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Abstract: The mathematical model of two-rigid links of one-legged walking robot dynamic control system have
been modified and adapted. The state-space model and its equilibrium points are found by using umplicit
function theorem with Newton-Raphson method. Hence, a local linearized dynamic control systems are
obtained. Therefore, an optimal control criterion is designed to achieve some system performance objectives.
Since, the resulting system of linear-quadratic optimal control problems, the necessary and sufficient conditions
leading to a two point’s boundary value problem with non-symmetric linear operator with respect to the usual
(classical) bilinear form. Hence, non-classical variational approach is not applicable. So, non-classical variational
approach mixing with direct Ritz bases in suitable functional spaces have been developed for solvability of this
system. The manipulation to this approach leads to the solution of either linear algebraic equations or
unconstrained direct optimization problems. Both direction have been adapted. Illustration to this problem
using the physical parameter of have been discussed and solved the approximated solution and their
comparisons via. the proposed approach for both directions have been obtained numerically which are showing
very high accuracy.
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INTRODUCTION

A mathematical model of one-leg of walking robot of
two rigid link based on the result (Pannu et al., 1996)
have been adapted and modified. An experimental system
information and configuration were shown by Pannu e al.
(1996) and Hoifodt (2011). The analysis and design of
the lineanzed system about the critical point using
p-synthesis control for this system was presented by
Pannu et al. (1996). The stabilizing control for the walking
robot use only one leg of the system while the remaining
leg follows a command for locomotion where shown by
Hoifodt (2011) and Pannu et af. (1996). Many research
about robotic system and its modeling as well as
solvability, stabilization, controllability and optimality can
be found by Al-Shuka et al. (2014), Campos-Macias et al.
(2017) and Khusamov et al (2017). A variational
formulation to every linear system of equation by
modified the classical bilinear forms with a freedom of
choice was given by Magri (1974). This direction may be
called the invers problem of calculus of variation. In this
study, we have mixed this approach with some kinds of
basis, for example, Ritz basis of completely continuous
functions in a suitable spaces, so that, the solution is

transform from non-direct approach to direct one. The
non-classical varational approach is developed in a
suitable function space regardless of non-symmetry of the
govemnorate linear operator. This approach have been
developed for a lot of applications such as integral integro
differential equations, partial differential equations,
oxygen diffusion in biological tissues, moving boundary
value problems with non-uniform initial-boundary
conditionanddescriptor system (Jawad, 2007; Makky and
Radhi, 1999).

MATERIALS AND METHODS

Mathematical model (robotic problem): The following
Mathematical model 1s developed and adapted the
derivation of this can be found in Appendix A. Hence, the
dynamic equations of motion in the absence of any
fractional forces are:

M(0)8+V(8,0)+G(6) = 1 (1)
Where
e vl oo =
MM, " vV [ G, T,
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M is assumed to positive definite, (moment of inertia
properties), then M exist and the description of the
variables are given in appendix B.

State-space model, the linearization and the assumption
state-space: To completely determines the behavior of the
system for any tiumne, a state space representation is

defined as follows:
Let:

(2)

(P P:-P:- Py

£(p,-P,. PP
F{ 3P P2 Pss Pas )J

(Ps> P> Pss Py» T)

p, =
P: LN { 0
37 e1
b i)
P:)
P.)
)

F(p,» p,. P, P,

Where:
pT = (pas p4)= 8= (p1> PP~ (p3= P4)) R’
Mzz 'Mlz

and M =

11

A
M
A

Where:
A=M;M, 'M122

Assumptions 1; Should be posted on A such that A+0:
The equilibrium points of Eq. 2 are then the solutions of
the following nonlinear algebraic equations, we have that:

P (p1= Pz) O cos (P1 P )+
(m L51Y+m L ) cos (p1)+(m1LE1X) COB (pl) _
m,L,, 3)

P (Pl, P:- T) = (ngch) Cos (p1+p2)'T =0
p;=0andp, =0

Implicit function method and Newton-Raphson approach
Implicit function method: In this study, the solution p, as
a function of p, is found by using the implicit function
theorem and Newton-Raphson approach. The necessary
condition for solvability of the nonlinear algebraic

equation as a function of p, are found as:
Let:

q= (pz, T, p*), set det[g—(:

Where:

Jat(pz, T, p*);t 0

o elps Top
Blp. Tip )= (e, ,,) =
¢, (p,- T2 1)

) (Mch1y+M2L1) cos (pl )+(MLC1X) cos (pl)
M,L,, (Mszcz ) cos (p1 P, )'T

cos ( P,

Let:

IO det {?—32} at(pz,T;p*);tOj

do, do,

I dp, dT 0 -sin {p,+p,) 0(;1)
do, do, (MgL, )sin (p,+p,) 1
dp, dT (re 7o)

0= -sin (p,+p,) =0

One can set the second assumption (second assumption):

(-m, 0),(-2m, -m), ... 5
p1+p26{ (0,7, (m 2n), ... ¥

Third assumption 15 found to be:

| be
‘((m Lﬂy+nr1nL )+ (mchlx))rl ©

The fourth assumption 1s optional based in the nature
of control constraint. Since:

