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Chapter 3: Solving a System of Linear Equations 
3.1 BACKGROUND 

Systems of linear equations that have to be solved simultaneously arise in problems that include 

several (possibly many) variables that are dependent on each other. Such problems occur not only in 

engineering and science but in virtually any discipline (business, statistics, economics, etc.). A system of two 

(or three) equations with two (or three) unknowns can be solved manually by substitution or other 

mathematical methods (e.g., Cramer's rule ). Solving a system in this way is practically impossible as the 

number of equations (and unknowns) increases beyond three. 

 

3. 1. 1 Overview of Numerical Methods for Solving a System of Linear Algebraic Equations 

 
The general form of a system of n linear algebraic equations is: 

                      

                      

 
                      

}                 (3.1) 

The matrix form of the equations is shown in Fig. 3-1.  

 
Figure 3-1: A system of n linear algebraic equations. 

Two types of numerical methods, direct and iterative, are used for solving systems of linear algebraic 

equations. In direct methods, the solution is calculated by performing arithmetic operations with the 

equations. In iterative methods, an initial approximate solution is assumed and then used in an iterative 

process for obtaining successively more accurate solutions. 

Direct methods 
In direct methods, the system of equations that is initially given in the general form, Eqs. (3.1), is 

manipulated to an equivalent system of equations that can be easily solved. Three systems of equations that 

can be easily solved are the upper triangular, lower triangular, and diagonal forms. The upper triangular form 

is shown in Eqs. (3.2), 
                            

                                       

                                                  

                                                   
                                                                    }

 
 

 
 

              (3.2) 

 and is written in a matrix form for a system of four equations in Fig. 3-2. 

 
Figure 3-2: A system of four equations in upper triangular form. 
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The system in this form has all zero coefficients below the diagonal and is solved by a procedure called back 

substitution. It starts with the last equation, which is solved for xn. The value of xn is then substituted in the 

next-to-the-last equation, which is solved for xn-1. The process continues, in the same manner, all the way up 

to the first equation. In the case of four equations, the solution is given by: 

   
  

   
             

        

   
            

   (           )

   
 

and       
   (                 )

   
 

For a system of n equations in upper triangular form, general formula for the solution using back substitution 

is: 

   
  

   
              

   ∑      
 
     

   
                                (3.3) 

In Section 3.2 the upper triangular form and back substitution are used in the Gauss elimination method. 

Exc: Write a program for Eq. (3.3). 

3.2 GAUSS ELIMINATION METHOD 
The Gauss elimination method is a procedure for solving a system of linear equations. In this 

procedure, a system of equations that are given in a general form is manipulated to be in upper triangular 

form, which is then solved by using back substitution (see Section 3.1.1). For a set of four equations with 

four unknowns, the general form is given by: 
                                          (    ) 
                                          (    )
                                          (    )
                                           (    )

}          (3.4) 

The matrix form of the system is shown in Fig. 3-3.  

 
Figure 3-3: Matrix form of a system of four equations. 

 

In the Gauss elimination method, the system of equations is manipulated into an equivalent system of 

equations that has the form: 

 
Figure 3-4: Matrix form of the equivalent system. 

In general, various mathematical manipulations can be used for converting a system of equations 

from the general form displayed in Eqs. (4.10) to the upper triangular form. One, in particular, the Gauss 

elimination method, is described next. The procedure can be easily programmed in a computer code. 
 

 

 



DR. Muna M. Mustafa 
Chapter 3: Solving a System of Linear Equations 

31 

 

Gauss elimination procedure (forward elimination) 
The Gauss elimination procedure is first illustrated for a system of four equations with four 

unknowns. The starting point is the set of equations that are given by Eqs. (3.4). Converting the system of 

equations to the upper triangular form is done in steps. 

