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Introduction

In 1853, the great Russian mathematician, P. L. Chebyshev (Cebyéev), while working on a
problem of linkages, devices which translate the linear motion of a steam engine into the
circular motion of a wheel, considered the following problem:

Given a continuous function f defined on a closed interval [a,b] and a posi-
tive integer n, can we “represent” f by a polynomial p(z) = > ,_,arz”, of
degree at most n, in such a way that the maximum error at any point z in
[a,b] is controlled? In particular, is it possible to construct p so that the error |
g max q<z<b | f() — p(x)| is minimized? g

This problem raises several questions, the first of which Chebyshev himself ignored:

— Why should such a polynomial even exist?
— If it does, can we hope to construct it?
— If it exists, is it also unique?

— What happens if we change the measure of error to, say, f: |f(z) — p(x)|? dz?



Best Approximations in Normed Spaces

Recall that a norm on a vector space X is a nonnegative function on X satisfying:

z|| > 0, and [|z|| = 0 if and only if 2 = 0,

azx|| = |a|||z|| for any x € X and a € R,

z+yl| < [lzfl + [yl for any =, y € X.

Examples

1. As we'll soon see, in X = R™ with its usual norm ||(zx)7_|l2 = (32—, a:k|2)1/2, |
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2. Consider X = R? under the norm |(2z,y)|| = max{|z|, |y|},



3. There are many norms we might consider on R™. Of particular interest are the £,-
norms; that is, the scale of norms:

1/p
(23 )iz [l = (2]%%) 1 <p<oo,

and
[(Z:)izilleo = max ;).
It’s easy to see that || - ||; and || - ||, define norms. The other cases take a bit more

4. The ¢5-norm is an example of a norm induced by an inner product (or “dot” product).
You will recall that the expression

n
= E TilYi,
i=1

where x = (z;)I'_; and y = (y;)~, defines an inner product on R™ and that the norm
in R"™ satisfies

zlle =/ (z,2).



one example, consider this: Given a positive Riemann integrable weight function w(x)
defined on some interval [a,b], it’s not hard to check that the expression

b
(f.9) = / £(t) g(t) w(t) dt

defines an inner product on C'[a,b], the space of all continuous, real-valued functions
f:la,b] — R, with associated norm

b 1/2
HfHQZ(/ If(t)IQw(t)dt> .

5. Our original problem concerns the space X = C[a, b] under the uniform norm || f|| =
max ,<,<p |f(2)|. The adjective “uniform” is used here because convergence in this
norm is the same as uniform convergence on [a,b]:

| fn— fll — 0 < f, — f uniformly on [a,b]



Lemma 1.3. Let V' be a finite-dimensional vector space. Then, all norms on V' are equiv-
alent. That is, if || - || and |||-||| are norms on V', then there exist constants 0 < A, B < o
such that

Allzl| <l[[]ll < B ||

for all vectors x € V.

Corollary 1.4. Every finite-dimensional normed space is complete (that is, every Cauchy
seqeuence converges). In particular, if Y is a finite-dimensional subspace of a normed linear
space X, then Y is a closed subset of X.

Corollary 1.5. Let Y be a finite-dimensional normed space, let x € Y, and let M > 0.
Then, any closed ball {y €Y : ||z —y|| < M } is compact.

Proof. Because translation is an isometry, it clearly suffices to show that the set {y € Y :
|yl]| < M} (i.e., the ball about 0) is compact.



Suppose now that Y is n-dimensional and that eq,...,e, is a basis for Y. From
Lemma 1.3 we know that there is some constant A > 0 such that

for all x = Z?zl a;e; € Y. In particular,

mn
E ;€4
i=1

Thus, {y €Y : |ly|| < M } is a closed subset (why?) of the compact set

Ala;| < <M = |a;| < M/A for i=1,...,n.

=1

{:13 =) ase;:|ai| < M/A, i=1,.. n} — [—M/A, M/A". ]



Theorem 1.6. Let Y be a finite-dimensional subspace of a normed linear space X, and let
x € X. Then, there exists a (not necessarily unique) vector y* € Y such that

|2z —y*| = min ||z — y|
Y

for all y € Y. That is, there is a best approximation to x by elements from Y .