TEDCI = (MZgLCZ)COS (p1+p2) (7)

p', is given such that (p’,+p,)€0, T) another cheice is also,
possible. The restriction on the magnitude of ||T|| may also
be given by the following, if one interested i special
class of control (Bang-Bong piecewise-constant control).
Since:

Teof| <M

Zchz
'Mszcp Mszcz)

(pl +p2) (8)

ZgLEZ - Tsuq = (

cl

To define the class of equilibrium points, as:

(P> Pos Py s Ty ) €

Bo—! [P P =0, p,+p, (0, m) with Ist, (9)
R’|2nd and 3d assumption with
(4th result if needed ) are satisfy
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Table 1: Phyical parameter of the one leg of two rigid link system

Parameters units L (i) Lyp,{m) Lom)  Tiom)  mykg) myks)  Lkom?) Likem) TLkem’) n 2
The value 0.298 0.008 0304 0.508 17.007 8174 0.559 0.390 0.0020 a0 9.81
Physical parameter of one-leg of walking robot of 0<p,+p,<m, A=0
two rigid links control dynamical system have been ‘
adopted as given by Pamnu ef al. (1996). Based on the and m,L <
define of EQ in Eq. 9 and the following physical ((mchlermZLl)Jr(mchlx))‘
ter of th 1 ft igid link i
parameter of the one leg of two rigid link system 1T <M e,

(Table 1) the critical pomt can be found by using
Newton-method.

Newton method for finding the critical points: Based on
the result of Yang et al (2005) the following is
modified to obtain a generalized formula for solving
problem Eq. 1:

®(p,.Tip; )=
(pl(pZ’T;pT):OWithpjzp4:0 (10)
P (pz:T; PI) =0

On using the Taylor series expansion up to first-order
about some estimate point (p';, 5. T9e EQ, since J+#0
one can guarantee that there is only one root to the
nonlinear algebraic system for given points ', ¢ (0, 7) and
Tnsq e(-MygL;, Mgl

o(pTop) || lph T ) .
AT SRR Y

G0 o (11)
&p, ar p.py|_ |0

dp, B, T-TF | |0

Lop, T (25.7%:01)

using some manipulations one can obtain:

1 .
R Aot I
T

K+l k ke, ¥
! -(mgl.;) 1 P (pZ: T P1)

Hence, the critical pomt of the system 1s
% T pw po P K where a suitable number of
iteration designed is accuracy
criterion. A modified Newton-Raphson method is then

based on some
adapted to solve the nonlinear-algebraic Eq. 12 for a
given the mitial pomnts which are
that:

selected such

Linearization: Once the class of equilibrium points in EQ
is obtained, it is then necessary to approximate the
nonlinear dynamic control system by linearization scheme
about some pomt belonging to EQ. Given the non-linear
state-space system control (Eq. 2) and the equilibrium
point p' = [p, = 0", p’,= 07, p5 = 0, p., = 0] from
EQandu' =T

eq:

Xy PI'PT

X . .
x| = PP andun T, T

X3 P:P;

Xy PaP4

The linearized state-space model of nonlinear control
system (Eq. 2) becomes:

) 0 0 10
X, 0 0 0 1%
>_(2 —| hyghg, hug,-hig, a0 % +
X3 A A X3
| X, hugi-hugn hugs-hug, 0o X
b A A ()
0
0
hy u+height order terms
A
'h11
LA
Which can approximate by:
1
¥ = Ax+B 1o o o)x ith x(t, }
% =Ax+Bu, y = with x -
o 10 0 X, ! (14

X, €R*, (A and B are given in Eq. 13)

Where:
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Table 2: Critical points in radian

M

Rootd 1.4485 0.5996 -11.1973

Parameters p* {given) p% T, p )
Rootl 1.501 0.3355 -6.4012 0 0
Root2 1.4839 0.4198 -7.9660 0 0
Root3 1.466 0.5096 -9.6014 0 0
0 0

(The critical points is found for given p* when ps, p,) where the result is
obtained for some n & N of iteration up to some accuracy € = 10°

by, = L+1,+m, ((Lm)2 +(Lm,)2)+
m, ((L1 ¥ +L,) +2(L, (L., ) cos (p,-ph ))
h,, = I,+n’l +m, (L, )2
h,, = 1,+m, ((ch YL, (L, ) cos (p,p, ))
(p.p )

Mg -L,sin (p,p; 4L, cos ((pp} ) +(p,-p} )|

8o = Mg L,sin ((p,p} ) +(p, P’ )|

h,, =1,+m, ((ch)z +L, (ch ) cos

(hlz(hlzgu'hzzgn ) h11 12 gu'hzzglz))i

All are evaluated at p’, T*ecl from Table 2. Since, we
are interesting to transfer the system from an arbitrary
mmtial state to the origin while mimmizing some
performance measure, the controllability may be
interpreted as necessary and (sufficient) condition for
the existence of the solution. The system (Eq. 14) is
locally controllability about the critical pomt if and
only 1if:

of|  of|  af [ o ]2
ol o xl, x) | .
3 =4
at [@f] o
811 p*, T:q aX p*’ 811 p*, T:q

where, f(f,, f,, f;, )7 hence, the following is need for
optimality poimnts view.

