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Chapter4: Curve Fitting and Interpolation 
Limits processes are the basis of calculus. For example, the derivative  

 f
'
(x)=      

 (   )  ( )

 
 

is the limit of the difference quotient where both the numerator and the denominator go to zero. A Taylor 

series illustrates another type of limit process. In this case an infinite number of terms is added together by 

taking the limit of certain partial sums. An important application is their use to represent the elementary 

functions: sin(x), cos(x), e
x
, ln(x),etc. Table(4.1) gives several of the common Taylor series expansions. 

Table(4.1): Taylor Series Expansions for Some Common Function 

 

Sin(x)=x-
  

  
+

  

  
-
  

  
+…                                                                                        for all x 

Cos(x)=1-
  

  
+

  

  
-
  

  
+…                                                                                      for all x 

e
x
=1+

 

  
 +

  

  
+

  

  
+…                                                                                          for all x 

ln(1+x)=x-
  

 
+

  

 
-
  

 
+…                                                                                       

tan
-1

(x)=  
  

 
 

  

 
 

  

 
+…                                                                              

(1+x)
p
=     

 (   )

  
   

 (   )(   )

  
                                             for | |    

We want to learn how a finite sum can be used to obtain a good approximations to an infinite sum. For 

illustration we shall use the exponential series in table(4.1) to compute the number e=e
1
. Here we choose 

x=1 and use the series: 
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Table(4.2): Partial Sums Sn Used to Determine e 

n 
     

 

  
 

  

  
   

  

  
   

0 1 

1 2 

2 2.5 

3 2.666 666 666 

4 2.708 333 333 

5 2.716 666 666 

6 2.718 055 555 

7 2.718 253 968 

8 2.718 278 769  

9 2.718 281 525 

10 2.718 281 180 

11 2.718 281 826 

12 2.718 281 182 

13 2.718 281828 

14 2.718 281 828 

15 2.718 281 828 

Theorem(4.1): (Taylor Polynomial Approximation) 

 Assume that            and          is a fixed value. If        ,then: 

                                      f(x)=PN(x)+EN(x)                                           (4.1) 

where PN(x) is a polynomial that can be used to approximate f(x): 
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                                       f(x)   ( )  ∑
 ( )(  )

  
(    )

  
               (4.2) 

The error term EN(x) has the form: 

                                      EN(x)=
 (   )( )

(   ) 
(    )

                                 (4.3) 

for some value c=c(x) that lies between x and x0. 

Example(4.1): Show why 15 terms are all that are needed to obtain the 13-digit approximation 

 e=2.718 281 828 459 in table(4.2). 

           P15(x)=    
  

  
 

  

  
   

   

   
                                              (4.4) 

setting x=1 in (4.4) gives the partial sum S15=P15(1) 

          E15(x)=
 (  )( )   

   
 

Since x0=0 and x=1 then 0<c<1 

which implies that e
c
<e

1
 

|E15(x)|=| 
 (  )( )   

   
|  

  

   
 

 

   
                 

Exercises:  

1. Let f(x)=sin(x) and apply theorem(4.1) 

a. Use x0=0 and find P5(x), P7(x), and P9(x). 

b. Show that if |x| 1 then the approximation 

     sin(x)   
  

  
 

  

  
 

  

  
 

  

  
 

has the error bound |  ( )|  
 

   
              . 

c. Use    
 

 
 and find P5(x), which involves powers of (x-

 

 
). 

2. (a) Find a Taylor polynomial of degree N=5 for  ( )  
 

   
 expanded about x0=0. 

(b) Find the error term E5(x) for the polynomial part(a). 
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4.1 Introduction to Interpolation 

We saw how a Taylor polynomial can be used to approximate the function f(x). The information 

needed to construct the Taylor polynomial is the value of f and its derivatives at x0. A short coming is that 

the higher-order derivatives must be known, and often they are either not available or they are hard to 

compute. 

Suppose that the function y=f(x) is known at N+1 points (x0,y0),(x1,y1),…,(xN,yN), where the values xk are 

spread out over the interval [a,b] and satisfy. In the construction, only the numerical values xk and yk are 

needed. 

