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Chapter Tow 

"Methods to solve O.D.E. of the first order " 

Introduction  

In this chapter we will studied a solution for O.D.E. of the 

first order.  

The general form of O.D.E. of the first order and degree 

is: 𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)𝑑𝑦𝑑𝑥 = 0 

 𝑜𝑟  

𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0  

𝑜𝑟  

𝑑𝑦

𝑑𝑥
=

−𝑀(𝑥, 𝑦)

𝑁(𝑥, 𝑦)
= 𝑓(𝑥, 𝑦)  

𝐄𝐱.  

1−(𝑦−𝑥)+𝑥2 𝑑𝑦

𝑑𝑥
=0  

2−(𝑦 − 𝑥) + 𝑥𝑦
𝑑𝑦

𝑑𝑥
= 0  

3−(𝑥2𝑦 + 2𝑥)𝑑𝑥 + (3𝑥 − 𝑐𝑜𝑠𝑥)𝑑𝑦 = 0 

4−
𝑑𝑦

𝑑𝑥
= 𝑦𝑥 + 2𝑠𝑖𝑛𝑥  

Remark  

1- There is no rule to solve all O.D.E.  

2- A derivative 
𝑑𝑦

𝑑𝑥
 of a D.E. y=y(x) gives slopes of tangent 

lines at points on its graph.  
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We will be solving the following equations:  

1- Equations with separated and separable variables  

2- Equations of homo. type  

3- Equations with linear coefficients  

4- Exact D.E.-integrating factors  

5- Linear D.E.-Bernoulli's Equation  

1-Equations with separated and separable variables 

Definition  

A first order O.D.E. of the form:  

𝑑𝑦

𝑑𝑥
= 𝑓1(𝑥)𝑓2(𝑦)  

Is said to be separable or to have separable variables  

.Ex  

1- 
𝑑𝑦

𝑑𝑥
= 𝑦2𝑥𝑒3𝑥+4𝑦   Separable variables  

2- 
𝑑𝑦

𝑑𝑥
= 𝑦 + 𝑠𝑖𝑛𝑥 𝑛𝑜𝑡 Separable variables  

 

Ex: 

Solve the following equations. 

1- (𝒚+𝟏)𝒅𝒙+𝒚𝟐(𝒙−𝟏)𝒅𝒚=𝟎  

Solution  
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2- 𝑥𝑦𝑑𝑦 + (2𝑥2 − 1)(𝑦 + 2)𝑑𝑥 = 0  

Solution  

𝑦

𝑦 + 2
𝑑𝑦 +

2𝑥2 − 1

𝑥
𝑑𝑥 = 0  

𝑦 + 2 − 2

𝑦 + 2
𝑑𝑦 + [2𝑥 −

1

𝑥
]𝑑𝑥 = 0  

[1 −
2

𝑦 + 2
]𝑑𝑦 + [2𝑥 −

1

𝑥
]𝑑𝑥 = 0  

∫[1 −
2

𝑦 + 2
]𝑑𝑦 + ∫[2𝑥 −

1

𝑥
]𝑑𝑥 = 0 
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𝑦 − 2𝑙𝑛(𝑦 + 2) + 𝑥2 − 𝑙𝑛𝑥 + 𝑐 = 0  

3- 𝑥𝑑𝑥 + 𝑦𝑑𝑦 = 0  

Solution  

𝑥2

2
+

𝑦2

2
=

𝑐1

2
  

𝑥2 + 𝑦2 = 𝑐1(Circles with center at the origin)  

4- 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑𝑑𝜃 − 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑𝑑𝜑 = 0  

Solution  

𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃
𝑑𝜃 −

𝑠𝑖𝑛𝜑

𝑐𝑜𝑠𝜑
𝑑𝜑 = 0  

− ln|𝑐𝑜𝑠𝜃| + ln|𝑐𝑜𝑠𝜑| = ln 𝑐 

𝑙𝑛
𝑐𝑜𝑠𝜑

𝑐𝑜𝑠𝜃
= 𝑙𝑛𝑐  

∴
𝑐𝑜𝑠𝜑

𝑐𝑜𝑠𝜃
=𝑐  

𝑐𝑜𝑠𝜑=𝑐 𝑐𝑜𝑠𝜃  

𝟓 −  
𝑑𝑦

𝑑𝑥
= −𝑥𝑦 , 𝑦(4) = −3  

Solution  

𝑦𝑑𝑦 = −𝑥𝑑𝑥  

𝑦2

2
=

𝑥2

2
+

𝑐1

2
  

𝑥2 + 𝑦2 = 𝑐1  

16 + 9 = 𝑐 →∴ 𝑐 = 25  

𝑥2 + 𝑦2 = 25  
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𝑦 = ∓√25 − 𝑥 2 

𝑦 = 𝜑1(𝑥) = √25 − 𝑥2 , 

𝑦 = 𝜑2(𝑥) = −√25 − 𝑥2  

Exercises  

Solve the following:  

1- (1 + 𝑥)𝑑𝑦 − 𝑦𝑑𝑥 = 0 (𝐻.𝑊)  

2- (𝑒2𝑦 − 𝑦)𝑐𝑜𝑠𝑥𝑑𝑦𝑑𝑥 = 𝑒𝑦𝑠𝑖𝑛2𝑥 , 𝑦(0) = 0 (𝐻.𝑊.)  