Step 1: In the first step, the first equation is unchanged, and the terms that include the variable x1 in all the 

other equations are eliminated. This is done one equation at a time by using the first equation, which is 

called the pivot equation. The coefficient a11 is called the pivot coefficient, or the pivot element. To 

eliminate the term ai1x1 in Eq. (3.4b), the pivot equation, Eq. (3.4a), is multiplied by     
   

   
, and then the 

equation is subtracted from Eq. (3.4b): 

 
It should be emphasized here that the pivot equation, Eq. (3.4a), itself is not changed. The matrix form of the 

equations after this operation is shown in Fig. 3-5. 

 
Figure 3-5: Matrix form of the system after eliminating a21· 

Next, the term a31x1 in Eq. (3.4c) is eliminated. The pivot equation, Eq. (3.4a), is multiplied by     
   

   
 

and then is subtracted from Eq. (3.4c): 

 
The matrix form of the equations after this operation is shown in Fig. 3-6. 

 
Figure 3-6: Matrix form of the system after eliminating a31· 
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Next, the term a41x1 in Eq. (3.4d) is eliminated. The pivot equation, Eq. (3.4a), is multiplied by     
   

   
 

and then is subtracted from Eq. (4.3d): 

 
This is the end of Step 1. The system of equations now has the following form: 

                                          (    )

     
       

       
      

                        (    )

     
       

       
      

                        (    )

     
       

       
      

                        (    )}
 

 
          (3.5) 

 The matrix form of the equations after this operation is shown in Fig. 3-7. Note that the result of the 

elimination operation is to reduce the first column entries, except a11 (the pivot element), to zero. 

 
Figure 3-7: Matrix form of the system after eliminating a41· 

Step 2: In this step, Eqs. (3.5a) and (3.5b) are not changed, and the terms that include the variable x2 in Eqs. 

(3.5c) and (3.5d) are eliminated. In this step, Eq. (3.5b) is the pivot equation, and the coefficient a'22 is the 

pivot coefficient. To eliminate the term a'32x2 in Eq. (3.5c), the pivot equation, Eq. (3.5b), is multiplied by 

    
   
 

   
  and then is subtracted from Eq. (3.5c): 

 
The matrix form of the equations after this operation is shown in Fig. 3-8. 

 
Figure 3-8: Matrix form of the system after eliminating a32• 
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 Next, the term a'42x2 in Eq. (3.5d) is eliminated. The pivot equation, Eq. (3.5b), is multiplied by     
   
 

   
    

and then is subtracted from Eq. (3.5d): 

 
The matrix form of the equations after this operation is shown in Fig. 3-9. 

 
Figure 3-9: Matrix form of the system after eliminating a42• 

This is the end of Step 2. The system of equations now has the following form: 

                                          (    )

     
       

       
      

                        (    )

                
        

       
                         (    )

               
        

       
                         (    )}

 

 
          (3.6) 

Step 3: In this step, Eqs. (3.6a), (3.6b), and (3.6c) are not changed, and the term that includes the variable x3 

in Eq. (3.6d) is eliminated. In this step, Eq. (3.6c) is the pivot equation, and the coefficient a"33 is the pivot 

coefficient. To eliminate the term a"43x3 in Eq. (3.6d), the pivot equation is multiplied by     
   
  

   
   and then 

is subtracted from Eq. (3.6d): 

 
This is the end of Step 3. The system of equations is now in an upper triangular form: 

                                          (    )

     
       

       
      

                        (    )

                
        

       
                         (    )

                       
        

                          (    ) }
 

 
          (3.7) 

The matrix form of the equations is shown in Fig. 3-10. Once transformed to upper triangular form, the 

equations can be easily solved by using back substitution. 
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Figure 3-10: Matrix form of the system after eliminating a43 • 

The three steps of the Gauss elimination process are illustrated together in Fig. 3-11. 

 
Figure 3-11: Gauss elimination procedure. 

Example 3-1:  Solve the following system of four equations using the Gauss elimination method. 

