Approximation Theory

Department of Mathematics
Fourth Class

Introduction

In 1853, the great Russian mathematician, P. L. Chebyshev (Čebyšev), while working on a problem of *linkages*, devices which translate the linear motion of a steam engine into the circular motion of a wheel, considered the following problem:

Given a continuous function f defined on a closed interval [a,b] and a positive integer n, can we "represent" f by a polynomial $p(x) = \sum_{k=0}^{n} a_k x^k$, of degree at most n, in such a way that the maximum error at any point x in [a,b] is controlled? In particular, is it possible to construct p so that the error $\max_{a < x < b} |f(x) - p(x)|$ is minimized?

This problem raises several questions, the first of which Chebyshev himself ignored:

- Why should such a polynomial even *exist*?
- If it does, can we hope to *construct* it?
- If it exists, is it also unique?
- What happens if we change the measure of error to, say, $\int_a^b |f(x) p(x)|^2 dx$?

Best Approximations in Normed Spaces

Recall that a norm on a vector space X is a nonnegative function on X satisfying:

$$||x|| \ge 0$$
, and $||x|| = 0$ if and only if $x = 0$, $||\alpha x|| = |\alpha| ||x||$ for any $x \in X$ and $\alpha \in \mathbb{R}$, $||x + y|| \le ||x|| + ||y||$ for any $x, y \in X$.

Examples

- 1. As we'll soon see, in $X = \mathbb{R}^n$ with its usual norm $\|(x_k)_{k=1}^n\|_2 = \left(\sum_{k=1}^n |x_k|^2\right)^{1/2}$,
- 2. Consider $X = \mathbb{R}^2$ under the norm $||(x,y)|| = \max\{|x|,|y|\}$,

3. There are many norms we might consider on \mathbb{R}^n . Of particular interest are the ℓ_p -norms; that is, the scale of norms:

$$\|(x_i)_{i=1}^n\|_p = \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}, \quad 1 \le p < \infty,$$

and

$$||(x_i)_{i=1}^n||_{\infty} = \max_{1 \le i \le n} |x_i|.$$

It's easy to see that $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ define norms. The other cases take a bit more

4. The ℓ_2 -norm is an example of a norm induced by an *inner product* (or "dot" product). You will recall that the expression

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i,$$

where $x = (x_i)_{i=1}^n$ and $y = (y_i)_{i=1}^n$, defines an inner product on \mathbb{R}^n and that the norm in \mathbb{R}^n satisfies

$$||x||_2 = \sqrt{\langle x, x \rangle}.$$

one example, consider this: Given a positive Riemann integrable weight function w(x) defined on some interval [a, b], it's not hard to check that the expression

$$\langle f, g \rangle = \int_a^b f(t) g(t) w(t) dt$$

defines an inner product on C[a,b], the space of all continuous, real-valued functions $f:[a,b] \to \mathbb{R}$, with associated norm

$$||f||_2 = \left(\int_a^b |f(t)|^2 w(t) dt\right)^{1/2}.$$

5. Our original problem concerns the space X = C[a, b] under the uniform norm $||f|| = \max_{a \le x \le b} |f(x)|$. The adjective "uniform" is used here because convergence in this norm is the same as uniform convergence on [a, b]:

$$||f_n - f|| \to 0 \iff f_n \to f \text{ uniformly on } [a, b]$$

Lemma 1.3. Let V be a finite-dimensional vector space. Then, all norms on V are equivalent. That is, if $\|\cdot\|$ and $\|\cdot\|$ are norms on V, then there exist constants 0 < A, $B < \infty$ such that

$$A \|x\| \le \|x\| \le B \|x\|$$

for all vectors $x \in V$.

Corollary 1.4. Every finite-dimensional normed space is complete (that is, every Cauchy sequence converges). In particular, if Y is a finite-dimensional subspace of a normed linear space X, then Y is a closed subset of X.

Corollary 1.5. Let Y be a finite-dimensional normed space, let $x \in Y$, and let M > 0. Then, any closed ball $\{y \in Y : ||x - y|| \le M\}$ is compact.

Proof. Because translation is an isometry, it clearly suffices to show that the set $\{y \in Y : \|y\| \le M\}$ (i.e., the ball about 0) is compact.

Suppose now that Y is n-dimensional and that e_1, \ldots, e_n is a basis for Y. From Lemma 1.3 we know that there is some constant A > 0 such that

$$A\sum_{i=1}^{n}|a_i| \le \left\|\sum_{i=1}^{n}a_ie_i\right\|$$

for all $x = \sum_{i=1}^{n} a_i e_i \in Y$. In particular,

$$A|a_i| \le \left\| \sum_{i=1}^n a_i e_i \right\| \le M \implies |a_i| \le M/A \text{ for } i = 1, \dots, n.$$

Thus, $\{y \in Y : ||y|| \le M\}$ is a *closed* subset (why?) of the *compact* set

$$\left\{ x = \sum_{i=1}^{n} a_i e_i : |a_i| \le M/A, \ i = 1, \dots, n \right\} = [-M/A, M/A]^n.$$

Theorem 1.6. Let Y be a finite-dimensional subspace of a normed linear space X, and let $x \in X$. Then, there exists a (not necessarily unique) vector $y^* \in Y$ such that

$$||x - y^*|| = \min_{y \in Y} ||x - y||$$

for all $y \in Y$. That is, there is a best approximation to x by elements from Y.