                           and    yk=f(xk) 

A polynomial    p(x) of degree N will be constructed that passes through these N+1 points. 

4.2 Lagrange Approximation 

Interpolation means to estimate a missing function value by taking a weighted average of known 

function values at neighboring points. Linear interpolation uses a line segment that passes through two 

points. The slope between (x0,y0) and (x1,y1) is m=(y1-y0)/(x1-x0), and the point-slope formula for the line 

y=m(x-x0)+y0 can be rearranged as: 

          y=P(x)=y0+(y1-y0)
    

     
                            (4.5) 

when formula (4.5) is expanded, the result is a polynomial of degree 1. Evaluation of P(x) at x0 and x1, 

respectively: 

 P(x0)=y0+(y1-y0)(0)=y0 

P(x1)=y0+(y1-y0)(1)=y1 

The French mathematician Joseph Louis Lagrange used a slightly different method to find this 

polynomial. He noticed that it could be written as: 

              y=P1(x)=  
    

     
   

    

     
                         (4.6) 

Each term on the right side of (4.6) involves a linear factor; hence the sum is a polynomial of degree 1. 

The quotient in (4.6) are denoted by 
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               ( )  
    

     
      and      ( )  

    

     
            (4.7) 

Computation reveals that     (  )   ,     (  )   ,     (  )   , and     (  )    so that the 

polynomial P1(x) in (4.6) also passes through the two given pints. The terms     ( ) and     ( ) are 

called Lagrange coefficient polynomials. Using this notation, (4.6) can be written in summation form: 

             P1(x)=∑       
 
                                        (4.8) 

Example(4.2): Consider the graph y=f(x)=cos(x) over [0,1.2]. 

a. Use the nodes x0=0, and x1=1.2 to construct a linear interpolation polynomial P1(x). 

b.  Use the nodes x0=0.2, and x1=1 to construct a linear interpolation polynomialQ1(x). 

Using (4.6) with the abscissas x0=0, and x1=1.2 and the ordinates y0=cos(0)=1 and y1=cos(1.2)=0.362 358 

P1(x)=1
     

     
          

   

     
 

        =-0.833 333(x-1.2)+0.301 965(x-0) 

When the nodes x0=0.2, and x1=1 with y0=cos(0.2)=0.980 067 and y1=cos(1)=0.540 302 are used, the results 

is: 

Q1(x)=         
   

     
          

     

     
 

        =-1.225 083(x-1)+0.675 378(x-0.2) 

The generalization of(1.8) is the construction of a polynomial PN(x) of degree at most N that passes 

through the N+1 points (x0,y0),(x1,y1),…,(xN,yN) and has the form: 

       PN(x)=∑       
 
                                               (4.9) 

where LN,k is the Lagrange coefficient polynomial based on these nodes 

LN,k=
(    ) (      )(      ) (    )

(     ) (       )(       ) (     )
            (4.10) 
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Example(4.3): Consider y=f(x)=cos(x) over [0,1.2] 

a. Use the three nodes x0=0,x1=0.6 and x2=1.2 to construct a quadratic interpolation polynomial P2(x). 

b. Use the four nodes x0=0,x1=0.4,x2=0.8 and x3=1.2 to construct a cubic interpolation polynomial 

P3(x). 

a. 

xi 0 0.6 1.2 

yi=cos(xi) 1 0.825 336 0.362 358 

      P2(x)= 
(     )(     )

(     )(     )
          

(   )(     )

(     )(       )
 

          
(   )(     )

(     )(       )
 

      =1.388 889(x-0.6)(x-1.2)-2.292 599x(x-1.2)+0.503275x(x-0.6) 

 

b. 

 

 

 

P3(x)= 
(     )(     )(     )

(     )(     )(     )
           

(   )(     )(     )

(     )(       )(       )
           

(   )(     )(     )

(     )(       )(       )
 

                 +         
(   )(     )(     )

(     )(       )(       )
 

= -2.604 167(x-0.4)(x-0.8)(x-1.2)+7.195 789x(x-0.8)(x-1.2) 

-5.443 021x(x-0.4)(x-1.2)+0.943 641x(x-0.4)(x-0.8) 

Exercises: Find Lagrange polynomials that approximate f(x)=x
3
. 

a. Find the linear interpolation polynomial P1(x) using the nodes x0=-1 and x1=0 

b. Find the quadratic interpolation polynomial P2(x) using x0=-1, x1=0 and x2=1. 

xi 0 0.4 0.8 1.2 

yi=cos(xi) 1 0.921 061 0.696 707 0.362 358 
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c. Find the cubic interpolation polynomial P3(x) using x0=-1, x1=0 x2=1 and x3=2. 

d. Find the linear interpolation polynomial P1(x) using the nodes x0=1 and x1=2. 