4x1-2x2- 3x3+6x4 = 12 

-6x1 +7 x2 +6.5x3 -6x4 = -6.5 

x1 +7.5x2 +6.25x3 +5.5x4 = 1 6 

-12x1 +22x2+ 15.5x3- x4 = 17 

SOLUTION: The solution follows the steps presented in the previous pages. 

Step 1: The first equation is the pivot equation, and 4 is the pivot coefficient. 

Multiply the pivot equation by m21 = (-6)/ 4 = -1.5 and subtract it from the second equation: 

 
Multiply the pivot equation by m31= ( 1I4) =0 .25 and subtract it from the third equation: 

 
Multiply the pivot equation by m41=(-12)/4 = -3 and subtract it from the fourth equation: 
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At the end of Step 1, the four equations have the form: 

4x1 - 2x2 - 3x3 + 6x4 = 12 

         4x2 + 2x3 + 3x4 = 11.5 

      8x2 + 7 x3 + 4x4 = 13 

         16x2 + 6.5x3 + 17x4 = 53 

Step 2: The second equation is the pivot equation, and 4 is the pivot coefficient. Multiply the pivot equation 

by m32 = 8/ 4 = 2 and subtract it from the third equation: 

 
Multiply the pivot equation by m42 = 16/4 = 4 and subtract it from the fourth equation: 

 
At the end of Step 2, the four equations have the form: 

4x1- 2x2- 3x3+6x4 = 12 

          4x2 + 2x3 + 3x4 = 11.5 

                   3x3 - 2x4 = -10 

                - l.5x3 + 5x4 = 7 

Step 3: The third equation is the pivot equation, and 3 is the pivot coefficient. Multiply the pivot equation by 

m43 = (-1.5)/ 3 = -0.5 and subtract it from the fourth equation: 

 
At the end of Step 3, the four equations have the form: 

4x1- 2x2- 3x3+6x4 = 12 

          4x2 + 2x3 + 3x4 = 11.5 

                   3x3 - 2x4 = -10 

                          4x4 = 2 

Once the equations are in this form, the solution can be determined by back substitution. The value of x4 is 

determined by solving the fourth equation: 

x4 = 2/4 = 0.5 

Next, x4 is substituted in the third equation, which is solved for x3 : 

   
       

 
 

     (   )

 
    

Next, x4 and x3 are substituted in the second equation, which is solved for x2: 

   
            

 
 

      (  )   (   )

 
   

Lastly, x4, x3 and x2 are substituted in the first equation, which is solved for x1 : 

   
              

 
 

    ( )   (  )   (   )
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3.2.1 Potential Difficulties When Applying the Gauss Elimination Method 

 
The pivot element is zero 

 

Since the pivot row is divided by the pivot element, a problem will arise during the execution of the 

Gauss elimination procedure if the value of the pivot element is equal to zero. As shown in the next section, 

this situation can be corrected by changing the order of the rows. In a procedure called pivoting, the pivot 

row that has the zero pivot element is exchanged with another row that has a nonzero pivot element. 

The pivot element is small relative to the other terms in the pivot row 

Significant errors due to rounding can occur when the pivot element is small relative to other 

elements in the pivot row. This is illustrated by the following example. 

Consider the following system of simultaneous equations for the unknowns x1 and x2: 

0.0003x1 + 12.34x2 = 12.343 

0.432l xl + x2 = 5.321             

                                                                                                             (3.8) 

The exact solution of the system is x1 = 10 and x2 = 1. The error due to rounding is illustrated by solving the 

system using Gaussian elimination on a machine with limited precision so that only four significant figures 

are retained with rounding. When the first equation of Eqs. (3.8) is entered, the constant on the right-hand 

side is rounded to 12.34. 

The solution starts by using the first equation as the pivot equation and a11= 0.0003 as the pivot coefficient. 