Assumption 5:

2

and A =h, h,,- hlzz, A#0form (4.2.2)
o Tu 0
A
0 h 0
A
-h,, 0 (hu(hlzglz'hzzgn ) (hn 1*8 1 'hzzgu))
A ] > AZ ?
h 0 (hn( 11g12'h12g12 ) (h ng-hug“))
L A A?

Optimal control of linear quadratic: The first aim is to
minimize velocity and position of the linearized state
space systemandits applied torque with energy
consumption. Hence, the optimal control problem is
formulated as a quadratic optimization with the
performance measure J(u) of the form:

J(u): %XT (tf)SfX(Xf)Jr%j;fL(X, u)dt (15)

and the Lagrangian:
L{x, u)=

X () Qx(t)+u”
() T ol

(t)Ru(t)=

With the following requirements; The approximate motion
1s given by system (Eq. 14). The optimal control aim is to
transfer the arbitrary initial state to the zero as state

(
A

(hn( 18 ) (h hg,- 12g11))
A

has rank 4, for p’, T, € EQ
0

quickly as possible. The control variable u is weighted
with a given positive definite matrix R = R™0 (u’ (t) R (t)
u (t) ( which guarantees smoothness of operation and x 1s
weighted with a given positive semi definite matrix Q =
Q™0 as well as S;= S'z0.

From the requirements 1-3 and the objective
fuinction (Eq. 15) there exist optimal control solution
(x,u), x is response corresponding to smooth controller
(Lee and Markus, 1967). Hence, the necessary and
sufficient condition of optimality are derived by using
Euler-Lagrangian equations as follows:

J(u):%xT(tf)Sfx(tf)Jr
—I[ ()T (1) (A()x(1)+B(u(t))Jat

Define a scalar function H (the Hamiltonian) from
(Eq. 15 and 14) as follows:
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i 1L (oD T (ORa(y]+

AT A(t)x(1)+B(t)u(t)]
Where:

(16)

ir-H
e
a[xT(t)Q(t)x(t)+uT(t)R(t)u(t)]
ox
a[A()x{t)B(t)u(t)]
o
SEX(tf ),tf is fixed

7LT-%HD G-

T

i (a7

T

and

ML) =

Since, u 1s uisassumed to be unbounded smoocth
controller (without using the forth assumptions), the
necessary condition for optimality becomes:

oH
0= =0= Ru+B™ —u = -R'B2 (18)

I 1
-~ ~ 0 0
X[t
. 1( ) hzzgn'hlzglz h22g12'h12g12 0
%, (1) A A
X, (t
.3( ) hig,-hogn  hugn-hog, 0
X (t) _ A A
A (1)
A, (t) -5 0 0
Ao (1)
. 0 - 0
_7L4 (t)_ q22
0 a3
L 0 0
x(ty )given, A(t; )0 Sex(t;). q.1 = (22)

1, 2, 3, 4 are the main dignal elemat of

The aim 1s than to solve this problem by using
non-classical variational approach to obtain an
approximate solution of the original optimal control
problem.

RESULTS AND DISCUSSION

Two boundary value problem solution by non-classical
variational approach: The difficulty of finding compact
form selution to general two-boundary value problem
with a non-symmetric linear (differential) operator
d/dt  with respect to the classical inner product
bilinear form t,, v,} = [v, v, dt have led to formulate

0

0

“Qasq

hence,

% = AX(D)+Bu(t) (19)

J=-Qx(D-AT2(t) (20)

x(ty)=x, € R" and A(t;) = Sx(t; ), 0<t,<t;

t; given. (t; may be arbitrary point of interval). Hence, the
two-point boundary-value problem is obtained as:

HE PR

Ao B Quuas Bys X= [X1= X5: Xgs X4]

Where:

and
7\,:[7\,1,7\,2,7\,3,7\,4]
0 0 ]
0 0 0 -~ .
t
0 0 _(hu)z (hlzhu) Xl()
A A x,(t)
t
0 0 (h11h12) ('hll)2 XB()
A A % (t) (1)
0o 0 _hzzgn'hlzglz hy,g.-h,g, hl(t)
A A Ay (1)
0 0O h11g12'h12g11 hnglz'hugu A‘E(t)
A A _7\.4(t)_
-1 0 0 0
0 -1 0 0 |

a non-classical variational approach to this problem, so
that, the solution is equivalent to the critical point of
some variational finction under some necessary
condition (Dyer and McReynolds, 1970). Consider the
two-boundary value problem (Eq. 21), define the linear
operator I, as follow:

L{w)D L(x,X,, %, X

33 4

7\‘17 7\‘27 7“37 7“4)

dt 7 odt 7 odt T dt
di, di, dA, da,

dt 7 oac T oat T dt

-Aw (23)

Where:
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i 0 1
0 0
hzzgll'hlzglz h22g12'h12g12 0
A A
h11g12'h12g11 huglz'hlzgu 0
A= A A
-4y, 0 0
0 Uz 0
0 0 a3
o 0 0