4.2.1 Error Terms and Error Bounds: 

Theorem(4.2): (Lagrange Polynomial Approximation) 

 Assume that             and that                  are N+1 nodes. If        , then : 

                   f(x)=PN(x)+EN(x)                                 (4.11) 

where PN(x) is a polynomial that can be used to approximate f(x) 

                  f(x)=PN(x)=∑  (  )    
 
                    (4.12) 

The error term EN(x) has the form: 

                EN(X)=
(    )(    ) (    ) (   )( )

(   ) 
     (4.13) 

for some value c=c(x) that lies in the interval [a,b]. 

Theorem (4.3): (Error Bounds for Lagrange Interpolation, Equally Spaced Nodes) 

 Assume that f(x) is defined on [a,b], which contains equally spaced nodes xk=x0+hk. Additionally, assume 

that f(x) and derivatives of f (x), up to order N+1, are continuous and bounded on the special subintervals 

[x0,x1], [x0,x2], and [x0,x3], respectively; that is: 

  | (   )( )|                                   (4.14) 

for N=1,2,3. The error terms (4.13) corresponding to the cases N=1,2, and 3 have the following useful bounds 

on their magnitude: 

      |  ( )|  
    

 
                                        (4.15) 

        |  ( )|  
    

 √ 
                                      (4.16) 

        |  ( )|  
    

  
                                      (4.17) 
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Example(4.4): Consider y=f(x)=cos(x) over [0,1.2]. Use formulas (4.15) through (4.17) and determine the error 

bounds for the Lagrange polynomial constructed in examples (4.2) and(4.3). 

 First, determine the bounds M2, M3, and M4 for the derivatives | ( )( )| | ( )( )|     | ( )( )|, 

respectively, taken over the interval [0,1.2]: 

                 | ( )( )|  |     ( )|  |     ( )|       

                | ( )( )|  |    ( )|  |    (   )|               

               | ( )( )|  |    ( )|  |    ( )|       

For P1(x) the spacing of the nodes is h=1.2, and its error bound is: 

            |  ( )|  
    

 
    

(   ) ( )

 
=0.180 

For P2(x) the spacing of the nodes is h=0.6, and its error bound is: 

           |  ( )|  
    

 √ 
 

(   ) (         )

 √ 
            

For P3(x) the spacing of the nodes is h=0.4, and its error bound is: 

|  ( )|  
    

  
   

(   ) ( )

  
           

Example(4.5): For the data below, obtain the quadratic polynomial and use to estimate f(0.5).   

x 1 -1 2 

f(x) 0 -2 3 

The quadratic Lagrange polynomial are 

P2(x)=( )
(    )(    )

(     )(     )
 (  )

(    )(    )

(     )(     )
  

(    )(    )

(     )(     )
 

         =( )
(  (  ))(   )

(  (  ))(   )
 (  )

(   )(   )

(    )(    )
  

(   )(  (  ))

(   )(  (  ))
         = 

        

 
 

hence P2(0.5)=-1. 
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Exercises: 

1. Consider the Lagrange coefficient polynomial L2,k(x) that are used for quadratic interpolation at the nodes 

x0,x1, and x2. Define g(x)=L2,0(x)+L2,1(x)+L2,2(x)-1. 

a. Show that g is a polynomial of degree  2. 

b. Show that g(xk)=0 for k=0,1,2. 

2. Consider the function f(x)=sin(x) on the interval [0,1]. Use theorem(4.3) to determine the step size h so that: 

a. linear Lagrange interpolation has an accuracy of 10
-6

. 

b. quadratic Lagrange interpolation has an accuracy of 10
-6

. 

c. cubic Lagrange interpolation has an accuracy of 10
-6

. 