In the first step, the pivot equation is multiplied by m21= 0.4321/0.0003 = 1440. With four significant figures 

and rounding, this operation gives: 

(1440)(0.0003x1 + 12.34x2) = 1440 ( 12.34) 

or: 

0.4320x1 + 17770x2 = 17770 

The result is next subtracted from the second equation in Eqs. (3.8): 

 
After this operation, the system is: 

0.0003x1 + 12.34x2 = 12.34 

0.0001x1 - 17770x2 = -17760 

Note that the a21 element is not zero but a very small number. Next, the value of x2 is calculated from the 

second equation: 

   
      

      
        

Then x2 is substituted in the first equation, which is solved for x1: 

   
           (      )

      
 

    

      
       

The solution that is obtained for x1 is obviously incorrect. The incorrect value is obtained because the 

magnitude of all is small when compared to the magnitude of a12. Consequently, a relatively small error (due 

to round-off arising from the finite precision of a computing machine) in the value of x2 can lead to a large 

error in the value of x1. The problem can be easily remedied by exchanging the order of the two equations in 

Eqs. (3.8): 

0.432l x1 +x2 = 5.321 

0.0003x1 + 12.34x2 = 12.343                       

                                                                                                 (3.9) 
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Now, as the first equation is used as the pivot equation, the pivot coefficient is all= 0.4321. In the first step, 

the pivot equation is multiplied by m21 = 0.0003/0.4321 = 0.0006943. With four significant figures and 

rounding this operation gives: 

(0.0006943)(0.4321x1 + x2) = 0.0006943 (5.321) 

or: 

0.0003x1 + 0.0006943x2 = 0.003694 

The result is next subtracted from the second equation in Eqs. (3.9): 

 
After this operation, the system is: 

0.4321x1 + x2 = 5.321 

0x1 + 12.34x2 = 12.34 

Next, the value of x2 is calculated from the second equation: 

   
     

     
   

Then x2 is substituted in the first equation that is solved for x1: 

   
       

      
    

The solution that is obtained now is the exact solution. 

In general, a more accurate solution is obtained when the equations are arranged (and rearranged every time 

a new pivot equation is used) such that the pivot equation has the largest possible pivot element. This is 

explained in more detail in the next section. 

Round-off errors can also be significant when solving large systems of equations even when all the 

coefficients in the pivot row are of the same order of magnitude. This can be caused by a large number of 

operations (multiplication, division, addition, and subtraction) associated with large systems. 

 

3.3 GAUSS ELIMINATION WITH PIVOTING 

 
In the Gauss elimination procedure, the pivot equation is divided by the pivot coefficient. This, 

however, cannot be done if the pivot coefficient is zero. For example, for the following system of three 

equations: 

0x1 + 2x2 + 3x3 = 46 

4x1 - 3x2 + 2x3 = 16 

2x1 + 4x2 - 3x3 = 12 

the procedure starts by taking the first equation as the pivot equation and the coefficient of x1, which is 0, as 

the pivot coefficient. To eliminate the term 4x1 in the second equation, the pivot equation is supposed to be 

multiplied by 4/0 and then subtracted from the second equation. Obviously, this is not possible when the 

pivot element is equal to zero. The division by zero can be avoided if the order in which the equations are 

written is changed such that in the first equation the first coefficient is not zero. For example, in the system 

above, this can be done by exchanging the first two equations. 

In the general Gauss elimination procedure, an equation (or a row) can be used as the pivot equation 

(pivot row) only if the pivot coefficient (pivot element) is not zero. If the pivot element is zero, the equation 

(i.e., the row) is exchanged with one of the equations (rows) that are below, which has a nonzero pivot 

coefficient. This exchange of rows, illustrated in Fig. 3-12, is called pivoting. 



DR. Muna M. Mustafa 
Chapter 3: Solving a System of Linear Equations 

38 

 

 
Figure 3-12: Illustration of pivoting. 

Additional comments about pivoting 

• If during the Gauss elimination procedure a pivot equation has a pivot element that is equal to zero, then if 

the system of equations that are being solved has a solution, an equation with a nonzero element in the pivot 

position can always be found. 