Domain{L ) —{

And the range of linear operator define as:

Range (L) V = C"(t,, t,)— H

(25)
(His a suitable Hilbert space)

Assumption 6: H 13 a sutable Hilbert space (may be
define as C' [0, T] with max inner product law). Set F [w]
= 1/2<Lw, w>-<f, w> defined on the domain Domain (L).
The bilinear form <w,, w,> is assumed to be non-
degenerate on H, i.e.; If for every w,eH, {(%:.%:) =0w, =0,
If for every w, €H, (¥..w.} = 0 then w, = 0. If the linear
operator L: Domain (L) cH~Range (L) < H 1s symmetric
with respect to the chosen bilinear form <w,, w,> 1Le,
<Lw,, w7 = <w,, Lw,>, hence, define F [w] ; 1/2 <Lw, w>-
<f, w> otherwise m H,one can choose the symmetric
product (w,, w,) as bilinear form on H, therefor <w, w>
(w,, Lw)=(Lw, Lw,) (Lw,, Lw)y<w, Lw>,
(symmtrics).

Remarks: All critical points of F [w]be a solution of Eq.
21 when the bilinear form <w,, w;> be symmetric on the
Range (L) of the given linear operator . (Magri, 1974,
Reiss and Haug, 1978). The linear operate I, is positive
definite, ensures that the solution of Eq. 23 1s the mimimum
part of F [w] (Reiss and Haug, 1978). Since, the operator
L 1s define by Eq. 15 and due to the present of d/dt, L is
not symmetric, linear operator with the usual bilinear
from <w,, w,> hence, <w,, w,> is redefine as:

(26)

<W1:W2

>|] (w,,Lw,)

For given symmetric inner product bilinear form. One can
suppose that the range of given the linear operator L

0

0
“uq

w={(x, M) e R"™R* |x(t,) = x, eR", A{t; )= xS,
when A # G and p’, T:q € EQ

0 0 0
0 0 0
H

0 0 '(hlz) (h1zh11)

A A
2

0 0 (hnhlz) ('hn)
A A

0 0 _hzzgn'huglz _hzzglz'hugu
A A

0 0 hygi,-h,81 h,,g,;-hi:8.,
A A

-1 0 0 0

0 -1 0 o

eRY, (x(). A()) 2 Ot ty 'ty tf]} C 24

{(Range (L) €H) be dense in the linear space V, 1.e., Range
(L) = Vc H, for approximation point of view. Due the
present differential operator, an integral bilinear form is
the best suggesting as <w, w,> = [% w, () w, () dt
which clear that T. is not symmetric because of d/dt
operator appearing in the L operator. Therefor:

1

F[w]:%<Lw, w0 {Lw, Lw) = = [“Lw (t)(Lw (1)) at

dx de, dxg dx, )

te

F[w]:lj dt’odt T odtodt |
2 || iy dh, b, i,
dt 7 odt 7 odt 7 dt 27)

H@&gﬁ%%%%w

Theorem (5.1): Consider the nonlinear robotic system
(Eq. 1) the following are assumed:

The state space represented by
transformation Eq. 2.

A, The class of critical point EQ is given by Eq. 9.

The linearization 13 found by linearized the nonlinear
state space system (Eq. 2) about the critical pomnt
P PP THe EQ when the BEQ is the class of
equilibrium define in Eq. 9. The approximate equation
of motion then is found by Eq. 14.

The optimal preform index (cost function) is define
by Eq. 15 which defines the optimal control problem
together with the initial and boundary condition, the
necessary and sufficient conditions for optimality
leads to the two point boundary value problem Eq.
21 and 22.

nonlinear
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Ao The nonlinear control system is  locally G (t) is linearly independent function with 29
controllable. ; (29)
G (t,)=0
Then the approximate solution to the original optimal
control problem (Eq. 1) with the assumptions (Al-A5) ay () is found such that of x'(t,) = (30)
is the critical point of the following functional Eq. 21 and X e al () =x
vise-versa . Where the bilinear form <w,, w,> [*, Lw, (1)
(Lw, (0))" dt is symmetric and nen-degenerate bilinear
form. M (1) = bECOPY bt (tk =1,2,3,4 G
Proof: The proof 1s easy to be derived by using the step H* (1) s linearly independent function with
of [Al1-A5] and the dwection proof of (Magr, 1974, . B (32)
Zaboon and Abd, 2015). H(t)=0
Application approach (robotic problem): Based on the blg (t;)is found such that of A’ (tf ) = (33)

result of theorem (5.1) with a suitable Hilbert space (may
be separable Hilbert space, for optimization point of view
if the selected bilinear form is positive definite one) if the
following are assumed.