4.3  Divided Difference Interpolation 

 The Lagrange interpolation polynomial is useful for analysis, but is not the ideal formula for evaluating the 

polynomial. Here the groundwork is laid for the development of efficient form of the unique interpolating 

polynomial Pn. 

a. by simplifying the construction. 

b. by reducing effort required to evaluate the polynomial. 

Definition(4.1): 

 Define                   
 (    )  (  )

       
                             (4.18) 

is the first-order divided difference of f at x=xi  

and                            
                       

       
                   (4.19) 

is the second-divided difference of f at x=xi. 

and the recursive rule for constructing k-order divided differences is 

                     
                             

       
       (4.20) 

and is used to construct the divided differences in table (4.3) 
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Table(4.3): Divided Differences Table 

xi f(xi) f[xi,xi+1] f[xi,xi+1,xi+2] f[xi,xi+1,xi+2,xi+3] 

x0 f0    

f[x0,x1]   

x1 f1 f[x0,x1,x2] 

f[x0,x1,x2,x3] 

f[x1,x2] 

x2 f2 f[x1,x2,x3]  

f[x2,x3]  

x3 f3   

Theorem(4.4): (Newton Polynomial) 

 Suppose that x0,x1,…,xN are N+1 distinct numbers in [a,b]. There exists a unique polynomial PN(x) of 

degree at most N with the property that: 

         f(xj)=PN(xj)    for j=0,1,…,N 

The Newton form of this polynomial is: 

  PN(x)=a0+a1(x-x0)+…+aN(x-x0)(x-x1)…(x-xN-1)        (4.21) 

where    ak=f[x0,x1,…,xk], for k=0,1,…,N. 

Example(4.6): Repeating example(4.5) using  the polynomial form (4.21) requires a divided difference table. 

xi fi f[xi,xi+1] f[xi,xi+1,xi+2] 

1 0 
  

1 

 

-1 -2 
 

 
 

 

 
 

2 3  
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and Newton polynomial is: 

P2(x)=f[x0]+f[x0,x1](x-x0)+ f[x0,x1,x1](x-x0)(x-x1) 

        =0+(1)(x-1)+(
 

 
)(x-1)(x-(-1))=

   

 
   

 

 
 

Corollary(4.1): (Newton Approximation) 

Assume that PN(x) is the Newton polynomial given in theorem(4.4) and is used to approximate the function 

f(x), that is, 

  f(x)=PN(x)+EN(x)                              (4.22) 

If f          , then for each x      there corresponds a number c=c(x) in (a,b), so that the error term has the 

form 

                  EN(x)=
(    )(    ) (    ) (   )( )

(   ) 
            (4.23) 

Exercises: 

1. Compute the divided-difference table for the tabulated function. 

 

xi 4 5 6 7 8 

yi 2 2.236 07 2.449 49 2.645 75 2.828 43 

2. Evaluate the Newton polynomial and find f(3) 

xi -2 0 1 2 5 

f(xi) -15 1 -3 -7 41 

4.4  Equispaced Interpolation: 

4.4.1 Difference Operator and Difference Tables:  

 Differences are similar to divided differences but work with equispaced data. The forward difference 

operator   is defined by: 

                 0
f(x)=f(x)                                                                              (4.24) 
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                 f(x)=  1
f(x)=f(x+h)-f(x)                                                      (4.25) 

                 k
f(x)=  (  k-1

f(x))=  k-1
( f(x)) 

                         =  k-1
f(x+h)-  k-1

f(x)                                                     (4.26) 

The   k
 are conveniently displayed in a difference table(4.4) 

Table(4.4): A Table of Forward Differences 

x f(x)  f(x)  2
f(x)  3

f(x) 

x0 f(x0) 
   

 f0 

  

x1 f(x1)  2
f0 

 

 f1  3
f0 

x2 f(x2)  2
f1 

 f2 

 

x3 f(x3) 
  

   

Example(4.7): The polynomial P3(x)=x
3
-6x

2
+11x-3 gives rise to the following difference table at x=2, 4, 6, 

8, 10. 

x P3(x)  P3(x)  2
P3(x)  3

P3(x) 

