

<u>Definition 1.23.</u> A sequence (x_n) in a normed space X is a *Cauchy convergent sequence* if:

$$\forall \varepsilon > 0 \ \exists \ k(\varepsilon) \in \mathbb{Z}^+ \text{ such that } \| x_n - x_m \| < \varepsilon \ \forall n, m > k(\varepsilon)$$

<u>Theorem 1.24</u>.: Every convergent sequence is a Cauchy convergent sequence.

proof:

Suppose that (x_n) is a convergent sequence in the normed space X, then $\exists x \in X$ s.t. $x_n \rightarrow x$

Let
$$\varepsilon > 0$$
, since $x_n \to x \Rightarrow \exists k \in \mathbb{Z}^+$ s.t. $||x_n - x|| < \varepsilon/2 \ \forall n > k$

If
$$n, m \ge k$$
, then $||x_n - x_m|| = ||(x_n - x) + (x - x_m)|| \le ||x_n - x|| + ||x - x_m|| < \varepsilon/2 + \varepsilon/2 = \varepsilon$

Then (x_n) is a Cauchy sequence.

Remark: The converse to above theorem may not be true. For example:

Let X= IR-
$$\{0\}$$
, $(x_n) = (1/n)$

 (x_n) Cauchy convergent sequence in IR

Since IR complete \Rightarrow $(x_n) = (1/n) \rightarrow 0$ convergent in IR

But (x_n) not convergent in IR- $\{0\}$, since $0 \notin IR-\{0\}$.

Definition 1.25.: Let X be a normed space, $x_0 \in X$, a function f is said to be *continuous* at x_0 if:

 $\forall \ \epsilon > 0, \exists \ \delta(x_0, \epsilon) > 0 \text{ s.t. } ||f(x) - f(x_0)|| < \epsilon \text{ whenever } ||x - x_0|| < \delta.$

Theorem 1.26. : Let X, Y be two Normed space, a function $f: X \to Y$ continuous at $x_0 \in X$ iff for each sequence (x_n) in X such that $x_n \to x_0$, then $f(x_n) \to f(x_0)$.

Definition 1.27.: Let X be a normed space, a function $f: X \to IR$ is called **bounded** if:

 $\exists M > 0 \text{ s.t. } || f(x) || \leq M, \forall x \in X.$

Definition 1.28.: Let (x_n) be a sequence in a normed space X, say (x_n) is **bounded** sequence in X if : $\exists M > 0$ s.t. $||x_n|| \le M$, $\forall n \in \mathbb{Z}^+$.

Theorem 1.29.: If (x_n) is Cauchy convergent sequence in a normed space X then it is bounded. *proof:*

Let (x_n) be a Cauchy sequence in X

Given $\varepsilon=1$, $\exists k \in \mathbb{Z}^+$ s.t. $||x_n-x_m|| < 1$, $\forall n, m > k$.

Let
$$m = k+1 \Rightarrow ||x_n - x_{k+1}|| < 1$$

Since $| || x_n || - || x_{k+1} || | \le || x_n - x_{k+1} || \le 1$

$$\Rightarrow | ||x_n|| - ||x_{k+1}|| | < 1 \Rightarrow ||x_n|| < 1 + ||x_{k+1}||, \forall n > k$$

Put M = max { $||x_1||, ||x_2||, ..., ||x_k||, ||x_{k+1}||$ } $\Rightarrow ||x_n|| \le M, \forall n \in \mathbb{Z}^+.$

<u>Theorem1.30.</u>: Every convergent sequence in the normed space X is bounded.

proof:

Let (x_n) be a convergent sequence in $X \Rightarrow (x_n)$ a Cauchy convergent sequence in $X \Rightarrow (x_n)$ bounded.

<u>Definition 1.31.</u>: Let X is a normed space, $x_0 \in X$, r > 0, define:

- 1) $B_r(x_0) = \{ x \in X : ||x x_0|| \le r \}$ is called *open ball* of center x_0 and radius r.
- 2) $D_r(x_0) = \{ x \in X : ||x x_0|| \le r \}$ is called *closed ball* of center x_0 and radius r.
- 3) $B_I(0) = \{x \in X : ||x|| \le 1\}$ is called *open unite* of center 0 and radius 1.
- 4) $D_1(0) = \{ x \in X : ||x|| \le 1 \}$ is called *closed unite* of center 0 and radius 1.

Definition 1.32.: Let $\| \cdot \|_1$, $\| \cdot \|_2$ be two norms on vector space X, $\| \cdot \|_1$ is said to be *equivalent* to $\| \cdot \|_2$ ($\| \cdot \|_1 \sim \| \cdot \|_2$) if there exist a and b positive real numbers such that:

$$a \| . \|_2 \le \| . \|_1 \le b \| . \|_2$$

Example: Let $X=IR^n$,

$$||x|| = \sum_{i=1}^{n} |x_i|, \forall x \in IR^n \text{ and } ||x||_e = \sum_{i=1}^{n} |x_i|^2$$
, $\forall x \in IR^n$

Then $||x|| \sim ||x||_e$

proof:

Theorem 1.33.: On a finite dimensional normed space, all norms are equivalent.

Examples:

1. $X=IR^2$, $\|.\|_e$, $\|.\|_2$, $\|.\|_3$ are equivalent. $X=IR^n$, $\|.\|_e$, $\|.\|_2$, $\|.\|_3$ are equivalent

 $\frac{1}{\sqrt{x}} \|x\| \le \|x\|_{e} \le \|x\|$ Then $\|x\| \sim \|x\|_{e}$

شكرا لاصغائكم