= _
Ky <> by (tf) = XpS

The functional F [x, A] becomes function of the
variable ; ;where; = (a), a’,a’, a') wherej=1,2, .. N,

=l 12 13 14T — .
% (1)~ &) (1) +Z 2 G (1)i=123 4 (28) and ;= (b',, b’ b', b') wheres = 1,2, .., My
- 11 1 1 (=N (- -
F{a,b}:gﬂw w) -f, w0 2( (x, 1), (x, 7»)>I] 2[L[a,bj, L(a, bD form =
[ 2 2
(2 2o n)-(a X o) +[zj“:afej( D-as(e 2 alss () +
(2 o) Rt o 13 o) Rt Jar( 3 i ()
-(h,,xh,,) Wik (h,,=h,) 2 i
[‘; (B3 X B () L (w3 T v )] (S el (1)-
[h“glzhlzgu](aln(t)JrZJNil aiGi(t))_[hnglz‘AhmguJ(ag(t)Jrszil afo(t))_(('hlghlz)}
| (34)
1 " hyxh [ 2 PHL(Y)
0 -z w5 ez s - o
g, (a (1) + Z)", alG) (1)
hzzgn‘;‘hugu(bg() Z " b S( )) (hzzg1zAh1zg1z]( () Zs lijj( )))2Jr
(55 0 (1, 0 (0, 207 0 BB v )
Pubie i (1) 3 IR () £ V()0 (2 (045, 07 ()43
2
. 1 by {t)+
(Bh ()= 202 B )] +{ 25 i () aue (af (64 X G (1)) + {z )
L s=1 5
F_F_F_F
Hence, the critical pointe of this function is then aa; ’ aaz ’ 533 ’ aa“ ’
equivalents:
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By choosing a set of linear independent function G
(t) with condition Eq. 29 and 30 and H', with the condition
Eq. 31 and 32. And N; M, number of selected base. On
simple calculate, a linear algebraic solvable system

obtained as:
ZZI BZI

["and 7, =[bL, b2, b, b

57 s

|:A11 AIZ

A A }, where 7, =

21 22

:|T
To clarifying these selection one can see the details

n the following illustration. Another direction is possible,
section (Eq. 8).

1 2 3 4
[aj, aj, a;, a

Numerical Tllustration (robotic problem): Consider the
mathematical model of one-leg of walking robot of two
rigid link, as discussed in section one where the physical
parts are given in Table 1 on using the linearization
schema (Eq. 14) with selected the first critical points. (The
critical point from Table 1).

Hence:
% (1) 0 0 1 0
x,(t) 0 0 01
x,(t)| |-15.1821 -24011 0 ©
x,(t)] | 14333 -21461 0 0
Mty | -3 0 0 0
A (1) 3 0 0
Ay (t) 0 30
A 0 0 3

Which 1s equivalent to:

dx }2
—X4 +

fw]- 1
wl=1
271 (0.0213)2,-(-00703)2,

2
9 iax, 240110,
dt

+2.1461%,

The basic functions that satisfying the initial and

%(1.4333)x1-(-2.1461)x

X, 0 0o 1 ox 0
X' 0 0 0 1|x, 0
x| |-151821 24011 0 0| x,| | 02542
X, 14333 -21461 0 0] x,] |-083882

Define the optimization criterion (section 5.1) as follow:

£
minl = jtt_U(XTQX+uTRu)dt,where Q=
q, 0 0 0
0
Az .R>0,x=R’
0 0 g O
0 0 0 q,

where, q; =3,1=1,2,3, 4 R=10,8;,=0, t;=0and t.= 1.
We are interesting for the solution on the period 0<0<n
from Eq. 16-21 we have the following two point

boundary-value problem:

0 0 0 0 X, |

0 0 0 0 |Ix

0O 0 -0.0065 0.0213 || x,

0 0 00213 -0.0703| x, (35)
0 0 1518211 14333 | A,

0 0 24011 21461 (| A,

10 0 0 |

0 -1 0 0 |2

(36)
dx ©
d—ta(-15.1828)x1—(-2.4011)
x,-(-0.0065 )2, -(0.0213)1, )
2 2
dh,
S +3x,(15.1821) A, + i 37)
(-1.4333)2,
N
+(%+3x3+x1] o
t 3%, A,

terminal condition be assumed as follows:
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L { J+a2 (t-tt; )+a, (t3-t(tf )2)
z[ 2o (00 ) =2 2 oo e (00 o)
(

M (1) = b, (t-t, ) +b (t2 (tf)z), A (8) = b, (1t )b, (-t 1)