2 3 
   

6 
  

4 9 48 
 

54 48 

6 63 96 

150 48 

8 213 144 

294 
 

10 507   
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4.4.2 Backward Difference Operator  : 

Define             0
f(x)=f(x)                                                                                   ( 4.27) 

                          f(x)=  1
f(x)=f(x)-f(x-h)                                                             (4.28) 

                           k
f(x)=  k-1

f(x)-  k-1
f(x-h) ,    k 1                                             (4.29) 

Table(4.5): A Table of Backward Differences 

x f(x)  f(x)  2
f(x)  3

f(x) 

x0 y0 

   

 f1 

  

x1 y1  2
f2 

 

 f2  3
f3 

x2 y2  2
f3 

 f3 

 

x3 y3 

  

   

 

4.4.3 Shift Operator: E 

  E
0
f(x)=f(x)                                                                                        (4.30) 

  Ef(x)=E
1
f(x)=f(x+h)                                                                         (4.31) 

  E
-1

f(x)=f(x-h)                                                                                   (4.32) 

  E
k
f(x)=f(x+kh)=E(E

k-1
f(x)),  k= 1,  2,…                                         (4.33) 

E shifts the data point a number of intervals to the left or right. 

 There are many relationships between the three difference operators, of which two will be useful for 

the ensuing discussion: 

  ( )   (   )   ( )    ( )   ( )  (   ) ( ) 

                                                                                   (4.34) 

and                ( )   ( )   (   )   ( )      ( )  (     ) ( ) 
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                                   (   )                                                         (4.35) 

4.4.4 Forward Difference Polynomial: 

 Assume that the nodes x0, x1, …, xn are in ascending order and may be described by an index j and an 

interval h, 

                     xj=x0+jh,   j=0,1,…,n                                                                     (4.36) 

j is the number of intervals between the data point xj and the origin x0. For a real number t, 

  x=x0+th, 0≤t≤n                                                                              (4.37) 

If t {0,1,…,n}, x corresponds to a data point. Otherwise x corresponds to a point lying between two 

adjacent data points. 

f(x)=f(x0+th)=E
t
f(x0)=(1+Δ)

t
f(x0) 

                       =[     
 (   )

  
   

 (   )(   )

  
    ] (  ) 

then  Pn(x)=f0+tΔf0+
 (   )

  
       

 (   )(   ) (     )

  
                            (4.38) 

which is the Newton-Gregory forward difference polynomial. 

Example(4.8): Construct a difference table for the function f where f(0.5)=1, f(0.6)=2 and f(0.7)=5, and use 

quadratic interpolation to estimate f(0.53). 

The difference table is: 

x f(x)  f(x)  2
f(x) 

0.5 1 

  

1 
 

0.6 2 2 

  

0.7 5 

 

 

  

the quadratic polynomial P2(x)=f0+tΔf0+
 

 
t(t-1)Δ

2
f0 

at x=0.53 , t=
    

 
, h=0.1, we choose x0=0.5 
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→t=
        

   
=0.3 

 and f(0.53)≈P2(0.53)=1+0.3(1)+(0.3)(0.3-1)(2)/2!=1+0.3-0.105=1.195 

An alternative form of Pn uses the backward difference operator   

      Pn(x)=Pn(x0+th)=        
 (   )

  
       

 (   ) (     )

  
         (4.39) 

Example(4.9): Repeat example(4.8) using the backward formula(4.39) to find f(0.63). 

The difference table is identical to that of example(4.8) 

x f(x)  f(x)  2
f(x) 

0.5 1 

  

1 
 

0.6 2 2 

  

0.7 5 

 

 

  

The quadratic polynomial   P2(x2+th)=f2+t f2+
 

 
t(t+1)  2

f2 

since  t=
    

 
=

        

   
=-0.7    and f(0.63)≈P2(0.63)=5-3*0.7+

 

 
(-0.7)(-0.7+1)(2)=2.69 

Exercises: 

1. Construct a difference table for the data 

x 0 0.2 0.4 0.6 0.8 1 

f(x) 0.55 0.82 1.15 1.54 1.99 2.5 

and use to find f(0.23) and f(0.995). 
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4.5 Curve Fitting 

