Chapter two Methods to solve O.D.E. of the first order
The fifth lecture

Chapter Tow
""Methods to solve O.D.E. of the first order "
Introduction

In this chapter we will studied a solution for O.D.E. of the
first order.

The general form of O.D.E. of the first order and degree
is: M(x,y) + N(x,y)dydx =0

or

M(x,y)dx + N(x,y)dy =0

or
dy —M(xy)

dx  N(x,y) =/(xy)
EX.

(o 24y_
1—(y—x)+x — 0
(v v _
2—(y x)+xydx =0
3—(x%y + 2x)dx + (3x — cosx)dy = 0
4

Lo yxt 2sinx

Remark
1- There is no rule to solve all O.D.E.

2- A derivative % of a D.E. y=y(X) gives slopes of tangent
lines at points on its graph.
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We will be solving the following equations:

1- Equations with separated and separable variables
2- Equations of homo. type

3- Equations with linear coefficients

4- Exact D.E.-integrating factors

5- Linear D.E.-Bernoulli's Equation

1-Equations with separated and separable variables
Definition

A first order O.D.E. of the form:

dy B
== (L)

Is said to be separable or to have separable variables
EX

d .
1- d—i = y2xe3*+4Y  Separable variables

d . .
2-=% =y + sinx not Separable variables

EX:
Solve the following equations.
1- (y+1)dx+y2(x—1)dy=0

Solution
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x2(y+ Ddx+y*(x—1)dy=0]+ (y+ 1)(x = 1)

x‘?—l+ld +y2—l+1d _ 0
x—1 T y+1 YT

XZ y2
d
P

dy =0

(;r—l)(x+l)+ldx+(_y—1)(_y+1)+1d

x—1 y+1
[+l+ - ]d + 1+ ! dy =0
8 ) b ST IV =
X2 y2
?+x+ln(x—1)+?—y+111(y+1)+cl=0

x2+2x+2In(x—1D)+y* =2y +2In(y+ 1)+ 2¢; =0

x24+y?+2x—2y+2Inx—1)(y+1)+c=0

2-xydy + 2x* —1)(y+2)dx =0

Solution
IRk
y+2 X
Yt e ¥ [2x—Sldx = 0
y+ 2
2
[1—m]dy+ [2x —=]dx =0
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y—2ln(y+2)+x*—Inx+c=0
3-xdx +ydy =0
Solution

X
2

2 2
y Cq1
+-=2
2 2

x? + y? = ¢,(Circles with center at the origin)

4- sinfcospdf — cosOsinpdp = 0

Solution
sin6 sing

_ do =
cos6 CoSQ

—In|cos@| + In|cosp| = Inc

CcOoS
In <229

= Inc
coso

_COSP _

cos@

cos@=c cosf

5_ Y _ 4) = —3
v xy,y4) =

Solution
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y = FV25 — x 2

y = pl(x) = V25 —«x2,
y = @2(x) = —V25 — x?
Exercises

Solve the following:
1- (1 4+ x)dy — ydx = 0 (H.W)
2- (e?Y — y)cosxdydx = e¥sin2x ,y(0) = 0 (HW.)

2-Equations of homo. type

:Definition

The function f(x,y) is said to be homo. function of degree
nif f(tx, ty) =t"f(x,y)

Where t is a function of x or y or constant.

example

Are the functions of homo. Type

1— (x,y) = x* + 3xy + y?

Solution
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f(tx, ty) = t*x% + 3t%xy + t*y?
=t*(x*+3xy +y*)
= t*f(x,y)
F 1s homo. of two degree
2— (x,y) = x + x%y
Solution
(tx, ty) = tx + t3x%y #
t"(x + x™y)
F isn't homo.

3—(x,y) = e¥ + sin(yx)
Solution

_ E-:L-’Xr . . t_y
f(tx,ty) = e /tx + S”l(f.k‘)

—_ 0./ Y
f(tx,ty) =t (e’ /x + sm(x)

F is homo. of zero degree
Definition

O.D.E. M(x,y)dx + N(x,y)dy = 0 is called O.D.E. of
homo. type in X,y if M,N are homo. functions of equal
degree.

1-Ex
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Are the following equations of homo. Type
(x% + y3dx + (x*>y + x3)dy = 0

isn't of homao. type

2— 2xy+y?)x+ (x + x%y)dy =0

isn't of homao. type

3— 2xy+x3)Dx+ (x?+y3)dy =0

of homo. type

Remark

1- let f(x,y) is homo. function of n degree f(tx,ty) =
t"f (x,y),then:—

Lett=1
X

(1) = @) ) = xf (1.2)

X
~flxy) = x"cp(%)where @ is a function Of% .
Every function in y/x is homo. of zero degree

2- we can solve O.D.E.of homo. type by the following
steps:

1- write the equation by general form
2-lety = vx
dy = vdx + xdv

3- substituted (1) in given equation obtain equation of
separable variables in x,v variables solve this equation
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4- Substituted v = % obtain the solution of given equation
In X,y variables

.EX

1- Find the general solution of 1.V.P.
(x2+y3)x —2xydy =0,y(1) =1

:Solution
M(x,y) = x* + y? homo. of second degree
N(x,y) = —2xy homo. of second degree
~. O.D.E. of homo. type
y =vx,dy = vdx + xdv
(x% + x*v?)dx — 2x%v(vdx + xdv) = 0
(x% + x%v?)dx — (2x%vidx + 2x%vdv) = 0
(x? + x%v? — 2x%vH)dx — (2x3vdv) = 0

:5;'3

1—w

(:ﬁ:z[l — vz)}dx —2x%vdv = 0] +

dx 21 5
— sdv=0,x #0,v"#1
X 1—1v
Byv integrating

Inx +1In(1 — v?) = Inc

x(1-vH=c¢

2
v
1——|=0
2

x2—y?=¢x
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~c=0 - x%—y?%=0the solution of 1.V.P.

2- Solve the I.V.P.(2xy + y*)x — 2x2dy = 0 y(e) =
e

:Solution
M(x,y) = 2xy + y? homo. of second degree
N(x,y) = —2x?2 homo. of second degree
. O.D.E. of homo. type
y=vx . dy=vdx+xdv
(2vx? + x%v%)dx — 2x%(vdx + xdv) = 0
(2vx? + x*v)dx — (2x%vdx + 2x*dv) = 0
(2vx? + x?v? — 2x%v)dx — (2x3%dv) =0

x2vidx — (2x3dv) = 0]/x%v?

By integrating

2
nx+—=¢
L

2x
Inx +—=c¢

vinx+2x=cy
yle)=e
etle=ce
c=3

vinx+2x=3v the solution of given LV.P.
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Exercises

1- Find the general solution of xdy — ydx = Vx2 +
y2dx

2- Solve the equation (2x — 3y)dx — (2y + 3x)dy =
0

36