• The numerical calculations are less prone to error and will have fewer round-off errors if the pivot element 

has a larger numerical absolute value compared to the other elements in the same row. Consequently, among 

all the equations that can be exchanged to be the pivot equation, it is better to select the equation whose pivot 

element has the largest absolute numerical value. Moreover, it is good to employ pivoting for the purpose of 

having a pivot equation with the pivot element that has the largest absolute numerical value at all times 

(even when pivoting is not necessary). 

 

3.4 LU DECOMPOSITION METHOD 
Background 

The Gauss elimination method consists of two parts. The first part is the elimination procedure in 

which a system of linear equations that is given in a general form, [a][x] = [b], is transformed into an 

equivalent system of equations [a'][x] = [b'] in which the matrix of coefficients [a'] is upper triangular. In the 

second part, the equivalent system is solved by using back substitution. The elimination procedure requires 

many mathematical operations and significantly more computing time than the back substitution 

calculations. During the elimination procedure, the matrix of coefficients [a] and the vector [b] are both 

changed. This means that if there is a need to solve systems of equations that have the same left-hand-side 

terms (same coefficient matrix [a]) but different right-hand-side constants (different vectors [ b] ), the 

elimination procedure has to be carried out for each [ b] again. Ideally, it would be better if the operations on 

the matrix of coefficients [a] were dissociated from those on the vector of constants [ b] . In this way, the 

elimination procedure with [a] is done only once and then is used for solving systems of equations with 

different vectors [ b] . 
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One option for solving various systems of equations [a][x] = [b] that have the same coefficient 

matrices [a] but different constant vectors [ b] is to first calculate the inverse of the matrix [a] . Once the 

inverse matrix [a]
-1

 is known, the solution can be calculated by: [x] = [a]
-1

 [b] . 

Calculating the inverse of a matrix, however, requires many mathematical operations, and is 

computationally inefficient. A more efficient method of solution for this case is the LU decomposition 

method. In the LU decomposition method, the operations with the matrix [a] are done without using or 

changing, the vector [ b], which is used only in the substitution part of the solution. The LU decomposition 

method can be used for solving a single system of linear equations, but it is especially advantageous for 

solving systems that have the same coefficient matrices [a] but different constant vectors [ b]. 

The LU decomposition method 

The LU decomposition method is a method for solving a system of linear equations [a] [ x] = [ b] . 

In this method the matrix of coefficients [a] is decomposed (factored) into a product of two matrices [L] and 

[U]: 

[a] = [L][U]                     (3.10) 

where the matrix [L] is a lower triangular matrix and [U] is an upper triangular matrix. With this 

decomposition, the system of equations to be solved has the form: 

[L][U][x] = [b]                (3.11) 

To solve this equation, the product [U][x] is defined as: 

[U][x] = [y]                    (3.12) 

and is substituted in Eq. (3.11) to give: 

[L][y] = [b]                    (3.13) 

Now, the solution [x] is obtained in two steps. First, Eq. (3.13) is solved for [y]. Then, the solution [y] is 

substituted in Eq. (3.12), and that equation is solved for [x]. Since the matrix [ L] is a lower triangular 

matrix, the solution [y] in Eq. ( 3.13) is obtained by using the forward substitution method. Once [y] is 

known and is substituted in Eq. (3.12), this equation is solved by using back substitution, since [ U] is an 

upper triangular matrix. For a given matrix [a] several methods can be used to determine the corresponding  

[L] and [U]. One of them is related to the Gauss elimination method are described next. 