4.5.1 Least Squares Approximation: 

  Let Yi represent an experimental value, and let yi be a value from the equation   yi=axi+b where xi is a 

particular value of the variable assumed free of error. We wish to determine the best values for a and b so that the 

y's predict the function values that correspond to x-values. Let ei=Yi-yi. The least-squares criterion requires that: 

S=  
    

      
 =∑   

  
    ∑ (        )  

    be a minimum. N is the number of x,Y-pairs. We reach the 

minimum by proper choice of the parameters a and b, so they are the " variables" of the problem. At a minimum for 

S, the two partial derivatives   
  ⁄        

  ⁄  will be both zero, that is: 

  
  

  
   ∑  (        )(   )

 
     

                   
  

  
   ∑  (        )(  ) 

   , 

Dividing each of these equations by -2 and expanding the summation, we get: 

                
 ∑  

   ∑   ∑    

 ∑      ∑  
}                                                (4.40) 

All the summations in(4.40) are from i=1 to i=N. Solving these equations gives  

             a=
 ∑     ∑  ∑  

 ∑  
  (∑  )

                                                                    (4.41) 

             b=
∑  ∑  

  ∑  ∑    

 ∑  
  (∑  )

 
                                                               (4.42) 

Example(4.10): Find the least-squares line for the data point given in the following table: 

x -1 0 1 2 3 4 5 6 

y 10 9 7 5 4 3 0 -1 

N=8, ∑  =20, ∑  
 =92, ∑  =37, ∑    =25 

from equations(4.41) and (4.42), we get: 

a=-1.6071429, b=8.6428571 

and y=-1.6071429x+8.6428571 
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4.5.2 The Power Fit y=Ax
M

 

 Some situations involve f(x)=Ax
M

, where M is a Known constant. In this cases there is only one parameter 

A to be determined. 

Theorem(4.5): (Power Fit) 

 Suppose that {(xk,yk)}, k=1,…,N are N points, where the abscissas are distinct. The coefficient A of the 

least-squares power curve y=Ax
M

 is given by 

            A=
(∑   

   
 
   )

(∑   
   

   )
⁄                                      (4.43) 

 

 

 

Example(4.11): Find the constant g in the relation d=
 

 
    using the following table:  

t 0.2 0.4 0.6 0.8 1.0 

d 0.196 0.785 1.7665 3.1405 4.9075 

Here M=2, N=5, ∑    
 =7.6868  , ∑   

 =1.5664 

and the coefficient A=7.6868/1.5664=4.9073, so we get g=2A=9.7146. 

4.5.3  Data Linearization Method for y=Ce
Ax

: 

 Suppose that we are given points (x1,y1),…,(xN,yN) and want to fit an exponential curve of the form 

   y=Ce
Ax

                                               (4.44) 

The first step is to take the logarithm of both sides: 

                              ln(y)=Ax+ln(C)                                                            (4.45) 

Then introduce the change of variables: 

       Y=ln(y), X=x , and B=ln(C)                                                              (4.46) 
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This results in a linear relation between the new variables X and Y 

                         Y=AX+B                                                                      (4.47) 

Example(4.12): Use the data linearization method and find the exponential fit y=Ce
Ax

 for the five points (0,1.5), 

(1,2.5), (2,3.5), (3,5), and (4,7.5). 

x 0 1 2 3 4 

y 1.5 2.5 3.5 5 7.5 

 ∑        ∑   ∑                   ∑   
      ∑        ∑                  and N=5 

therefore we have a=0.3912023, b=0.457367 

then C is obtained with the calculation C=e
0.457367

=1.57991 

and     y=1.57991e
0.3912023x

 

Exercises: 

1. Find the least-squares line for the data 

x -6 -2 0 2 6 

y 7 5 3 2 0 

2. Find the power fits y=Ax
2
 and y=Bx

3
 for the following data: 

x 0.5 0.8 1.1 1.8 4 

y            7.1 4.4 3.2 1.9 0.9 

3. For the given data find the least-squares curve f(x)=Ce
Ax

 

x -1 0 1 2 3 

y 6.62 3.94 2.17 1.35 0.89 

 

 