Ay (8) = b, (-t ) +b, (t2 (tf)z), A, () = b, (t4, )+b, (t2-(1, Y

ti (£ -tte )+a, (t3-t(tf)2), %, () = -2+[t2t

f f

Since:
oF . oF A A Z. B
a—=0where]=0,l,.. 7and£ 0, (39) 1 12 | (40)
a.
1 s AZI AZZ Z’Zl B21
where, j=0,1,....7 Where:
[ 8.385 12.578 0 0.2697 11126 1.6689 0 0.0239 (05 05 0 0 -3.7848 -5.2987 0.3230 0.4522
12.578 19.204 0.2697 0 1.6689 2.5431 0.0239 0 075 08 0 0 -52987 -7.5695 0.4522 0.6460
0 0277 0.6667 1 0 -0.0400 0 0 025 035 0 0 -0.4989 -0.4989 -0.0036 -0.0036
A 0.27 0 1 1.5619  0.040 0 0 0 |o3s 05 0 0 -0.7484 -0.7983 -0.0053 -0.0057
"l1113  1.669 0 0.0400 09790 1.4686 0 0.0524 | ¢ 0 0 -05 -05 -0.6028 -0.8439 -0.5282 -0.7395
1.669 2.543  -0.040 0 1.4686 22759 -0.0524 0 0 0 -0.75 -0.8 -0.8439 -1.2056 -0.7395 -1.0564
0 0.024 0 0 0 -0.0524  0.6667 1 0 0 025 035 -0.0036 -0.0036 -0.4883 -0.4883
|-0.024 0 0 0 0.0524 0 1 1.5619 | | 0 0 035 05 -0.0053 -0.0057 -0.7324 -0.7813
[ 05 0.75 0.25 0.35 0 0 0 0 ] [1.3333 1.4167 0 0 7.0911 9.7881 -0.7167 -0.9555]
0.5 0.8 0.35 0.5 0 0 0 0 1.4167 1.8667 0 0 43940 7.0911 -0.4778 -0.7167
0 0 0 0 -0.5 -0.75 0.25 0.35 0 0 1.3333 1.4167 1.2006 1.6007 05730 1.0974
A 0 0 0 0 -0.5 0.8 0.35 0.5 A 0 0 1.4167 1.8667 0.8004 1.2006 0.0487 05730
27| 3785 -5.2987 -0.4980 -0.7484 -0.6028 -0.8439 -0.0036 -0.0053| 2 | 7.0911 43940 1.2006 0.8004 7.9754 9.94425 -5.5364 -6.9205
-5.299 -7.5695 -0.4989 -0.7983 -0.8439 -1.2056 -0.0036 -0.0057 9.7881 7.0911 16007 1.2006 9.94425 12.7339 -6.9205 -8.8582
03230 04522 -0.0036 -0.0053 -0.5282 -0.7395 -0.4883 -0.7324 -0.7167 -0.4778 05730 0.0487 -5.5364 -69205 32218 37773
|0.4522 06460 -0.0036 -0.0057 -0.7395 -1.0564 -0.4883 -0.7813 |-0.9555 -0.7167 1.0974 05730 -6.9205 -8.8582 37773 4.8883 |
= .7z =[b, b, b, b, b, b b,|"
le - [al az aB a4 aS aé aT aS] > ZZI 7[ 1 2 3 4 5 i T 8] >
AT T
98889 13.3767 3.56333 5.1783 4B 05 15 6 575 -13.2913
= arn =
11 21
28204 -4.1660 1.2124 1.5686 -14.8620 09335 3.7848
Since:

o
aw,, w.> =(w, Lw,)= (Lw,, Lw,)>0
ALALA and A (mx m) b W = (W, )= (Lw, :)

Ay An | 1 _ t T
det AT det(A, det(A,, -AATA L) = Lw, w = (Lw, Lw) = jt Lw(Lw) dfz0
22 °

21

0.51032 # 0 then _ o
Then by Reiss and Haug (1978) the solution 1s

Solving the above system by algebraic equations: equivalent to:

Z’ll — All AIZ ! Bll T
{ZJ {Azl Ayl By dx dx, dxg dx,

MmN, e F[ﬁ, B} _ lj'ff dt 4t dt - dt -
- - : he 2w da, dh, dh, di
Hence and the approximate solution to the two point e Wi S Bl
boundary value problem Eq. 35. And have locally to dt ©dt - dt - dt
(tE? 1) l;able Bdandt.él nlixnericzfllrttistlf of sttate v?clt\?r(,jc\? del dx, dx, dx, di, di, dA, dA, JT R
state vector and optimal control first system of N.C. T Ty T e e s e | T
linear algebraic (system) J(u) = 12.411. de - deode o de o deodedeo e
T

The direction two: Since, the linear operator 1s positive
defimte with respect to bilinear form:
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Table 3: Nimerical Tllustration (robotic problem)

13(23): 9849-9861, 2018

Parameters p* (givem) [ T,, P Pa
Critical pointl 1.501 0.3355 -6.4012 0 0
o e s 0y s s t g
0.9786 -3.4572 3.1952 0.1998 35.0545 -19.7437 -1.6427 1.8667
by b, b by bs by by b
-22.8456 10.9089 -11.5163 6.1609 0.3452 1.3123 -0.9799 1.9086
Table 4: Numerical rustle of state vector
State vector Co-state