3.4.1 LU Decomposition Using the Gauss Elimination Procedure 
When the Gauss elimination procedure is applied to a matrix [a], the elements of the matrices [ L] 

and [U] are actually calculated. The upper triangular matrix [U] is the matrix of coefficients [a] that is 

obtained at the end of the procedure, as shown in Figs. 3-4 and 3- 11. The lower triangular matrix [L] is not 

written explicitly during the procedure, but the elements that make up the matrix are actually calculated 

along the way. The elements of [L] on the diagonal are all 1, and the elements below the diagonal are the 

multipliers mij that multiply the pivot equation when it is used to eliminate the elements below the pivot 

coefficient. For the case of a system of four equations, the matrix of coefficients [a] is ( 4 x 4), and the 

decomposition has the form: 

 
A numerical example illustrating LU decomposition is given next. It uses the information in the solution of 

Example 3- 1, where a system of four equations is solved by using the Gauss elimination method. The 

matrix [a] can be written from the given set of equations in the problem statement, and the matrix [U] can 

be written from the set of equations at the end of step 3 (page 35). The matrix [ L] can be written by using 

the multipliers that are calculated in the solution. The decomposition has the form: 
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3.5 ITERATIVE METHODS 
A system of linear equations can also be solved by using an iterative approach. The process, in 

principle, is the same as in the fixed-point iteration method used for solving a single nonlinear equation. In 

an iterative process for solving a system of equations, the equations are written in an explicit form in which 

each unknown is written in terms of the other unknown. The explicit form for a system of four equations is 

illustrated in Fig. 3-13. 

 
Figure 3-13: Standard (a) and explicit (b) forms of a system of four equations. 

The solution process starts by assuming initial values for the unknowns (first estimated solution). In the first 

iteration, the first assumed solution is substituted on the right-hand side of the equations, and the new values 

that are calculated for the unknowns are the second estimated solution. In the second iteration, the second 

solution is substituted back in the equations to give new values for the unknowns, which are the third 

estimated solution. The iterations continue in the same manner, and when the method does work, the 

solutions that are obtained as successive iterations converge toward the actual solution. For a system with n 

equations, the explicit equations for the [xj] unknowns are: 

   
 

   
(   ∑      

   
       )                                      (3.14) 

Condition for convergence 
For a system of n equations [a][x] = [b], a sufficient condition for convergence is that in each row of 

the matrix of coefficients [a] the absolute value of the diagonal element is greater than the sum of the 

absolute values of the off-diagonal elements. 

|   |  ∑ |   |
   
                                                                        (3.15) 

This condition is sufficient but not necessary for convergence when the iteration method is used. When the 

condition ( 3.15) is satisfied, the matrix [a] is classified as diagonally dominant, and the iteration process 

converges toward the solution. The solution, however, might converge even when Eq. ( 3.15) is not satisfied. 

Two specific iterative methods for executing the iterations, the Jacobi and Gauss-Seidel methods, are 

presented next. The difference between the two methods is in the way that the new calculated values of the 

unknowns are used. 

3. 5. 1 Jacobi Iterative Method 

In the Jacobi method, an initial (first) value is assumed for each of the unknowns   
( )

   
( )

     
( )

. If 

no information is available regarding the approximate values of the unknown, the initial value of all the 

unknowns can be assumed to be zero. The second estimate of the solution    
( )

   
( )

     
( )

 is calculated by 

substituting the first estimate in the right-hand side ofEqs. (3.14): 
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( )

 
 

   
(   ∑      

( )

   

       

)            

In general, the ( k + 1) th estimate of the solution is calculated from the ( k) th estimate by: 

  
(   )

 
 

   
(   ∑      

( )

   

       

)            

The iterations continue until the differences between the values that are obtained in successive iterations are 

small. The iterations can be stopped when the absolute value of the estimated relative error of all the 

unknowns is smaller than some predetermined value: 

|
  
(   )    

( )

  
( )

|                

Example 3.3 Solve the following equations by Jacobi’s method. 

