121689 1.018962
0.8 0.736307 0.327709 0.067491 0.762976 0.8 0.05176 0.36232 0.069024 0.652432
0.9 0.405510 0.212672 0.079270 0.356093 0.9 0.048145 0.27092 0.028461 0.312778
1.0 0 0 0 0 1 0 0 0 0
Table 7: The compression between the solution of both direction
X1 X1 X2 Xz X3 X3 X4 X4

Time NCVS NCVH&J  Error NCVS NCVH&J Error NCVS NCVH&J  Error NCVS NCVH&J  Error
0 1 1 0 -2 -2 0 2 2 0 3 3 0
0.1 1.202710 1.174810 0.0279  -1.405010 -1.414010 0.009 1.153318 1.148818 0.0045  3.040745 3.040745 0
0.2 1.346573 1.295373  0.0512 -0.891870 -0.907870 0.016 0.568221 0.560221 0.0080 2942512 2.942512 0
0.3 1.428431 1.359131 0.0693 -0.462800 -0.483800 0.021 0.200505 0.190005 0.0105 2.729024 2.729024 0
0.4 1.445126 1.363526  0.0816 -0.120010 -0.144010 0.024 0.005966 -0.006030 0.0120  2.424000 2.424000 0
0.5 1.393500 1.306000  0.0875 0.134250 0.109250 0.025 -0.059600 -0.072100 0.0125 2051163 2.051163 0
0.6 1.270394 1.183994  0.0864 0.297774  0.273774 0.024  -0.040400 -0.052400 0.0120 1.634232 1.634232 0
0.7 1.072649 0.994949  0.0777 0.368335 0.347335 0.021 0.019367 0.008867 0.0105 1.196930 1.196930 0
0.8 0.797107 0.736307  0.0608 0.343709  0.327709 0.016 0.075491 0.067491 0.0080 0.762976 0.762976 0
0.9 0.440610 0.405510 0.0351 0.221672 0.212672 0.009 0.083770 0.079270 0.0045 0.356093 0.356093 0
1.0 0 0 0 0 0 0 0 0 0 0 0 0

By using the same procedure above the problem is be found. Hooke and Jeeves method (Kirgat and

transferred into an optimization method when a suitable
basis function have been used to approximated the
solution (Eg. 28-30).

Since, the problem of quadratic optimization, on
using some direct optimization method, the solution may

10

Surde, 2014) of direct search optimality technique have
been adapted to find the approximate solution of F g, by
Eq. 33.

Table 5-7 numerical Rustle of state vector, co state
vector and optimal control first system of NCV by using
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Transmission
Pulley

Prent

Fig. 1: schematic model of the under actuated leg

Hooks-and Jeeves (direct ptimization technique) Ju) =
11.0825. The compression between the solutions of both
direction are below.

The model of one-leg of walking robot of two rigid
links control connected by dynamic control tem system
based on Pannu et al. (1996) and Anderson et al. (2010)
is adapted as follows in Fig. 1. The basic lows for the
derivation of this model may be derived using the
following steps:

Step 1: Consider the position of the centers of mass as a
function of the generalized coordinates:

C Lg,: distance to center of mass of link 1 along the
center line

C L., distance to center of mass of link 1 orthogonal
the center line

C L distance to center of mass of link 2 aong the

center line

L.: lenghof link 1

M,: mass of link 1

M,: mass of link 2

l,: isthe moment of inertia of link 1 about center of

mass

C I, isthe moment of inertia of link 2 about center of
mass

C I, isthe moment of inertia of trnsmission of pulley
and belt

C n: Tranmission reduction ratio

C  H:2x2inertiamatrex

C V:2x1corolisvector

C G:2x1gravity vector

C  h:2x2linearized inertiamatrix at the operating point
C g 2x2linearized gravity vector at the operating point
C 2;: Angleof link 1 relative to horizontal (+CCW)

C 2, Angleof link 2relative to link (+CCW)

C  pe Equilibrime angle for link 1 relative to horizontal
C P, Equilibrimeanglefor link 1 relativetolink 1