Proof. First notice that because $0 \in Y$, we know that any nearest point y^* will satisfy $||x-y^*|| \le ||x|| = ||x-0||$. Thus, it suffices to look for y^* in the *compact* set

$$K = \{ y \in Y : ||x - y|| \le ||x|| \}.$$

To finish the proof, we need only note that the function f(y) = ||x - y|| is continuous:

$$|f(y) - f(z)| = ||x - y|| - ||x - z||| \le ||y - z||,$$

and hence attains a minimum value at some point $y^* \in K$.

Corollary 1.7. For each $f \in C[a,b]$ and each positive integer n, there is a (not necessarily unique) polynomial $p_n^* \in \mathcal{P}_n$ such that

$$||f - p_n^*|| = \min_{p \in \mathcal{P}_n} ||f - p||.$$

Lemma 1.9. Let Y be a finite-dimensional subspace of a normed linear space X, and suppose that each $x \in X$ has a unique nearest point $y_x \in Y$. Then the nearest point map $x \mapsto y_x$ is continuous.

Proof. Let's write $P(x) = y_x$ for the nearest point map, and let's suppose that $x_n \to x$ in X. We want to show that $P(x_n) \to P(x)$, and for this it's enough to show that there is a subsequence of $(P(x_n))$ that converges to P(x). (Why?)

Because the sequence (x_n) is bounded in X, say $||x_n|| \leq M$ for all n, we have

$$||P(x_n)|| \le ||P(x_n) - x_n|| + ||x_n|| \le 2||x_n|| \le 2M.$$

Thus, $(P(x_n))$ is a bounded sequence in Y, a finite-dimensional space. As such, by passing to a subsequence, we may suppose that $(P(x_n))$ converges to some element $P_0 \in Y$. (How?) Now we need to show that $P_0 = P(x)$. But

$$||P(x_n) - x_n|| \le ||P(x) - x_n||$$

for any n. (Why?) Hence, letting $n \to \infty$, we get

$$||P_0 - x|| \le ||P(x) - x||.$$

Because nearest points in Y are unique, we must have $P_0 = P(x)$.

Theorem 1.11. Let Y be a subspace of a normed linear space X, and let $x \in X$. The set Y_x , consisting of all best approximations to x out of Y, is a bounded convex set.

Proof. As we've seen, the set Y_x is a subset of the ball $\{y \in X : ||x-y|| \le ||x||\}$ and, as such, is bounded. (More generally, the set Y_x is a subset of the sphere $\{y \in X : ||x-y|| = d\}$, where $d = \text{dist}(x, Y) = \inf_{y \in Y} ||x-y||$.)

Next recall that a subset K of a vector space V is said to be convex if K contains the line segment joining any pair of its points. Specifically, K is convex if

$$x, y \in K, \ 0 \le \lambda \le 1 \implies \lambda x + (1 - \lambda)y \in K.$$

Thus, given $y_1, y_2 \in Y_x$ and $0 \le \lambda \le 1$, we want to show that the vector $y^* = \lambda y_1 + (1-\lambda)y_2 \in Y_x$. But $y_1, y_2 \in Y_x$ means that

$$||x - y_1|| = ||x - y_2|| = \min_{y \in Y} ||x - y||.$$

Hence,

$$||x - y^*|| = ||x - (\lambda y_1 + (1 - \lambda)y_2)||$$

$$= ||\lambda(x - y_1) + (1 - \lambda)(x - y_2)||$$

$$\leq \lambda||x - y_1|| + (1 - \lambda)||x - y_2||$$

$$= \min_{y \in Y} ||x - y||.$$

Consequently, $||x - y^*|| = \min_{y \in Y} ||x - y||$; that is, $y^* \in Y_x$.

Corollary 1.13. If X has a strictly convex norm, then, for any subspace Y of X and any point $x \in X$, there can be at most one best approximation to x out of Y. That is, Y_x is either empty or consists of a single point.

In order to arrive at a condition that's somewhat easier to check, let's translate our original definition into a statement about the triangle inequality in X.

Lemma 1.14. A normed space X has a strictly convex norm if and only if the triangle inequality is strict on nonparallel vectors; that is, if and only if

$$x \neq \alpha y, y \neq \alpha x, \ all \ \alpha \in \mathbb{R} \implies ||x+y|| < ||x|| + ||y||.$$

Examples 1.15.

- 1. The usual norm on C[a, b] is not strictly convex (and so the problem of uniqueness of best approximations is all the more interesting to tackle). For example, if f(x) = x and $g(x) = x^2$ in C[0, 1], then $f \neq g$ and ||f|| = 1 = ||g||, while ||f + g|| = 2. (Why?)
- 2. The usual norm on \mathbb{R}^n is strictly convex, as is any one of the norms $\|\cdot\|_p$ for $1 . (See Problem 10.) The norms <math>\|\cdot\|_1$ and $\|\cdot\|_\infty$, on the other hand, are *not* strictly convex. (Why?)