 

 

2-Equations of homo. type  

:Definition  

The function f(x,y) is said to be homo. function of degree 

n if 𝑓(𝑡𝑥, 𝑡𝑦) = 𝑡𝑛𝑓(𝑥, 𝑦)  

Where t is a function of x or y or constant.  

example 

Are the functions of homo. Type 

1− (𝒙, 𝒚) = 𝒙𝟐 + 𝟑𝒙𝒚 + 𝒚𝟐 

Solution  
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2− (𝒙, 𝒚) = 𝒙 + 𝒙𝟐𝒚  

Solution 

 (𝑡𝑥, 𝑡𝑦) = 𝑡𝑥 + 𝑡3𝑥2𝑦 ≠  

𝑡𝑛(𝑥 + 𝑥𝑛𝑦)    

F isn't homo.  

3− (𝑥, 𝑦) = 𝑒
𝑦

𝑥 + 𝑠𝑖𝑛(𝑦𝑥)  

Solution  

 

F is homo. of zero degree  

Definition  

O.D.E. 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 is called O.D.E. of 

homo. type in x,y if M,N are homo. functions of equal 

degree.  

1-Ex 
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Are the following equations of homo. Type 

 (𝑥2 + 𝑦2)𝑑𝑥 + (𝑥2𝑦 + 𝑥3)𝑑𝑦 = 0  

isn't of homo. type  

𝟐 −  (2𝑥𝑦 + 𝑦2)𝑥 + (𝑥 + 𝑥2𝑦)𝑑𝑦 = 0  

isn't of homo. type  

𝟑 −  (2𝑥𝑦 + 𝑥2)𝑥 + (𝑥2 + 𝑦2)𝑑𝑦 = 0  

of homo. type  

Remark  

1- let f(x,y) is homo. function of n degree 𝑓(𝑡𝑥, 𝑡𝑦) =

𝑡𝑛𝑓(𝑥, 𝑦),then:−  

Let 𝑡 =
1

𝑥
  

∴ 𝑓 (1,
𝑦

𝑥
) =

1

𝑥𝑛
𝑓(𝑥, 𝑦) ∴ 𝑓(𝑥, 𝑦) = 𝑥𝑛𝑓 (1,

𝑦

𝑥
) 

∴ 𝑓(𝑥, 𝑦) = 𝑥𝑛𝜑(
𝑦

𝑥
)𝑤ℎ𝑒𝑟𝑒 𝜑 is a function of 

𝑦

𝑥
 . 

Every function in y/x is homo. of zero degree  

2- we can solve O.D.E.of homo. type by the following 

steps:  

1- write the equation by general form  

2- let 𝑦 = 𝑣𝑥  

𝑑𝑦 = 𝑣𝑑𝑥 + 𝑥𝑑𝑣  

3- substituted (1) in given equation obtain equation of 

separable variables in x,v variables solve this equation  
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4- Substituted 𝑣 =
𝑦

𝑥
 obtain the solution of given equation 

in x,y variables  

.Ex  

1- Find the general solution of I.V.P. 

 (𝑥2 + 𝑦2)𝑥 − 2𝑥𝑦𝑑𝑦 = 0 , 𝑦(1) = 1  

:Solution  

𝑀(𝑥, 𝑦) =  𝑥2 + 𝑦2 homo. of 𝑠𝑒𝑐𝑜𝑛𝑑 𝑑𝑒𝑔𝑟𝑒𝑒  

𝑁(𝑥, 𝑦) = −2𝑥𝑦 homo. of second degree  

∴ O.D.E. of homo. type  

𝑦 = 𝑣𝑥 , 𝑑𝑦 = 𝑣𝑑𝑥 + 𝑥𝑑𝑣  
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∴ 𝑐 = 0 → 𝑥2 − 𝑦2 = 0 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼.𝑉.𝑃.  

2- 𝑺𝒐𝒍𝒗𝒆 𝒕𝒉𝒆 𝑰. 𝑽. 𝑷. (2𝑥𝑦 + 𝑦2)𝑥 − 2𝑥2𝑑𝑦 = 0 𝑦(𝑒) =

𝑒  

:Solution  

𝑀(𝑥, 𝑦) =  2𝑥𝑦 + 𝑦2 homo.  of second degree  

𝑁(𝑥, 𝑦) = −2𝑥2 homo. of second degree  

∴ O.D.E. of homo. type  
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Exercises  

1- Find the general solution of 𝑥𝑑𝑦 − 𝑦𝑑𝑥 = √𝑥2 +

𝑦2𝑑𝑥  

2- Solve the equation (𝟐𝒙 − 𝟑𝒚)𝒅𝒙 − (𝟐𝒚 + 𝟑𝒙)𝒅𝒚 =

𝟎 