Optimal control u
Time x ([0 X (0 X3 () X, (1) A Ay () Az () Ag (D) u=-R'B™L
0 1 -2 2 3 -2.46280 -0.691500 0.330400 -0.294000 0.0491
0.1 1.202710 -1.450100 1.153318 3.040745 -2.02360 -0.219910 0.243315 -0.141670 0.0268
0.2 1.346573 -0.891870 0.568221 2.942512 1.62726 0.16225¢6 0.168240 -0.016660 0.0084
0.3 1.428431 -0.462800 0.200505 2.729024 -1.27380 0.454986 0.105175 0.081039 0.0062
0.4 1.445126 -0.120010 0.005966 2.424000 0.96322 0.658284 0.054120 0.151416 0.0169
0.5 1.393500 0.134250  -0.059600 2.051163 -0.69550 0.772150 0.015075 0.194475 0.0238
0.6 1.203940 0.297774  -0.040400 1.634232 0.47066 0.796584 -0.011960 0.210216 0.0267
0.7 1.072649 0.368665 0.019367 1.196930 0.28868 0.731586 -0.026980 0.198639 0.0259
0.8 0.797107 0.343709 0.075491 0.762976 0.14958 0.57715¢6 -0.030000 0.159744 0.0211
0.9 0.440610 0.221672 0.083770 0.356093 0.05336 0.333294 -0.021000 0.093531 0.0125
1.0 0 0 0 0 0 0 0 0 0
Table 5: Approximate solution of F [, b7]
o o o oy o [ o o
8.8752 -3.2141 2.9952 0.2756 34.1545 -17.9537 -1.6427 1.8667
by b, b, by bs be by bg
-21.9456 10.8764 -11.5163 5.9509 0.3352 1.3123 -0.9799 1.9086

Table 6: Numerical rustle of state vector, co state vector and optimal control first system of NCV by using Hooks and Jeeves (direct optimization technique)

State vector Co-state
Optimal control u

Time X X X Xy Ay Ag A D u=-R!'B"x

0 1 -2 2 3 0 -1.5224 -5.3692 0.829200 4.337200
0.1 1.174810 -1.414010 1.148818 3.040745 01 -1.16978 -4.02444 0.691821 3.782538
0.2 1.295373 -0.907870 0.560221 2942512 0.2 -0.86168 -2.8592 0.566544 3.254752
0.3 1.359131 -0.483800 0.190005 2.729024 0.3 -0.59812 -1.87348 0.453369 2.753842
0.4 1.363526 -0.144010  -0.006030 2.424000 0.4 -0.37908 -1.06728 0.352296 2.279808
0.5 1.306000 0.109250  -0.072100 2.051163 0.5 -0.20458 -0.4406 0.263325 1.832650
0.6 1.183994 0.273774  -0.052400 1.634232 0.6 -0.0746 0.00456 0.186456 1.412368
0.7 0.994949 0.347335 0.008867 1.196930 0.7 0.010845 0.2742 0.121689 1.018962
0.8 0.736307 0.327709 0.067491 0.762976 0.8 0.05176 0.36232 0.069024 0.652432
0.9 0.405510 0.212672 0.079270 0.356093 0.9 0.048145 0.27092 0.028461 0.312778
1.0 0 0 0 0 1 0 0 0 0

Table 7: The compression between the solution of both direction

¥ ¥ %, X, X5 X5 Xy Xy

Time  NCVS NCVH&J  Error NCVS NCVH&] Emror  NCVS NCVH&J  Error NCVS NCVH&J  Error
0 1 1 0 2 -2 0 2 2 0 3 3 0
0.1 1.202710  1.174810  0.0279  -1.405010 -1.414010  0.009 1.153318  1.148818 0Q.0045  3.040745 3.040745 0
0.2 1.346573 1.295373  0.0512  -0.891870 -0.907870  0.016 0.568221 0560221 0.0080  2.942512 2942512 0
0.3 1.428431 1.359131  0.0693  -0.462800 -0.483800  0.021 0.200505 0190005 00105  2.729024 2.729024 0
0.4 1445126 1.363526  0.0816  -0.120010 -0.144010  0.024 0.005966  -0.006030 0.0120  2.424000 2.424000 0
0.5 1.393500  1.306000  0.0875 0.134250  0.109250  0.025  -0.059600 -0.072100 0.0125  2.051163 2.051163 0
0.6 1.270394  1.183994  0.0864 0297774 0.273774  0.024  -0.040400 -0.052400 00120  1.634232 1.634232 0
0.7 1.072649 0994949  0.0777 0368335  (.347335  0.021 0.019367  0.008867 0.0105  1.196930 1.196930 0
0.8 0.797107  0.736307  0.0608 0343709  0.327709  0.016 0.075491  0.067491 0.0080  0.762976 0.762976 0
0.9 0440610 0405510  0.0351 0221672 0.212672  0.009 0.083770  0.079270 0.0045  0.356093 0.356093 0
1.0 0 0 0 0 0 0 0 0 0 0 0 0

By using the same procedure above the problem i1s
transferred mto an optimization method when a suitable
basis function have been used to approximated the
solution (Eq. 28-30).

Since, the problem of quadratic optimization, on
using some direct optimization method, the solution may

be found. Hooke and Jeeves method (Kirgat and
Surde, 2014) of direct search optimality technique have
been adapted to find the approximate solution of F[a, 5]
Eq. 33.

Table 5-7 numerical Rustle of state vector, co state
vector and optimal control first system of NCV by using
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/f" q-lz— “‘h‘--a._\ /
Link 2 P \ \ /

Transmission
Pulley

Fig. 1: schematic model of the under actuated leg

Hooks-and Jeeves (direct ptimization technique) J(u) =
11.0825. The compression between the solutions of both
direction are below.