15x + 3y – 2z = 85 

2x + 10y + z = 51 

x – 2y + 8z = 5 

Solution In the above equations: 
|15| > |3| + |–2| 

|10| > |2| + |1| 

|8| > |1| + |–2| 

then Jacobi’s method is applicable. We rewrite the given equations as follows: 

 
 

Let the initial approximations be: 

x
0
 = y

0
 = z

0
 = 0 

Iteration 1: 
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Iteration 2: 

 

 
Iteration 3: 

 
Iteration 4: 

 

 

Iteration 5: 
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Iteration 6: 

 
 

Iteration 7: 

 
Example 3.4:Use the Jacobi iterative scheme to obtain the solutions of the system of equations correct to 

three decimal places. 

x + 2y + z = 0 

3x + y – z = 0 

x – y + 4z = 3 

Solution 

Rearrange the equations in such a way that all the diagonal terms are dominant. 

3x + y – z = 0 

x + 2y + z = 0 

x – y + 4z = 3 

Computing for x, y and z we get: 

x = (z – y)/3 

y = (–x – z)/2 

z = (3 + y – x)/4 

The iterative equation can be written as: 

 
The initial vector is not specified in the problem. Hence we choose 

x
(0)

 = y
(0)

 = z
(0)

 = 1 

Then, the first iteration gives: 

 
similarly, second iteration yields: 
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Subsequent iterations result in the following: 

 
so to three decimal places the approximate solution: 

x = 0.333 y = –0.444 z = 0.555 

 

3. 5. 2 Gauss-Seidel Iterative Method 
In the Gauss-Seidel method, initial (first) values are assumed for the unknowns x2, x3, ..., xn (all of the 

unknowns except x1). If no information is available regarding the approximate value of the unknowns, the 

initial value of all the unknowns can be assumed to be zero. The first assumed values of the unknowns are 

substituted in Eq. (3.14) with i = 1 to calculate the value of x1. Next, Eq. (3.14) with i = 2 is used for 

calculating a new value for x2. This is followed by using Eq. (3.14) with i = 3 for calculating a new value for 

x3. The process continues until i = n, which is the end of the first iteration. Then, the second iteration starts 

with i = 1 where a new value for x1 is calculated, and so on. In the Gauss-Seidel method, the current values 

of the unknowns are used for calculating the new value of the next unknown. In other words, as a new value 

of an unknown is calculated, it is immediately used for the next application of Eq. (3.14). (In the Jacobi 

method, the values of the unknowns obtained in one iteration are used as a complete set for calculating the 

new values of the unknowns in the next iteration. The values of the unknowns are not updated in the middle 

of the iteration.) Applying Eq. (3.14) to the Gauss-Seidel method gives the iteration formula: 

  
(   )  

 

   
(   ∑      

( )   
       )

 

  
(   )  

 

   
(   ∑      

(   )     
    ∑      

( )   
     )           

  
(   )

 
 

   
(   ∑      

(   )     
   ) }

 
 

 
 

           (3.16) 

Example 3.5: Solve the following equations by Gauss-Seidal method. 

8x + 2y – 2z = 8 

x – 8y + 3z = –4 

2x + y + 9z = 12 

 

Solution 

In the above equations: 

|8| > |2| + | –2| 

| –8| > |1| + |3| 

|9| > |2| + |1| 

So, the conditions of convergence are satisfied and we can apply Gauss-Seidal method. Then we rewrite the 

given equations as follows: 



DR. Muna M. Mustafa 
Chapter 3: Solving a System of Linear Equations 

45 

 

 
Let the initial approximations be: 

x0 = y0 = z0 = 0 

Iteration 1: 

 
 

Iteration 2: 

 
Iteration 3: 

 
 

 

Iteration 4: 
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Iteration 5: 

 
Iteration 6: 

 
Example 3.6: Using the Gauss-Seidal method solve the system of equations correct to three decimal places. 

x + 2y + z = 0 

3x + y – z = 0 

x – y + 4z = 3 

Solution 

Rearranging the given equations to give dominant diagonal elements, we obtain 

3x + y – z = 0 

x + 2y + z = 0 

x – y + 4z = 3                (E.1) 