Proof. First notice that because 0 € Y., we know that any nearest point y* will satisfy
|2z —y*|| < ||| = || — 0]]. Thus, it suffices to look for y* in the compact set

K={yeY :|a—yl <[]}
To finish the proof, we need only note that the function f(y) = ||z — y|| is continuous:
fy) =) = |lle =yl = llz == | < lly — =],

and hence attains a minimum value at some point y* € K. []



Corollary 1.7. For each f € C|a,b] and each positive integer n, there is a (not necessarily
unique) polynomsial p’ € P, such that

If = poll = min [If —pl|.

Lemma 1.9. Let Y be a finite-dimensional subspace of a normed linear space X, and
suppose that each *x € X has a unique nearest point y, € Y. Then the nearest point map
xr — Y, 1S continuous.

Proof. Let’s write P(x) = vy, for the nearest point map, and let’s suppose that x,, — x in
X. We want to show that P(x,,) — P(x), and for this it’s enough to show that there is a
subsequence of (P(x,)) that converges to P(x). (Why?)

Because the sequence (x,,) is bounded in X, say ||z, | < M for all n, we have

[P ()| < |1P(2n) — xnll + [zl < 2|2, [ < 2M.

Thus, (P(x,,)) is a bounded sequence in Y, a finite-dimensional space. As such, by passing
to a subsequence, we may suppose that (P(x,)) converges to some element Fh € Y. (How?)
Now we need to show that Py = P(x). But

[ P(2n) — zn|] < ||P(x) — 2,
for any n. (Why?) Hence, letting n — oo, we get
[ Po — z|| < [[P(x) — .

Because nearest points in Y are unique, we must have Py = P(x). L]



Theorem 1.11. Let Y be a subspace of a normed linear space X, and let x € X. The set
Y. . consisting of all best approxrimations to x out of Y, is a bounded convex set.

Proof. As we’ve seen, the set Y, is a subset of the ball {y € X : ||z —y|| < ||z|| } and, as such,
is bounded. (More generally, the set Y, is a subset of the sphere {y € X : ||z — y|| = d},
where d = dist(z,Y) = inf ,eyv ||z — y]|.)

Next recall that a subset K of a vector space V is said to be convex if K contains the
line segment joining any pair of its points. Specifically, K is convex if

r,ye K, 0<A<1 = X+ (1— Ny e K.

Thus, given y1, y2 € Y, and O < A < 1, we want to show that the vector y* = Ay1 +(1—A)y2 €
Y.. But y1, yo» € Y, means that

r — = ||z — — min || — .
| yi|l = || ya|| min | yl|
Hence,
lz —y™l| = |l — (Ayr + (1 — ANy2)]

[A(x —y1) + (1 — N)(x — y2)||
Az —y1|] + (1 — N[z — y=2|

min ||x — )
min | Y|

7A

Consequently, || — y*|| = min ey ||z — v||; that is, y* € Y. ]



Corollary 1.13. If X has a strictly convexr norm, then, for any subspace Y of X and any
point x € X, there can be at most one best approrimation to x out of Y. That is, Y, is
either empty or consists of a single point.

In order to arrive at a condition that’s somewhat easier to check, let’s translate our
original definition into a statement about the triangle inequality in X.

Lemma 1.14. A normed space X has a strictly convex norm if and only if the triangle
inequality 1s strict on nonparallel vectors; that is, if and only if

z#ay, y#azr, dla e R = ||z +y| <|z] + [ly[-
Examples 1.15.

1. The usual norm on C|a,b] is not strictly convex (and so the problem of uniqueness

of best approximations is all the more interesting to tackle). For example, if f(z) = x
and g(z) = 2% in C[0,1], then f # g and | f[| = 1 = ||g||, while ||f + g[| = 2. (Why?)

2. The usual norm on R" is strictly convex, as is any one of the norms ||-||,, for 1 < p < 0.
(See Problem 10.) The norms || - ||; and || - ||, on the other hand, are not strictly

convex. (Why?)