C T: Torque provided for tranmission (+CCW)

C T equilibriom Torque

C J: 2x1input torque vector

X, = (Lclx_Lcly)Cos(ql)' Y. = (Lclx 'Lcly) Sin(ql)
X, = Ly cosq+L,co8(cy*0y), Y, = Lysing,+L,sin(q,+a,)

Step 2: Based on the result of step 1, the following is
obtained:

X = '(Lclx'l-cly) Sin(ch)ql: y, = (Lclx_Lcly)COS(ql)ql
Xz = 'Llsin(ql) ql'l-czsm(q:l"'qz)ql'l-czsm(q:l + qz)qz
yz = Llcos(ql)ql_LcZCos(q1+q2)ql_|‘(:2 cos(q1+q2)q2

Step 3: omputing the kinematic energy:

K(aa) =5 (my (5 +52 ) +m (s 492 +1.05 + 1, (a+a,)
Where:
(x2+7) 2 4L +Li1y) q+(L2 +12,, ) o8’ (q,) o U=
Lo L o (s’ (o)) = gLt L, )
Similarly:
é%l‘ls.n(ql)jl_LCZS-n(ql-*_qz)Qfgz+9
cél s : o+
(X§+y§):g czsm((h""qz)qz ' ﬂz ::
galcos(Q1)Q1'Lc2COS(Q1+q2)q1'2 =
S&L ,cos(q,+0,) gy 7

qui)a+

Hence, the kinematic energy:

) (y+a,)” +2L L o, +0,0, ) cos(a, )

1, (L2, L2, )+m L3 +m LatO,,
2(.:_E‘Zm L Lcos(a,)+ +, 51

K(aa)=

1 . ..
E(mzl-iz"'l 2n2| m ) qg"’(mz chz+2m2L1Lc2COS(Q2) + 2)Q1Q2

11
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Step 4 : The potential energy of this system:

P(q) = mgy,+m,gy, £ mlg(Lclx _Lcly)cos(ql)+
m,g(L,sin(q,)+Lcos(q,+a,)

Step 5: Based on Euler-Lagrange equations of motion
(one can Eq. 28), the mathematical model is then found as:

dadl o dl _
dt&fgp dg
Where:
L=K-P,q=(q, g,)andt =(t,, t,)
Then:

My, = |1+|2+ml((|‘01X)2 +(LC1V)2)+

m, (L) +(La)” +2(L) (Lo )cos(a,))

M, isdifferent from that of Eq. 23 which has erroneousin
thisterm:

My = 1+m, (L) 4L, (L) cos(ay))

M,, = I2+n2Im+m2(Lc2)2,V11 =-2m,L,Lsin(q,)q,
Vy, =-m,L(Ly,)sin(a,)d,, Vy, = myLy (L, )sin(a,)a,
V,,=0,G, = mlg((Lcly)cos(q1)+(LC1X)sin(ql))+
m,g((L,)cos(q,) + (L) cos(cy + )
G,=myg(L,)cos(q,*a,), t,; =0;t, =T

In this study, the rigid body mechanics robot
manipulator motion of one-leg, two links (based on Rao
(2009) is formulated with the help of Lagrangian
mechanics:

M (q)g+V (q, q)+G (a)=t

Where:

2,R* = Theposition coordinates

gandg = Standing for associated velocities and
accelerations

J,R = Thedriving forces (control optimality)

M(2) = = The(generalized) moment of inertia

MT(2)>0

v(a.q)g = TheCoriolis, centripetal and frictional forces

G(2) = Thegravitational forces

al vary aong the trajectories.
CONCLUSION

The purpose of this study is extend the previous
stud of Magri (1974) and Jawad (2007) and their
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applicability to the two boundary vaue problem with
non-symmetric linear operator defined a suitable H space
which are the resulting of the necessary and sufficient
condition of optimality of nonlinear robotic control
problem.

RECOMMENDATIONS

As one can see the numerical solution using
proposed approach (with both directions) from. Both
direction are efficient and the second direction gives
J(u) = 11.0825<J(u) = 12.411.
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