Equation (E.1) can be rewritten as 

x = (z – y)/3 

y = –(x + z)/2 

z = (3 + x + y)/4               (E.2) 

Writing Eq.(E.2) in the form of Gauss-Seidal iterative scheme, we get: 

 
We start with the initial value 

x(0) = y(0) = z(0) = 1 

The iteration scheme gives: 

 
 

The second iteration gives: 
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Subsequent iterations result in: 

 
Hence, the approximate solution is as follows: 

x = 0.333, y = –0.444, z = 0.555 

 

3.6 USE OF MATLAB Built IN FUNCTIONS FOR SOLVING A SYSTEM 

OF LINEAR EQUATIONS 
MATLAB has mathematical operations and built-in functions that can be used for solving a system 

of linear equations and for carrying out other matrix operations that are described in this chapter. 

3.6.1 Solving a System of Equations Using MATLAB's Left and Right Division 
Left division \ : Left division can be used to solve a system of n equations written in matrix form 

[a][x]=[b], where [a] is the (n x n ) matrix of coefficients, [x] is an ( n x 1) column vector of the unknowns, 

and [ b] is an (n x 1) column vector of constants. 

x=a\b 

 

For example, the solution of the system of equations in Example 3-1 is calculated by (Command Window): 

 
Right division / : Right division is used to solve a system of n equations written in matrix form [x][a] = [b], 

where [a] is the (n x n ) matrix of coefficients, [ x] is a ( 1 x n ) row vector of the unknowns, and [ b] is a ( 1 

x n) row vector of constants. 

 x=b/a  

For example, the solution of the system of equations in Example 3-1 is calculated by (Command Window): 

 
Notice that the matrix [a] used in the right division calculation is the transpose of the matrix used in the left 

division calculation. 
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3.6.2 Solving a System of Equations Using MATLAB Inverse Operation 
In MATLAB, the inverse of a matrix [a] can be calculated either by raising the matrix to the power 

of -1 or by using the inv( a ) function. Once the inverse is calculated, the solution is obtained by multiplying 

the vector [ b] by the inverse. This is demonstrated for the solution of the system in Example 4-1. 

 

3.7 Problems 
1. Solve the following system of equations using the Gauss elimination method: 

2x1 +x2 -x3 = 1 

x1+ 2x2+ x3 = 8 

-x1 +x2- x3 = -5 

2. Consider the following system of two linear equations: 

0.0003x1 + l.566x2 = l.569 

0.3454x1 -2.436x2 = 1.018 

(a) Solve the system with the Gauss elimination method using rounding with four significant figures. 

(b) Switch the order of the equations, and solve the system with the Gauss elimination method using 

rounding with four significant figures. 

         Check the answers by substituting the solution back in the equations. 

3. Solve the following set of simultaneous linear equations using the Jacobi’s method. 

a. 2x – y + 5z = 15 

2x + y + z = 7 

x + 3y + z = 10 

b. 20x + y – 2z = 17 

3x + 20y – z = –18 

2x – 3y + 20z = 25 

 

c. 5x + 2y + z = 12 

x + 4y + 2z = 15 

x + 2y + 5z = 20 

4. Solve the following system of simultaneous linear equations using the Gauss-Seidal method. 

a. 4x – 3y + 5z = 34 

2x – y – z = 6 

z + y + 4z = 15 

 

b. 2x – y + 5z = 15 

2x + y + z = 7 

x + 3y + z = 10 
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c. 15x + 3y – 2z = 85 

2x + 10y + z = 51 

x – 2y + 8z = 5 

5. Determine the LU decomposition of the matrix   [
   
   
    

] using the Gauss elimination 

procedure. 

6. Carry out the first three iterations of the solution of the following system of equations using the 

Gauss-Seidel iterative method. For the first guess of the solution, take the value of all the unknowns 

to be zero. 

8x1 + 2x2 + 3x3 = 51 

2x1+5x2+x3 = 23 

-3x1+x2+6x3 = 20 

 