The model of one-leg of walking robot of two rigid
links control connected by dynamic control tem system
bazed on Pannu et @/ (1996) and Anderson et 2/ (2010)
15 adapted as follows m Fig. 1. The basic lows for the
derivation of this model may be derived using the
following steps:

Step 1: Consider the position of the centers of mass as a
function ofthe generalized coordinates:

* L, distance to center of mass of link 1 along the
center line

= L., distance to center of mass of link 1 orthogonal
the center line

= L, distance to center of mass of link 2 along the
center line

= L, lengh of link 1

* M, mass of link 1

= M, mass of link 2

* I,: is the moment of inertia of link 1 about center of
mass

* I, is the moment of inertia of link 2 about center of
mass

*« I, 1s the moment of inertia of trnsmission of pulley
and belt

¢+ n: Tranmission reduction ratio

*  H:2x2 inertia matrex

¢+ V:2x1 corolis vector

«  G:2x1 gravity vector

*  h:2x2 linearized inertia matrix at the operating point
«  g:2x2 linearized gravity vector at the operating point
» O Angle of link 1 relative to horizontal (+CCW)

+ Oy Angle of link Zrelative to link (+CCW)

*  p;: Equilibrime angle for link 1 relative to horizontal
*« P, Equilibrime angle for link 1 relative to link 1

*«  T: Torque provided for tranmission (+CCW)

* T, equilibriom Torque

+  T:2x1 input torque vector

X = (Lclx -Lcly)cos[ﬁl), v, = (L _Lcly) sin(6, )

clx

X, =L, cos 6,+Lcos(6,+8,), y, =L, sin6,+L_,sin(6,+6,)

Step 2: Based on the result of step 1, the following is
obtained:

5;1 = '(Lclx 'Lcly) Sin(el)él 2 }.71 = (Lclx 'Lcly)cos(el)él

%, =-L,sin(6,)0,-L,sin(6,+0,)6, -L_,sin (6, +0,)0,
¥, = L, c0s(8,)8,-L, cos(0,+8,)6,-L_, cos(8,+0,) 6,

Step 3: omputing the kinematic energy:
. 1 i i . i . . .42
K(B, 9) = E(m1 (x12+y12)+m2 (x§+y§)+11912 +1, (91+92)
Where:

()’(f-l-j'f)lj[(Lz +2 )sinz(el)éf+(L2 +12 )cosz(el)éf]:

clx cly clx cly

[(Lh 12, )08 (sin®(0,)+eos? (6,)) | = [ (LE, +LE,, )6 ]

Similarly:

[-Llan(el)91-Lc2sm(el+ez)el-T+
L,sin(8,+8,)8
e A
L,cos(6,)6, L _,cos(,+0,)6,-
L ,cos(0,+0,)8,

[(12)87+(12,)(846,)" 2L Ly (87+8,6; ) cos(8,)

Hence, the kinematic energy:

1

K(e, 8) = l ml (chlx +L2c13,) +m2L21 +m2Lc2+ é2+
21 2m,L L ,cos(8,) 41, +1,

%(mzﬂcz +12n21m) 9% +(m2 L% +2m2L1LQCOS(92 )+12 )éléz
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Step 4 : The potential energy of this system:

P(e) =m,gy, gy, U mglL,, -L, Jeos(0, )+
m,g(L,sin{ 6, }+L ,c08(6,+6, )

Step 5: Based on Euler-Lagrange equations of motion
(one can Eq. 28), the mathematical model is then found as:

dfaya
dt\ oo /) do

L=K-P,8=(8,8,)andt=(1, 1,)

Where:

Then:
My, =1, +I,+m, ((Lﬁlx )2 +(LE1Y )2)+

m (L) (L ) #2(L)(Ly Jeos(6,)]

M, is different from that of Eq. 23 which has erroneous in
this term:

My, = 1o, (L, )41 (L Joos(8,))

M,, = L+n, +m, (L)', V,, = -2m,L,L_sin(8, 6,
v, =-m,L (L, )sin(8,)6,.V, =m,L (L, )sin(0,)8,
V,=0,G, = mlg((L“y)cos(Bl)+(Lc1x)sin(91))+
ng((Ll)cos(el)+(Lc2)cos(61 +62))

G,=m,g(L ,}cos(6,+6,), 1, = 0,1, =T

In this study, the rigid body mechanics robot
manipulator motion of one-leg, two links (based on Rao
(2009) 1s formulated with the help of Lagrangian
mechanics:

M(0)8+V(0,0)+G(8) = 1

Where:

OeR’ = The position coordinates

6andé = Standing for associated velocities and
accelerations

TeR = The driving forces (control optimality)

M(0)= = The (generalized) moment of inertia

MU6)=0

v(6.6)6 = The Coriolis, centripetal and frictional forces

G(0) = The gravitational forces

all vary along the trajectories.
CONCLUSION

The purpose of this study is extend the previous
stud of Magrn (1974) and Jawad (2007) and their

applicability to the two boundary value problem with
non-symmetric linear operator defined a suitable H space
which are the resulting of the necessary and sufficient
condition of optimality of nonlmear robotic control

problem.
RECOMMENDATIONS

As one can see the numerical solution using
proposed approach (with both dwections) from. Both
direction are efficient and the second direction gives
T(u)=11.0825<J(u)=12.411.
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